/* * HEVC video decoder * * Copyright (C) 2012 - 2013 Guillaume Martres * Copyright (C) 2013 Seppo Tomperi * Copyright (C) 2013 Wassim Hamidouche * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/common.h" #include "libavutil/internal.h" #include "cabac_functions.h" #include "golomb.h" #include "hevc.h" #include "bit_depth_template.c" #define LUMA 0 #define CB 1 #define CR 2 static const uint8_t tctable[54] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // QP 0...18 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, // QP 19...37 5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24 // QP 38...53 }; static const uint8_t betatable[52] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, // QP 0...18 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, // QP 19...37 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 // QP 38...51 }; static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset) { static const int qp_c[] = { 29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37 }; int qp, qp_i, offset, idxt; // slice qp offset is not used for deblocking if (c_idx == 1) offset = s->pps->cb_qp_offset; else offset = s->pps->cr_qp_offset; qp_i = av_clip(qp_y + offset, 0, 57); if (s->sps->chroma_format_idc == 1) { if (qp_i < 30) qp = qp_i; else if (qp_i > 43) qp = qp_i - 6; else qp = qp_c[qp_i - 30]; } else { qp = av_clip(qp_i, 0, 51); } idxt = av_clip(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53); return tctable[idxt]; } static int get_qPy_pred(HEVCContext *s, int xBase, int yBase, int log2_cb_size) { HEVCLocalContext *lc = s->HEVClc; int ctb_size_mask = (1 << s->sps->log2_ctb_size) - 1; int MinCuQpDeltaSizeMask = (1 << (s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1; int xQgBase = xBase - (xBase & MinCuQpDeltaSizeMask); int yQgBase = yBase - (yBase & MinCuQpDeltaSizeMask); int min_cb_width = s->sps->min_cb_width; int x_cb = xQgBase >> s->sps->log2_min_cb_size; int y_cb = yQgBase >> s->sps->log2_min_cb_size; int availableA = (xBase & ctb_size_mask) && (xQgBase & ctb_size_mask); int availableB = (yBase & ctb_size_mask) && (yQgBase & ctb_size_mask); int qPy_pred, qPy_a, qPy_b; // qPy_pred if (lc->first_qp_group || (!xQgBase && !yQgBase)) { lc->first_qp_group = !lc->tu.is_cu_qp_delta_coded; qPy_pred = s->sh.slice_qp; } else { qPy_pred = lc->qPy_pred; } // qPy_a if (availableA == 0) qPy_a = qPy_pred; else qPy_a = s->qp_y_tab[(x_cb - 1) + y_cb * min_cb_width]; // qPy_b if (availableB == 0) qPy_b = qPy_pred; else qPy_b = s->qp_y_tab[x_cb + (y_cb - 1) * min_cb_width]; av_assert2(qPy_a >= -s->sps->qp_bd_offset && qPy_a < 52); av_assert2(qPy_b >= -s->sps->qp_bd_offset && qPy_b < 52); return (qPy_a + qPy_b + 1) >> 1; } void ff_hevc_set_qPy(HEVCContext *s, int xBase, int yBase, int log2_cb_size) { int qp_y = get_qPy_pred(s, xBase, yBase, log2_cb_size); if (s->HEVClc->tu.cu_qp_delta != 0) { int off = s->sps->qp_bd_offset; s->HEVClc->qp_y = FFUMOD(qp_y + s->HEVClc->tu.cu_qp_delta + 52 + 2 * off, 52 + off) - off; } else s->HEVClc->qp_y = qp_y; } static int get_qPy(HEVCContext *s, int xC, int yC) { int log2_min_cb_size = s->sps->log2_min_cb_size; int x = xC >> log2_min_cb_size; int y = yC >> log2_min_cb_size; return s->qp_y_tab[x + y * s->sps->min_cb_width]; } static void copy_CTB(uint8_t *dst, uint8_t *src, int width, int height, int stride_dst, int stride_src) { int i; for (i = 0; i < height; i++) { memcpy(dst, src, width); dst += stride_dst; src += stride_src; } } static void restore_tqb_pixels(HEVCContext *s, int x0, int y0, int width, int height, int c_idx) { if ( s->pps->transquant_bypass_enable_flag || (s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) { int x, y; ptrdiff_t stride_dst = s->sao_frame->linesize[c_idx]; ptrdiff_t stride_src = s->frame->linesize[c_idx]; int min_pu_size = 1 << s->sps->log2_min_pu_size; int hshift = s->sps->hshift[c_idx]; int vshift = s->sps->vshift[c_idx]; int x_min = ((x0 ) >> s->sps->log2_min_pu_size); int y_min = ((y0 ) >> s->sps->log2_min_pu_size); int x_max = ((x0 + width ) >> s->sps->log2_min_pu_size); int y_max = ((y0 + height) >> s->sps->log2_min_pu_size); int len = min_pu_size >> hshift; for (y = y_min; y < y_max; y++) { for (x = x_min; x < x_max; x++) { if (s->is_pcm[y * s->sps->min_pu_width + x]) { int n; uint8_t *src = &s->frame->data[c_idx][ ((y << s->sps->log2_min_pu_size) >> vshift) * stride_src + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)]; uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride_dst + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)]; for (n = 0; n < (min_pu_size >> vshift); n++) { memcpy(src, dst, len); src += stride_src; dst += stride_dst; } } } } } } #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)]) static void sao_filter_CTB(HEVCContext *s, int x, int y) { int c_idx; int edges[4]; // 0 left 1 top 2 right 3 bottom int x_ctb = x >> s->sps->log2_ctb_size; int y_ctb = y >> s->sps->log2_ctb_size; int ctb_addr_rs = y_ctb * s->sps->ctb_width + x_ctb; int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[ctb_addr_rs]; SAOParams *sao = &CTB(s->sao, x_ctb, y_ctb); // flags indicating unfilterable edges uint8_t vert_edge[] = { 0, 0 }; uint8_t horiz_edge[] = { 0, 0 }; uint8_t diag_edge[] = { 0, 0, 0, 0 }; uint8_t lfase = CTB(s->filter_slice_edges, x_ctb, y_ctb); uint8_t no_tile_filter = s->pps->tiles_enabled_flag && !s->pps->loop_filter_across_tiles_enabled_flag; uint8_t restore = no_tile_filter || !lfase; uint8_t left_tile_edge = 0; uint8_t right_tile_edge = 0; uint8_t up_tile_edge = 0; uint8_t bottom_tile_edge = 0; edges[0] = x_ctb == 0; edges[1] = y_ctb == 0; edges[2] = x_ctb == s->sps->ctb_width - 1; edges[3] = y_ctb == s->sps->ctb_height - 1; if (restore) { if (!edges[0]) { left_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]]; vert_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge; } if (!edges[2]) { right_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1]]; vert_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb)) || right_tile_edge; } if (!edges[1]) { up_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]]; horiz_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge; } if (!edges[3]) { bottom_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs + s->sps->ctb_width]]; horiz_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb + 1)) || bottom_tile_edge; } if (!edges[0] && !edges[1]) { diag_edge[0] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge; } if (!edges[1] && !edges[2]) { diag_edge[1] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb - 1)) || right_tile_edge || up_tile_edge; } if (!edges[2] && !edges[3]) { diag_edge[2] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb + 1, y_ctb + 1)) || right_tile_edge || bottom_tile_edge; } if (!edges[0] && !edges[3]) { diag_edge[3] = (!lfase && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb + 1)) || left_tile_edge || bottom_tile_edge; } } for (c_idx = 0; c_idx < 3; c_idx++) { int x0 = x >> s->sps->hshift[c_idx]; int y0 = y >> s->sps->vshift[c_idx]; int stride_src = s->frame->linesize[c_idx]; int stride_dst = s->sao_frame->linesize[c_idx]; int ctb_size_h = (1 << (s->sps->log2_ctb_size)) >> s->sps->hshift[c_idx]; int ctb_size_v = (1 << (s->sps->log2_ctb_size)) >> s->sps->vshift[c_idx]; int width = FFMIN(ctb_size_h, (s->sps->width >> s->sps->hshift[c_idx]) - x0); int height = FFMIN(ctb_size_v, (s->sps->height >> s->sps->vshift[c_idx]) - y0); uint8_t *src = &s->frame->data[c_idx][y0 * stride_src + (x0 << s->sps->pixel_shift)]; uint8_t *dst = &s->sao_frame->data[c_idx][y0 * stride_dst + (x0 << s->sps->pixel_shift)]; switch (sao->type_idx[c_idx]) { case SAO_BAND: copy_CTB(dst, src, width << s->sps->pixel_shift, height, stride_dst, stride_src); s->hevcdsp.sao_band_filter(src, dst, stride_src, stride_dst, sao->offset_val[c_idx], sao->band_position[c_idx], width, height); restore_tqb_pixels(s, x, y, width, height, c_idx); sao->type_idx[c_idx] = SAO_APPLIED; break; case SAO_EDGE: { uint8_t left_pixels = !edges[0] && (CTB(s->sao, x_ctb-1, y_ctb).type_idx[c_idx] != SAO_APPLIED); if (!edges[1]) { uint8_t top_left = !edges[0] && (CTB(s->sao, x_ctb-1, y_ctb-1).type_idx[c_idx] != SAO_APPLIED); uint8_t top_right = !edges[2] && (CTB(s->sao, x_ctb+1, y_ctb-1).type_idx[c_idx] != SAO_APPLIED); if (CTB(s->sao, x_ctb , y_ctb-1).type_idx[c_idx] == 0) memcpy( dst - stride_dst - (top_left << s->sps->pixel_shift), src - stride_src - (top_left << s->sps->pixel_shift), (top_left + width + top_right) << s->sps->pixel_shift); else { if (top_left) memcpy( dst - stride_dst - (1 << s->sps->pixel_shift), src - stride_src - (1 << s->sps->pixel_shift), 1 << s->sps->pixel_shift); if(top_right) memcpy( dst - stride_dst + (width << s->sps->pixel_shift), src - stride_src + (width << s->sps->pixel_shift), 1 << s->sps->pixel_shift); } } if (!edges[3]) { // bottom and bottom right uint8_t bottom_left = !edges[0] && (CTB(s->sao, x_ctb-1, y_ctb+1).type_idx[c_idx] != SAO_APPLIED); memcpy( dst + height * stride_dst - (bottom_left << s->sps->pixel_shift), src + height * stride_src - (bottom_left << s->sps->pixel_shift), (width + 1 + bottom_left) << s->sps->pixel_shift); } copy_CTB(dst - (left_pixels << s->sps->pixel_shift), src - (left_pixels << s->sps->pixel_shift), (width + 1 + left_pixels) << s->sps->pixel_shift, height, stride_dst, stride_src); s->hevcdsp.sao_edge_filter[restore](src, dst, stride_src, stride_dst, sao, edges, width, height, c_idx, vert_edge, horiz_edge, diag_edge); restore_tqb_pixels(s, x, y, width, height, c_idx); sao->type_idx[c_idx] = SAO_APPLIED; break; } } } } static int get_pcm(HEVCContext *s, int x, int y) { int log2_min_pu_size = s->sps->log2_min_pu_size; int x_pu, y_pu; if (x < 0 || y < 0) return 2; x_pu = x >> log2_min_pu_size; y_pu = y >> log2_min_pu_size; if (x_pu >= s->sps->min_pu_width || y_pu >= s->sps->min_pu_height) return 2; return s->is_pcm[y_pu * s->sps->min_pu_width + x_pu]; } #define TC_CALC(qp, bs) \ tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + \ (tc_offset >> 1 << 1), \ 0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)] static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0) { uint8_t *src; int x, y; int chroma, beta; int32_t c_tc[2], tc[2]; uint8_t no_p[2] = { 0 }; uint8_t no_q[2] = { 0 }; int log2_ctb_size = s->sps->log2_ctb_size; int x_end, x_end2, y_end; int ctb_size = 1 << log2_ctb_size; int ctb = (x0 >> log2_ctb_size) + (y0 >> log2_ctb_size) * s->sps->ctb_width; int cur_tc_offset = s->deblock[ctb].tc_offset; int cur_beta_offset = s->deblock[ctb].beta_offset; int left_tc_offset, left_beta_offset; int tc_offset, beta_offset; int pcmf = (s->sps->pcm_enabled_flag && s->sps->pcm.loop_filter_disable_flag) || s->pps->transquant_bypass_enable_flag; if (x0) { left_tc_offset = s->deblock[ctb - 1].tc_offset; left_beta_offset = s->deblock[ctb - 1].beta_offset; } else { left_tc_offset = 0; left_beta_offset = 0; } x_end = x0 + ctb_size; if (x_end > s->sps->width) x_end = s->sps->width; y_end = y0 + ctb_size; if (y_end > s->sps->height) y_end = s->sps->height; tc_offset = cur_tc_offset; beta_offset = cur_beta_offset; x_end2 = x_end; if (x_end2 != s->sps->width) x_end2 -= 8; for (y = y0; y < y_end; y += 8) { // vertical filtering luma for (x = x0 ? x0 : 8; x < x_end; x += 8) { const int bs0 = s->vertical_bs[(x + y * s->bs_width) >> 2]; const int bs1 = s->vertical_bs[(x + (y + 4) * s->bs_width) >> 2]; if (bs0 || bs1) { const int qp = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1; beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)]; tc[0] = bs0 ? TC_CALC(qp, bs0) : 0; tc[1] = bs1 ? TC_CALC(qp, bs1) : 0; src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)]; if (pcmf) { no_p[0] = get_pcm(s, x - 1, y); no_p[1] = get_pcm(s, x - 1, y + 4); no_q[0] = get_pcm(s, x, y); no_q[1] = get_pcm(s, x, y + 4); s->hevcdsp.hevc_v_loop_filter_luma_c(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q); } else s->hevcdsp.hevc_v_loop_filter_luma(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q); } } if(!y) continue; // horizontal filtering luma for (x = x0 ? x0 - 8 : 0; x < x_end2; x += 8) { const int bs0 = s->horizontal_bs[( x + y * s->bs_width) >> 2]; const int bs1 = s->horizontal_bs[((x + 4) + y * s->bs_width) >> 2]; if (bs0 || bs1) { const int qp = (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1; tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset; beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset; beta = betatable[av_clip(qp + beta_offset, 0, MAX_QP)]; tc[0] = bs0 ? TC_CALC(qp, bs0) : 0; tc[1] = bs1 ? TC_CALC(qp, bs1) : 0; src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)]; if (pcmf) { no_p[0] = get_pcm(s, x, y - 1); no_p[1] = get_pcm(s, x + 4, y - 1); no_q[0] = get_pcm(s, x, y); no_q[1] = get_pcm(s, x + 4, y); s->hevcdsp.hevc_h_loop_filter_luma_c(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q); } else s->hevcdsp.hevc_h_loop_filter_luma(src, s->frame->linesize[LUMA], beta, tc, no_p, no_q); } } } for (chroma = 1; chroma <= 2; chroma++) { int h = 1 << s->sps->hshift[chroma]; int v = 1 << s->sps->vshift[chroma]; // vertical filtering chroma for (y = y0; y < y_end; y += (8 * v)) { for (x = x0 ? x0 : 8 * h; x < x_end; x += (8 * h)) { const int bs0 = s->vertical_bs[(x + y * s->bs_width) >> 2]; const int bs1 = s->vertical_bs[(x + (y + (4 * v)) * s->bs_width) >> 2]; if ((bs0 == 2) || (bs1 == 2)) { const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1; const int qp1 = (get_qPy(s, x - 1, y + (4 * v)) + get_qPy(s, x, y + (4 * v)) + 1) >> 1; c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0; c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, tc_offset) : 0; src = &s->frame->data[chroma][(y >> s->sps->vshift[chroma]) * s->frame->linesize[chroma] + ((x >> s->sps->hshift[chroma]) << s->sps->pixel_shift)]; if (pcmf) { no_p[0] = get_pcm(s, x - 1, y); no_p[1] = get_pcm(s, x - 1, y + (4 * v)); no_q[0] = get_pcm(s, x, y); no_q[1] = get_pcm(s, x, y + (4 * v)); s->hevcdsp.hevc_v_loop_filter_chroma_c(src, s->frame->linesize[chroma], c_tc, no_p, no_q); } else s->hevcdsp.hevc_v_loop_filter_chroma(src, s->frame->linesize[chroma], c_tc, no_p, no_q); } } if(!y) continue; // horizontal filtering chroma tc_offset = x0 ? left_tc_offset : cur_tc_offset; x_end2 = x_end; if (x_end != s->sps->width) x_end2 = x_end - 8 * h; for (x = x0 ? x0 - 8 * h : 0; x < x_end2; x += (8 * h)) { const int bs0 = s->horizontal_bs[( x + y * s->bs_width) >> 2]; const int bs1 = s->horizontal_bs[((x + 4 * h) + y * s->bs_width) >> 2]; if ((bs0 == 2) || (bs1 == 2)) { const int qp0 = bs0 == 2 ? (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1 : 0; const int qp1 = bs1 == 2 ? (get_qPy(s, x + (4 * h), y - 1) + get_qPy(s, x + (4 * h), y) + 1) >> 1 : 0; c_tc[0] = bs0 == 2 ? chroma_tc(s, qp0, chroma, tc_offset) : 0; c_tc[1] = bs1 == 2 ? chroma_tc(s, qp1, chroma, cur_tc_offset) : 0; src = &s->frame->data[chroma][(y >> s->sps->vshift[1]) * s->frame->linesize[chroma] + ((x >> s->sps->hshift[1]) << s->sps->pixel_shift)]; if (pcmf) { no_p[0] = get_pcm(s, x, y - 1); no_p[1] = get_pcm(s, x + (4 * h), y - 1); no_q[0] = get_pcm(s, x, y); no_q[1] = get_pcm(s, x + (4 * h), y); s->hevcdsp.hevc_h_loop_filter_chroma_c(src, s->frame->linesize[chroma], c_tc, no_p, no_q); } else s->hevcdsp.hevc_h_loop_filter_chroma(src, s->frame->linesize[chroma], c_tc, no_p, no_q); } } } } } static int boundary_strength(HEVCContext *s, MvField *curr, MvField *neigh, RefPicList *neigh_refPicList) { if (curr->pred_flag == PF_BI && neigh->pred_flag == PF_BI) { // same L0 and L1 if (s->ref->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]] && s->ref->refPicList[0].list[curr->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]] && neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) { if ((FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 || FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4) && (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 || FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4)) return 1; else return 0; } else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[0].list[curr->ref_idx[0]] && neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) { if (FFABS(neigh->mv[0].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[0].y) >= 4 || FFABS(neigh->mv[1].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[1].y) >= 4) return 1; else return 0; } else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[0].list[curr->ref_idx[0]] && neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) { if (FFABS(neigh->mv[1].x - curr->mv[0].x) >= 4 || FFABS(neigh->mv[1].y - curr->mv[0].y) >= 4 || FFABS(neigh->mv[0].x - curr->mv[1].x) >= 4 || FFABS(neigh->mv[0].y - curr->mv[1].y) >= 4) return 1; else return 0; } else { return 1; } } else if ((curr->pred_flag != PF_BI) && (neigh->pred_flag != PF_BI)){ // 1 MV Mv A, B; int ref_A, ref_B; if (curr->pred_flag & 1) { A = curr->mv[0]; ref_A = s->ref->refPicList[0].list[curr->ref_idx[0]]; } else { A = curr->mv[1]; ref_A = s->ref->refPicList[1].list[curr->ref_idx[1]]; } if (neigh->pred_flag & 1) { B = neigh->mv[0]; ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]]; } else { B = neigh->mv[1]; ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]]; } if (ref_A == ref_B) { if (FFABS(A.x - B.x) >= 4 || FFABS(A.y - B.y) >= 4) return 1; else return 0; } else return 1; } return 1; } void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0, int log2_trafo_size) { HEVCLocalContext *lc = s->HEVClc; MvField *tab_mvf = s->ref->tab_mvf; int log2_min_pu_size = s->sps->log2_min_pu_size; int log2_min_tu_size = s->sps->log2_min_tb_size; int min_pu_width = s->sps->min_pu_width; int min_tu_width = s->sps->min_tb_width; int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width + (x0 >> log2_min_pu_size)].pred_flag == PF_INTRA; int boundary_upper, boundary_left; int i, j, bs; boundary_upper = y0 > 0 && !(y0 & 7); if (boundary_upper && ((!s->sh.slice_loop_filter_across_slices_enabled_flag && lc->boundary_flags & BOUNDARY_UPPER_SLICE && (y0 % (1 << s->sps->log2_ctb_size)) == 0) || (!s->pps->loop_filter_across_tiles_enabled_flag && lc->boundary_flags & BOUNDARY_UPPER_TILE && (y0 % (1 << s->sps->log2_ctb_size)) == 0))) boundary_upper = 0; if (boundary_upper) { RefPicList *rpl_top = (lc->boundary_flags & BOUNDARY_UPPER_SLICE) ? ff_hevc_get_ref_list(s, s->ref, x0, y0 - 1) : s->ref->refPicList; int yp_pu = (y0 - 1) >> log2_min_pu_size; int yq_pu = y0 >> log2_min_pu_size; int yp_tu = (y0 - 1) >> log2_min_tu_size; int yq_tu = y0 >> log2_min_tu_size; for (i = 0; i < (1 << log2_trafo_size); i += 4) { int x_pu = (x0 + i) >> log2_min_pu_size; int x_tu = (x0 + i) >> log2_min_tu_size; MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu]; MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu]; uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu]; uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu]; if (curr->pred_flag == PF_INTRA || top->pred_flag == PF_INTRA) bs = 2; else if (curr_cbf_luma || top_cbf_luma) bs = 1; else bs = boundary_strength(s, curr, top, rpl_top); s->horizontal_bs[((x0 + i) + y0 * s->bs_width) >> 2] = bs; } } // bs for vertical TU boundaries boundary_left = x0 > 0 && !(x0 & 7); if (boundary_left && ((!s->sh.slice_loop_filter_across_slices_enabled_flag && lc->boundary_flags & BOUNDARY_LEFT_SLICE && (x0 % (1 << s->sps->log2_ctb_size)) == 0) || (!s->pps->loop_filter_across_tiles_enabled_flag && lc->boundary_flags & BOUNDARY_LEFT_TILE && (x0 % (1 << s->sps->log2_ctb_size)) == 0))) boundary_left = 0; if (boundary_left) { RefPicList *rpl_left = (lc->boundary_flags & BOUNDARY_LEFT_SLICE) ? ff_hevc_get_ref_list(s, s->ref, x0 - 1, y0) : s->ref->refPicList; int xp_pu = (x0 - 1) >> log2_min_pu_size; int xq_pu = x0 >> log2_min_pu_size; int xp_tu = (x0 - 1) >> log2_min_tu_size; int xq_tu = x0 >> log2_min_tu_size; for (i = 0; i < (1 << log2_trafo_size); i += 4) { int y_pu = (y0 + i) >> log2_min_pu_size; int y_tu = (y0 + i) >> log2_min_tu_size; MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu]; MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu]; uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu]; uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu]; if (curr->pred_flag == PF_INTRA || left->pred_flag == PF_INTRA) bs = 2; else if (curr_cbf_luma || left_cbf_luma) bs = 1; else bs = boundary_strength(s, curr, left, rpl_left); s->vertical_bs[(x0 + (y0 + i) * s->bs_width) >> 2] = bs; } } if (log2_trafo_size > log2_min_pu_size && !is_intra) { RefPicList *rpl = s->ref->refPicList; // bs for TU internal horizontal PU boundaries for (j = 8; j < (1 << log2_trafo_size); j += 8) { int yp_pu = (y0 + j - 1) >> log2_min_pu_size; int yq_pu = (y0 + j) >> log2_min_pu_size; for (i = 0; i < (1 << log2_trafo_size); i += 4) { int x_pu = (x0 + i) >> log2_min_pu_size; MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu]; MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu]; bs = boundary_strength(s, curr, top, rpl); s->horizontal_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs; } } // bs for TU internal vertical PU boundaries for (j = 0; j < (1 << log2_trafo_size); j += 4) { int y_pu = (y0 + j) >> log2_min_pu_size; for (i = 8; i < (1 << log2_trafo_size); i += 8) { int xp_pu = (x0 + i - 1) >> log2_min_pu_size; int xq_pu = (x0 + i) >> log2_min_pu_size; MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu]; MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu]; bs = boundary_strength(s, curr, left, rpl); s->vertical_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs; } } } } #undef LUMA #undef CB #undef CR void ff_hevc_hls_filter(HEVCContext *s, int x, int y, int ctb_size) { int x_end = x >= s->sps->width - ctb_size; deblocking_filter_CTB(s, x, y); if (s->sps->sao_enabled) { int y_end = y >= s->sps->height - ctb_size; if (y && x) sao_filter_CTB(s, x - ctb_size, y - ctb_size); if (x && y_end) sao_filter_CTB(s, x - ctb_size, y); if (y && x_end) { sao_filter_CTB(s, x, y - ctb_size); if (s->threads_type & FF_THREAD_FRAME ) ff_thread_report_progress(&s->ref->tf, y, 0); } if (x_end && y_end) { sao_filter_CTB(s, x , y); if (s->threads_type & FF_THREAD_FRAME ) ff_thread_report_progress(&s->ref->tf, y + ctb_size, 0); } } else if (s->threads_type & FF_THREAD_FRAME && x_end) ff_thread_report_progress(&s->ref->tf, y + ctb_size - 4, 0); } void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size) { int x_end = x_ctb >= s->sps->width - ctb_size; int y_end = y_ctb >= s->sps->height - ctb_size; if (y_ctb && x_ctb) ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb - ctb_size, ctb_size); if (y_ctb && x_end) ff_hevc_hls_filter(s, x_ctb, y_ctb - ctb_size, ctb_size); if (x_ctb && y_end) ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb, ctb_size); }