/* * Copyright (c) 2015 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * audio to video multimedia aphasemeter filter */ #include #include "libavutil/channel_layout.h" #include "libavutil/intreadwrite.h" #include "libavutil/opt.h" #include "libavutil/parseutils.h" #include "libavutil/timestamp.h" #include "avfilter.h" #include "filters.h" #include "formats.h" #include "audio.h" #include "video.h" typedef struct AudioPhaseMeterContext { const AVClass *class; AVFrame *out, *in; int64_t last_pts; int do_video; int do_phasing_detection; int w, h; AVRational frame_rate; int contrast[4]; uint8_t *mpc_str; uint8_t mpc[4]; int draw_median_phase; int is_mono; int is_out_phase; int start_mono_presence; int start_out_phase_presence; int nb_samples; float tolerance; float angle; float phase; AVRational time_base; int64_t duration; int64_t frame_end; int64_t mono_idx[2]; int64_t out_phase_idx[2]; } AudioPhaseMeterContext; #define MAX_DURATION (24*60*60*1000000LL) #define OFFSET(x) offsetof(AudioPhaseMeterContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM #define get_duration(index) (index[1] - index[0]) static const AVOption aphasemeter_options[] = { { "rate", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str="25"}, 0, INT_MAX, FLAGS }, { "r", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str="25"}, 0, INT_MAX, FLAGS }, { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str="800x400"}, 0, 0, FLAGS }, { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str="800x400"}, 0, 0, FLAGS }, { "rc", "set red contrast", OFFSET(contrast[0]), AV_OPT_TYPE_INT, {.i64=2}, 0, 255, FLAGS }, { "gc", "set green contrast", OFFSET(contrast[1]), AV_OPT_TYPE_INT, {.i64=7}, 0, 255, FLAGS }, { "bc", "set blue contrast", OFFSET(contrast[2]), AV_OPT_TYPE_INT, {.i64=1}, 0, 255, FLAGS }, { "mpc", "set median phase color", OFFSET(mpc_str), AV_OPT_TYPE_STRING, {.str = "none"}, 0, 0, FLAGS }, { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS }, { "phasing", "set mono and out-of-phase detection output", OFFSET(do_phasing_detection), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS }, { "tolerance", "set phase tolerance for mono detection", OFFSET(tolerance), AV_OPT_TYPE_FLOAT, {.dbl = 0.}, 0, 1, FLAGS }, { "t", "set phase tolerance for mono detection", OFFSET(tolerance), AV_OPT_TYPE_FLOAT, {.dbl = 0.}, 0, 1, FLAGS }, { "angle", "set angle threshold for out-of-phase detection", OFFSET(angle), AV_OPT_TYPE_FLOAT, {.dbl = 170.}, 90, 180, FLAGS }, { "a", "set angle threshold for out-of-phase detection", OFFSET(angle), AV_OPT_TYPE_FLOAT, {.dbl = 170.}, 90, 180, FLAGS }, { "duration", "set minimum mono or out-of-phase duration in seconds", OFFSET(duration), AV_OPT_TYPE_DURATION, {.i64=2000000}, 0, MAX_DURATION, FLAGS }, { "d", "set minimum mono or out-of-phase duration in seconds", OFFSET(duration), AV_OPT_TYPE_DURATION, {.i64=2000000}, 0, MAX_DURATION, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(aphasemeter); static int query_formats(AVFilterContext *ctx) { AudioPhaseMeterContext *s = ctx->priv; AVFilterFormats *formats = NULL; AVFilterChannelLayouts *layout = NULL; AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_NONE }; static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGBA, AV_PIX_FMT_NONE }; int ret; formats = ff_make_format_list(sample_fmts); if ((ret = ff_formats_ref (formats, &inlink->outcfg.formats )) < 0 || (ret = ff_formats_ref (formats, &outlink->incfg.formats )) < 0 || (ret = ff_add_channel_layout (&layout, &(AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO )) < 0 || (ret = ff_channel_layouts_ref (layout , &inlink->outcfg.channel_layouts)) < 0 || (ret = ff_channel_layouts_ref (layout , &outlink->incfg.channel_layouts)) < 0) return ret; formats = ff_all_samplerates(); if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0 || (ret = ff_formats_ref(formats, &outlink->incfg.samplerates)) < 0) return ret; if (s->do_video) { AVFilterLink *outlink = ctx->outputs[1]; formats = ff_make_format_list(pix_fmts); if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0) return ret; } return 0; } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; AudioPhaseMeterContext *s = ctx->priv; s->duration = av_rescale(s->duration, inlink->sample_rate, AV_TIME_BASE); if (s->do_video) s->nb_samples = FFMAX(1, av_rescale(inlink->sample_rate, s->frame_rate.den, s->frame_rate.num)); return 0; } static int config_video_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AudioPhaseMeterContext *s = ctx->priv; FilterLink *l = ff_filter_link(outlink); s->last_pts = AV_NOPTS_VALUE; outlink->w = s->w; outlink->h = s->h; outlink->sample_aspect_ratio = (AVRational){1,1}; l->frame_rate = s->frame_rate; outlink->time_base = av_inv_q(l->frame_rate); if (!strcmp(s->mpc_str, "none")) s->draw_median_phase = 0; else if (av_parse_color(s->mpc, s->mpc_str, -1, ctx) >= 0) s->draw_median_phase = 1; else return AVERROR(EINVAL); return 0; } static inline int get_x(float phase, int w) { return (phase + 1.f) / 2.f * (w - 1.f); } static inline void add_metadata(AVFrame *insamples, const char *key, char *value) { char buf[128]; snprintf(buf, sizeof(buf), "lavfi.aphasemeter.%s", key); av_dict_set(&insamples->metadata, buf, value, 0); } static inline void update_mono_detection(AudioPhaseMeterContext *s, AVFrame *insamples, int mono_measurement) { int64_t mono_duration; if (!s->is_mono && mono_measurement) { s->is_mono = 1; s->start_mono_presence = 1; s->mono_idx[0] = insamples->pts; } if (s->is_mono && mono_measurement && s->start_mono_presence) { s->mono_idx[1] = s->frame_end; mono_duration = get_duration(s->mono_idx); if (mono_duration >= s->duration) { add_metadata(insamples, "mono_start", av_ts2timestr(s->mono_idx[0], &s->time_base)); av_log(s, AV_LOG_INFO, "mono_start: %s\n", av_ts2timestr(s->mono_idx[0], &s->time_base)); s->start_mono_presence = 0; } } if (s->is_mono && !mono_measurement) { s->mono_idx[1] = insamples ? insamples->pts : s->frame_end; mono_duration = get_duration(s->mono_idx); if (mono_duration >= s->duration) { if (insamples) { add_metadata(insamples, "mono_end", av_ts2timestr(s->mono_idx[1], &s->time_base)); add_metadata(insamples, "mono_duration", av_ts2timestr(mono_duration, &s->time_base)); } av_log(s, AV_LOG_INFO, "mono_end: %s | mono_duration: %s\n", av_ts2timestr(s->mono_idx[1], &s->time_base), av_ts2timestr(mono_duration, &s->time_base)); } s->is_mono = 0; } } static inline void update_out_phase_detection(AudioPhaseMeterContext *s, AVFrame *insamples, int out_phase_measurement) { int64_t out_phase_duration; if (!s->is_out_phase && out_phase_measurement) { s->is_out_phase = 1; s->start_out_phase_presence = 1; s->out_phase_idx[0] = insamples->pts; } if (s->is_out_phase && out_phase_measurement && s->start_out_phase_presence) { s->out_phase_idx[1] = s->frame_end; out_phase_duration = get_duration(s->out_phase_idx); if (out_phase_duration >= s->duration) { add_metadata(insamples, "out_phase_start", av_ts2timestr(s->out_phase_idx[0], &s->time_base)); av_log(s, AV_LOG_INFO, "out_phase_start: %s\n", av_ts2timestr(s->out_phase_idx[0], &s->time_base)); s->start_out_phase_presence = 0; } } if (s->is_out_phase && !out_phase_measurement) { s->out_phase_idx[1] = insamples ? insamples->pts : s->frame_end; out_phase_duration = get_duration(s->out_phase_idx); if (out_phase_duration >= s->duration) { if (insamples) { add_metadata(insamples, "out_phase_end", av_ts2timestr(s->out_phase_idx[1], &s->time_base)); add_metadata(insamples, "out_phase_duration", av_ts2timestr(out_phase_duration, &s->time_base)); } av_log(s, AV_LOG_INFO, "out_phase_end: %s | out_phase_duration: %s\n", av_ts2timestr(s->out_phase_idx[1], &s->time_base), av_ts2timestr(out_phase_duration, &s->time_base)); } s->is_out_phase = 0; } } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AudioPhaseMeterContext *s = ctx->priv; AVFilterLink *outlink = s->do_video ? ctx->outputs[1] : NULL; AVFilterLink *aoutlink = ctx->outputs[0]; AVDictionary **metadata; const int rc = s->contrast[0]; const int gc = s->contrast[1]; const int bc = s->contrast[2]; float fphase = 0; AVFrame *out; uint8_t *dst; int i, ret; int mono_measurement; int out_phase_measurement; float tolerance = 1.0f - s->tolerance; float angle = cosf(s->angle/180.0f*M_PIf); int64_t new_pts; if (s->do_video && (!s->out || s->out->width != outlink->w || s->out->height != outlink->h)) { av_frame_free(&s->out); s->out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!s->out) { ret = AVERROR(ENOMEM); goto fail; } out = s->out; for (i = 0; i < outlink->h; i++) memset(out->data[0] + i * out->linesize[0], 0, outlink->w * 4); } else if (s->do_video) { ret = ff_inlink_make_frame_writable(outlink, &s->out); if (ret < 0) goto fail; out = s->out; for (i = outlink->h - 1; i >= 10; i--) memmove(out->data[0] + (i ) * out->linesize[0], out->data[0] + (i-1) * out->linesize[0], outlink->w * 4); for (i = 0; i < outlink->w; i++) AV_WL32(out->data[0] + i * 4, 0); } for (i = 0; i < in->nb_samples; i++) { const float *src = (float *)in->data[0] + i * 2; const float f = src[0] * src[1] / (src[0]*src[0] + src[1] * src[1]) * 2; const float phase = isnan(f) ? 1 : f; const int x = get_x(phase, s->w); if (s->do_video) { dst = out->data[0] + x * 4; dst[0] = FFMIN(255, dst[0] + rc); dst[1] = FFMIN(255, dst[1] + gc); dst[2] = FFMIN(255, dst[2] + bc); dst[3] = 255; } fphase += phase; } fphase /= in->nb_samples; s->phase = fphase; if (s->do_video) { if (s->draw_median_phase) { dst = out->data[0] + get_x(fphase, s->w) * 4; AV_WL32(dst, AV_RL32(s->mpc)); } for (i = 1; i < 10 && i < outlink->h; i++) memcpy(out->data[0] + i * out->linesize[0], out->data[0], outlink->w * 4); } metadata = &in->metadata; if (metadata) { uint8_t value[128]; snprintf(value, sizeof(value), "%f", fphase); add_metadata(in, "phase", value); } if (s->do_phasing_detection) { s->time_base = inlink->time_base; s->frame_end = in->pts + av_rescale_q(in->nb_samples, (AVRational){ 1, in->sample_rate }, inlink->time_base); mono_measurement = (tolerance - fphase) < FLT_EPSILON; out_phase_measurement = (angle - fphase) > FLT_EPSILON; update_mono_detection(s, in, mono_measurement); update_out_phase_detection(s, in, out_phase_measurement); } if (s->do_video) new_pts = av_rescale_q(in->pts, inlink->time_base, outlink->time_base); if (s->do_video && new_pts != s->last_pts) { AVFrame *clone; s->out->pts = s->last_pts = new_pts; s->out->duration = 1; clone = av_frame_clone(s->out); if (!clone) { ret = AVERROR(ENOMEM); goto fail; } ret = ff_filter_frame(outlink, clone); if (ret < 0) goto fail; } s->in = NULL; return ff_filter_frame(aoutlink, in); fail: av_frame_free(&in); s->in = NULL; return ret; } static int activate(AVFilterContext *ctx) { AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; AudioPhaseMeterContext *s = ctx->priv; int ret; FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); if (s->do_video) FF_FILTER_FORWARD_STATUS_BACK(ctx->outputs[1], inlink); if (!s->in) { if (s->nb_samples > 0) ret = ff_inlink_consume_samples(inlink, s->nb_samples, s->nb_samples, &s->in); else ret = ff_inlink_consume_frame(inlink, &s->in); if (ret < 0) return ret; if (ret > 0) return filter_frame(inlink, s->in); } FF_FILTER_FORWARD_STATUS_ALL(inlink, ctx); FF_FILTER_FORWARD_WANTED(outlink, inlink); if (s->do_video) FF_FILTER_FORWARD_WANTED(ctx->outputs[1], inlink); return FFERROR_NOT_READY; } static av_cold void uninit(AVFilterContext *ctx) { AudioPhaseMeterContext *s = ctx->priv; if (s->do_phasing_detection) { update_mono_detection(s, NULL, 0); update_out_phase_detection(s, NULL, 0); } av_frame_free(&s->out); } static av_cold int init(AVFilterContext *ctx) { AudioPhaseMeterContext *s = ctx->priv; AVFilterPad pad; int ret; pad = (AVFilterPad){ .name = "out0", .type = AVMEDIA_TYPE_AUDIO, }; ret = ff_append_outpad(ctx, &pad); if (ret < 0) return ret; if (s->do_video) { pad = (AVFilterPad){ .name = "out1", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_video_output, }; ret = ff_append_outpad(ctx, &pad); if (ret < 0) return ret; } return 0; } static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_input, }, }; const AVFilter ff_avf_aphasemeter = { .name = "aphasemeter", .description = NULL_IF_CONFIG_SMALL("Convert input audio to phase meter video output."), .init = init, .uninit = uninit, .priv_size = sizeof(AudioPhaseMeterContext), FILTER_INPUTS(inputs), .activate = activate, .outputs = NULL, FILTER_QUERY_FUNC(query_formats), .priv_class = &aphasemeter_class, .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS, };