/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include <float.h> #include "libavutil/common.h" #include "libavutil/imgutils.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/tx.h" #include "internal.h" #include "window_func.h" #define MAX_BLOCK 256 #define MAX_THREADS 32 enum BufferTypes { CURRENT, PREV, NEXT, BSIZE }; typedef struct PlaneContext { int planewidth, planeheight; int nox, noy; int b; int o; float n; float *buffer[MAX_THREADS][BSIZE]; AVComplexFloat *hdata[MAX_THREADS], *vdata[MAX_THREADS]; AVComplexFloat *hdata_out[MAX_THREADS], *vdata_out[MAX_THREADS]; int data_linesize; int buffer_linesize; } PlaneContext; typedef struct FFTdnoizContext { const AVClass *class; float sigma; float amount; int block_size; float overlap; int method; int window; int nb_prev; int nb_next; int planesf; AVFrame *prev, *cur, *next; int depth; int nb_planes; int nb_threads; PlaneContext planes[4]; float win[MAX_BLOCK][MAX_BLOCK]; AVTXContext *fft[MAX_THREADS], *ifft[MAX_THREADS]; AVTXContext *fft_r[MAX_THREADS], *ifft_r[MAX_THREADS]; av_tx_fn tx_fn, itx_fn; av_tx_fn tx_r_fn, itx_r_fn; void (*import_row)(AVComplexFloat *dst, uint8_t *src, int rw, float scale, float *win, int off); void (*export_row)(AVComplexFloat *src, uint8_t *dst, int rw, int depth, float *win); } FFTdnoizContext; #define OFFSET(x) offsetof(FFTdnoizContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption fftdnoiz_options[] = { { "sigma", "set denoise strength", OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 100, .flags = TFLAGS }, { "amount", "set amount of denoising", OFFSET(amount), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0.01, 1, .flags = TFLAGS }, { "block", "set block size", OFFSET(block_size), AV_OPT_TYPE_INT, {.i64=32}, 8, MAX_BLOCK, .flags = FLAGS }, { "overlap", "set block overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=0.5}, 0.2, 0.8, .flags = FLAGS }, { "method", "set method of denoising", OFFSET(method), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = TFLAGS, "method" }, { "wiener", "wiener method", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, .flags = TFLAGS, "method" }, { "hard", "hard thresholding", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, .flags = TFLAGS, "method" }, { "prev", "set number of previous frames for temporal denoising", OFFSET(nb_prev), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = FLAGS }, { "next", "set number of next frames for temporal denoising", OFFSET(nb_next), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = FLAGS }, { "planes", "set planes to filter", OFFSET(planesf), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, .flags = TFLAGS }, WIN_FUNC_OPTION("window", OFFSET(window), FLAGS, WFUNC_HANNING), { NULL } }; AVFILTER_DEFINE_CLASS(fftdnoiz); static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_NONE }; typedef struct ThreadData { float *src, *dst; } ThreadData; static void import_row8(AVComplexFloat *dst, uint8_t *src, int rw, float scale, float *win, int off) { for (int j = 0; j < rw; j++) { const int i = abs(j + off); dst[j].re = src[i] * scale * win[j]; dst[j].im = 0.f; } } static void export_row8(AVComplexFloat *src, uint8_t *dst, int rw, int depth, float *win) { for (int j = 0; j < rw; j++) dst[j] = av_clip_uint8(lrintf(src[j].re / win[j])); } static void import_row16(AVComplexFloat *dst, uint8_t *srcp, int rw, float scale, float *win, int off) { uint16_t *src = (uint16_t *)srcp; for (int j = 0; j < rw; j++) { const int i = abs(j + off); dst[j].re = src[i] * scale * win[j]; dst[j].im = 0; } } static void export_row16(AVComplexFloat *src, uint8_t *dstp, int rw, int depth, float *win) { uint16_t *dst = (uint16_t *)dstp; for (int j = 0; j < rw; j++) dst[j] = av_clip_uintp2_c(lrintf(src[j].re / win[j]), depth); } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; const AVPixFmtDescriptor *desc; FFTdnoizContext *s = ctx->priv; float lut[MAX_BLOCK + 1]; float overlap; int i; desc = av_pix_fmt_desc_get(inlink->format); s->depth = desc->comp[0].depth; if (s->depth <= 8) { s->import_row = import_row8; s->export_row = export_row8; } else { s->import_row = import_row16; s->export_row = export_row16; } s->planes[1].planewidth = s->planes[2].planewidth = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); s->planes[0].planewidth = s->planes[3].planewidth = inlink->w; s->planes[1].planeheight = s->planes[2].planeheight = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->planes[0].planeheight = s->planes[3].planeheight = inlink->h; s->nb_planes = av_pix_fmt_count_planes(inlink->format); s->nb_threads = FFMIN(ff_filter_get_nb_threads(ctx), MAX_THREADS); for (int i = 0; i < s->nb_threads; i++) { float scale = 1.f, iscale = 1.f; av_tx_init(&s->fft[i], &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->block_size, &scale, 0); av_tx_init(&s->ifft[i], &s->itx_fn, AV_TX_FLOAT_FFT, 1, s->block_size, &iscale, 0); av_tx_init(&s->fft_r[i], &s->tx_r_fn, AV_TX_FLOAT_FFT, 0, 1 + s->nb_prev + s->nb_next, &scale, 0); av_tx_init(&s->ifft_r[i], &s->itx_r_fn, AV_TX_FLOAT_FFT, 1, 1 + s->nb_prev + s->nb_next, &iscale, 0); if (!s->fft[i] || !s->ifft[i] || !s->fft_r[i] || !s->ifft_r[i]) return AVERROR(ENOMEM); } for (i = 0; i < s->nb_planes; i++) { PlaneContext *p = &s->planes[i]; int size; p->b = s->block_size; p->n = 1.f / (p->b * p->b); p->o = lrintf(p->b * s->overlap); size = p->b - p->o; p->nox = (p->planewidth + (size - 1)) / size; p->noy = (p->planeheight + (size - 1)) / size; av_log(ctx, AV_LOG_DEBUG, "nox:%d noy:%d size:%d\n", p->nox, p->noy, size); p->buffer_linesize = p->b * sizeof(AVComplexFloat); p->data_linesize = 2 * p->b * sizeof(float); for (int j = 0; j < s->nb_threads; j++) { p->hdata[j] = av_calloc(p->b, p->data_linesize); p->hdata_out[j] = av_calloc(p->b, p->data_linesize); p->vdata[j] = av_calloc(p->b, p->data_linesize); p->vdata_out[j] = av_calloc(p->b, p->data_linesize); p->buffer[j][CURRENT] = av_calloc(p->b, p->buffer_linesize); if (!p->buffer[j][CURRENT]) return AVERROR(ENOMEM); if (s->nb_prev > 0) { p->buffer[j][PREV] = av_calloc(p->b, p->buffer_linesize); if (!p->buffer[j][PREV]) return AVERROR(ENOMEM); } if (s->nb_next > 0) { p->buffer[j][NEXT] = av_calloc(p->b, p->buffer_linesize); if (!p->buffer[j][NEXT]) return AVERROR(ENOMEM); } if (!p->hdata[j] || !p->vdata[j] || !p->hdata_out[j] || !p->vdata_out[j]) return AVERROR(ENOMEM); } } generate_window_func(lut, s->block_size + 1, s->window, &overlap); for (int y = 0; y < s->block_size; y++) { for (int x = 0; x < s->block_size; x++) s->win[y][x] = lut[y] * lut[x]; } return 0; } static void import_block(FFTdnoizContext *s, uint8_t *srcp, int src_linesize, float *buffer, int buffer_linesize, int plane, int jobnr, int y, int x) { PlaneContext *p = &s->planes[plane]; const int width = p->planewidth; const int height = p->planeheight; const int block = p->b; const int overlap = p->o; const int hoverlap = overlap / 2; const int size = block - overlap; const int bpp = (s->depth + 7) / 8; const int data_linesize = p->data_linesize / sizeof(AVComplexFloat); const float scale = 1.f / ((1.f + s->nb_prev + s->nb_next) * s->block_size * s->block_size); AVComplexFloat *hdata = p->hdata[jobnr]; AVComplexFloat *hdata_out = p->hdata_out[jobnr]; AVComplexFloat *vdata_out = p->vdata_out[jobnr]; const int woff = -hoverlap; const int hoff = -hoverlap; const int rh = FFMIN(block, height - y * size + hoverlap); const int rw = FFMIN(block, width - x * size + hoverlap); AVComplexFloat *ssrc, *ddst, *dst = hdata, *dst_out = hdata_out; float *bdst = buffer; buffer_linesize /= sizeof(float); for (int i = 0; i < rh; i++) { uint8_t *src = srcp + src_linesize * abs(y * size + i + hoff) + x * size * bpp; s->import_row(dst, src, rw, scale, s->win[i], woff); for (int j = rw; j < block; j++) { dst[j].re = dst[rw - 1].re; dst[j].im = 0.f; } s->tx_fn(s->fft[jobnr], dst_out, dst, sizeof(float)); ddst = dst_out; dst += data_linesize; dst_out += data_linesize; } for (int i = rh; i < block; i++) { for (int j = 0; j < block; j++) { dst[j].re = ddst[j].re; dst[j].im = ddst[j].im; } dst += data_linesize; } ssrc = hdata_out; dst = vdata_out; for (int i = 0; i < block; i++) { for (int j = 0; j < block; j++) dst[j] = ssrc[j * data_linesize + i]; s->tx_fn(s->fft[jobnr], bdst, dst, sizeof(float)); dst += data_linesize; bdst += buffer_linesize; } } static void export_block(FFTdnoizContext *s, uint8_t *dstp, int dst_linesize, float *buffer, int buffer_linesize, int plane, int jobnr, int y, int x) { PlaneContext *p = &s->planes[plane]; const int depth = s->depth; const int bpp = (depth + 7) / 8; const int width = p->planewidth; const int height = p->planeheight; const int block = p->b; const int overlap = p->o; const int hoverlap = overlap / 2; const int size = block - overlap; const int data_linesize = p->data_linesize / sizeof(AVComplexFloat); AVComplexFloat *hdata = p->hdata[jobnr]; AVComplexFloat *hdata_out = p->hdata_out[jobnr]; AVComplexFloat *vdata_out = p->vdata_out[jobnr]; const int rw = FFMIN(size, width - x * size + hoverlap); const int rh = FFMIN(size, height - y * size + hoverlap); AVComplexFloat *hdst, *vdst = vdata_out, *hdst_out = hdata_out; float *bsrc = buffer; hdst = hdata; buffer_linesize /= sizeof(float); for (int i = 0; i < block; i++) { s->itx_fn(s->ifft[jobnr], vdst, bsrc, sizeof(float)); for (int j = 0; j < block; j++) hdst[j * data_linesize + i] = vdst[j]; vdst += data_linesize; bsrc += buffer_linesize; } hdst = hdata + hoverlap * data_linesize; for (int i = 0; i < rh && (y * size + i) < height; i++) { uint8_t *dst = dstp + dst_linesize * (y * size + i) + x * size * bpp; s->itx_fn(s->ifft[jobnr], hdst_out, hdst, sizeof(float)); s->export_row(hdst_out + hoverlap, dst, rw, depth, s->win[i + hoverlap] + hoverlap); hdst += data_linesize; hdst_out += data_linesize; } } static void filter_block3d2(FFTdnoizContext *s, int plane, float *pbuffer, float *nbuffer, int jobnr) { PlaneContext *p = &s->planes[plane]; const int block = p->b; const int buffer_linesize = p->buffer_linesize / sizeof(float); const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8)); const float sigma = s->sigma * depthx / (3.f * s->block_size * s->block_size); const float limit = 1.f - s->amount; float *cbuffer = p->buffer[jobnr][CURRENT]; const int method = s->method; float *cbuff = cbuffer; float *pbuff = pbuffer; float *nbuff = nbuffer; for (int i = 0; i < block; i++) { for (int j = 0; j < block; j++) { AVComplexFloat buffer[BSIZE]; AVComplexFloat outbuffer[BSIZE]; buffer[0].re = pbuff[2 * j ]; buffer[0].im = pbuff[2 * j + 1]; buffer[1].re = cbuff[2 * j ]; buffer[1].im = cbuff[2 * j + 1]; buffer[2].re = nbuff[2 * j ]; buffer[2].im = nbuff[2 * j + 1]; s->tx_r_fn(s->fft_r[jobnr], outbuffer, buffer, sizeof(float)); for (int z = 0; z < 3; z++) { const float re = outbuffer[z].re; const float im = outbuffer[z].im; const float power = re * re + im * im; float factor; switch (method) { case 0: factor = fmaxf(limit, (power - sigma) / (power + 1e-15f)); break; case 1: factor = power < sigma ? limit : 1.f; break; } outbuffer[z].re *= factor; outbuffer[z].im *= factor; } s->itx_r_fn(s->ifft_r[jobnr], buffer, outbuffer, sizeof(float)); cbuff[2 * j + 0] = buffer[1].re; cbuff[2 * j + 1] = buffer[1].im; } cbuff += buffer_linesize; pbuff += buffer_linesize; nbuff += buffer_linesize; } } static void filter_block3d1(FFTdnoizContext *s, int plane, float *pbuffer, int jobnr) { PlaneContext *p = &s->planes[plane]; const int block = p->b; const int buffer_linesize = p->buffer_linesize / sizeof(float); const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8)); const float sigma = s->sigma * depthx / (2.f * s->block_size * s->block_size); const float limit = 1.f - s->amount; float *cbuffer = p->buffer[jobnr][CURRENT]; const int method = s->method; float *cbuff = cbuffer; float *pbuff = pbuffer; for (int i = 0; i < block; i++) { for (int j = 0; j < block; j++) { AVComplexFloat buffer[BSIZE]; AVComplexFloat outbuffer[BSIZE]; buffer[0].re = pbuff[2 * j ]; buffer[0].im = pbuff[2 * j + 1]; buffer[1].re = cbuff[2 * j ]; buffer[1].im = cbuff[2 * j + 1]; s->tx_r_fn(s->fft_r[jobnr], outbuffer, buffer, sizeof(float)); for (int z = 0; z < 2; z++) { const float re = outbuffer[z].re; const float im = outbuffer[z].im; const float power = re * re + im * im; float factor; switch (method) { case 0: factor = fmaxf(limit, (power - sigma) / (power + 1e-15f)); break; case 1: factor = power < sigma ? limit : 1.f; break; } outbuffer[z].re *= factor; outbuffer[z].im *= factor; } s->itx_r_fn(s->ifft_r[jobnr], buffer, outbuffer, sizeof(float)); cbuff[2 * j + 0] = buffer[1].re; cbuff[2 * j + 1] = buffer[1].im; } cbuff += buffer_linesize; pbuff += buffer_linesize; } } static void filter_block2d(FFTdnoizContext *s, int plane, int jobnr) { PlaneContext *p = &s->planes[plane]; const int block = p->b; const int method = s->method; const int buffer_linesize = p->buffer_linesize / sizeof(float); const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8)); const float sigma = s->sigma * depthx / (s->block_size * s->block_size); const float limit = 1.f - s->amount; float *buff = p->buffer[jobnr][CURRENT]; for (int i = 0; i < block; i++) { for (int j = 0; j < block; j++) { float factor, power, re, im; re = buff[j * 2 ]; im = buff[j * 2 + 1]; power = re * re + im * im; switch (method) { case 0: factor = fmaxf(limit, (power - sigma) / (power + 1e-15f)); break; case 1: factor = power < sigma ? limit : 1.f; break; } buff[j * 2 ] *= factor; buff[j * 2 + 1] *= factor; } buff += buffer_linesize; } } static int denoise(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { FFTdnoizContext *s = ctx->priv; AVFrame *out = arg; for (int plane = 0; plane < s->nb_planes; plane++) { PlaneContext *p = &s->planes[plane]; const int nox = p->nox; const int noy = p->noy; const int slice_start = (noy * jobnr) / nb_jobs; const int slice_end = (noy * (jobnr+1)) / nb_jobs; if (!((1 << plane) & s->planesf) || ctx->is_disabled) continue; for (int y = slice_start; y < slice_end; y++) { for (int x = 0; x < nox; x++) { if (s->next) { import_block(s, s->next->data[plane], s->next->linesize[plane], p->buffer[jobnr][NEXT], p->buffer_linesize, plane, jobnr, y, x); } if (s->prev) { import_block(s, s->prev->data[plane], s->prev->linesize[plane], p->buffer[jobnr][PREV], p->buffer_linesize, plane, jobnr, y, x); } import_block(s, s->cur->data[plane], s->cur->linesize[plane], p->buffer[jobnr][CURRENT], p->buffer_linesize, plane, jobnr, y, x); if (s->next && s->prev) { filter_block3d2(s, plane, p->buffer[jobnr][PREV], p->buffer[jobnr][NEXT], jobnr); } else if (s->next) { filter_block3d1(s, plane, p->buffer[jobnr][NEXT], jobnr); } else if (s->prev) { filter_block3d1(s, plane, p->buffer[jobnr][PREV], jobnr); } else { filter_block2d(s, plane, jobnr); } export_block(s, out->data[plane], out->linesize[plane], p->buffer[jobnr][CURRENT], p->buffer_linesize, plane, jobnr, y, x); } } } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; FFTdnoizContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; int direct, plane; AVFrame *out; if (s->nb_next > 0 && s->nb_prev > 0) { av_frame_free(&s->prev); s->prev = s->cur; s->cur = s->next; s->next = in; if (!s->prev && s->cur) { s->prev = av_frame_clone(s->cur); if (!s->prev) return AVERROR(ENOMEM); } if (!s->cur) return 0; } else if (s->nb_next > 0) { av_frame_free(&s->cur); s->cur = s->next; s->next = in; if (!s->cur) return 0; } else if (s->nb_prev > 0) { av_frame_free(&s->prev); s->prev = s->cur; s->cur = in; if (!s->prev) s->prev = av_frame_clone(s->cur); if (!s->prev) return AVERROR(ENOMEM); } else { s->cur = in; } if (av_frame_is_writable(in) && s->nb_next == 0 && s->nb_prev == 0) { direct = 1; out = in; } else { direct = 0; out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) return AVERROR(ENOMEM); av_frame_copy_props(out, s->cur); } ff_filter_execute(ctx, denoise, out, NULL, FFMIN(s->planes[0].noy, s->nb_threads)); for (plane = 0; plane < s->nb_planes; plane++) { PlaneContext *p = &s->planes[plane]; if (!((1 << plane) & s->planesf) || ctx->is_disabled) { if (!direct) av_image_copy_plane(out->data[plane], out->linesize[plane], s->cur->data[plane], s->cur->linesize[plane], p->planewidth * (1 + (s->depth > 8)), p->planeheight); continue; } } if (s->nb_next == 0 && s->nb_prev == 0) { if (direct) { s->cur = NULL; } else { av_frame_free(&s->cur); } } return ff_filter_frame(outlink, out); } static int request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; FFTdnoizContext *s = ctx->priv; int ret = 0; ret = ff_request_frame(ctx->inputs[0]); if (ret == AVERROR_EOF && (s->nb_next > 0)) { AVFrame *buf; if (s->next && s->nb_next > 0) buf = av_frame_clone(s->next); else if (s->cur) buf = av_frame_clone(s->cur); else buf = av_frame_clone(s->prev); if (!buf) return AVERROR(ENOMEM); ret = filter_frame(ctx->inputs[0], buf); if (ret < 0) return ret; ret = AVERROR_EOF; } return ret; } static av_cold void uninit(AVFilterContext *ctx) { FFTdnoizContext *s = ctx->priv; int i; for (i = 0; i < 4; i++) { PlaneContext *p = &s->planes[i]; for (int j = 0; j < s->nb_threads; j++) { av_freep(&p->hdata[j]); av_freep(&p->vdata[j]); av_freep(&p->hdata_out[j]); av_freep(&p->vdata_out[j]); av_freep(&p->buffer[j][PREV]); av_freep(&p->buffer[j][CURRENT]); av_freep(&p->buffer[j][NEXT]); } } for (i = 0; i < s->nb_threads; i++) { av_tx_uninit(&s->fft[i]); av_tx_uninit(&s->ifft[i]); av_tx_uninit(&s->fft_r[i]); av_tx_uninit(&s->ifft_r[i]); } av_frame_free(&s->prev); av_frame_free(&s->cur); av_frame_free(&s->next); } static const AVFilterPad fftdnoiz_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, .config_props = config_input, }, }; static const AVFilterPad fftdnoiz_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .request_frame = request_frame, }, }; const AVFilter ff_vf_fftdnoiz = { .name = "fftdnoiz", .description = NULL_IF_CONFIG_SMALL("Denoise frames using 3D FFT."), .priv_size = sizeof(FFTdnoizContext), .uninit = uninit, FILTER_INPUTS(fftdnoiz_inputs), FILTER_OUTPUTS(fftdnoiz_outputs), FILTER_PIXFMTS_ARRAY(pix_fmts), .priv_class = &fftdnoiz_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, .process_command = ff_filter_process_command, };