/** * Copyright (C) 2025 Niklas Haas * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/avassert.h" #include "libavutil/bswap.h" #include "libavutil/mem.h" #include "libavutil/rational.h" #include "libavutil/refstruct.h" #include "ops.h" #include "ops_internal.h" extern const SwsOpBackend backend_c; extern const SwsOpBackend backend_murder; extern const SwsOpBackend backend_x86; const SwsOpBackend * const ff_sws_op_backends[] = { &backend_murder, #if ARCH_X86_64 && HAVE_X86ASM &backend_x86, #endif &backend_c, NULL }; #define RET(x) \ do { \ if ((ret = (x)) < 0) \ return ret; \ } while (0) const char *ff_sws_pixel_type_name(SwsPixelType type) { switch (type) { case SWS_PIXEL_U8: return "u8"; case SWS_PIXEL_U16: return "u16"; case SWS_PIXEL_U32: return "u32"; case SWS_PIXEL_F32: return "f32"; case SWS_PIXEL_NONE: return "none"; case SWS_PIXEL_TYPE_NB: break; } av_unreachable("Invalid pixel type!"); return "ERR"; } int ff_sws_pixel_type_size(SwsPixelType type) { switch (type) { case SWS_PIXEL_U8: return sizeof(uint8_t); case SWS_PIXEL_U16: return sizeof(uint16_t); case SWS_PIXEL_U32: return sizeof(uint32_t); case SWS_PIXEL_F32: return sizeof(float); case SWS_PIXEL_NONE: break; case SWS_PIXEL_TYPE_NB: break; } av_unreachable("Invalid pixel type!"); return 0; } bool ff_sws_pixel_type_is_int(SwsPixelType type) { switch (type) { case SWS_PIXEL_U8: case SWS_PIXEL_U16: case SWS_PIXEL_U32: return true; case SWS_PIXEL_F32: return false; case SWS_PIXEL_NONE: case SWS_PIXEL_TYPE_NB: break; } av_unreachable("Invalid pixel type!"); return false; } SwsPixelType ff_sws_pixel_type_to_uint(SwsPixelType type) { if (!type) return type; switch (ff_sws_pixel_type_size(type)) { case 8: return SWS_PIXEL_U8; case 16: return SWS_PIXEL_U16; case 32: return SWS_PIXEL_U32; } av_unreachable("Invalid pixel type!"); return SWS_PIXEL_NONE; } /* biased towards `a` */ static AVRational av_min_q(AVRational a, AVRational b) { return av_cmp_q(a, b) == 1 ? b : a; } static AVRational av_max_q(AVRational a, AVRational b) { return av_cmp_q(a, b) == -1 ? b : a; } void ff_sws_apply_op_q(const SwsOp *op, AVRational x[4]) { uint64_t mask[4]; int shift[4]; switch (op->op) { case SWS_OP_READ: case SWS_OP_WRITE: return; case SWS_OP_UNPACK: { unsigned val = x[0].num; ff_sws_pack_op_decode(op, mask, shift); for (int i = 0; i < 4; i++) x[i] = Q((val >> shift[i]) & mask[i]); return; } case SWS_OP_PACK: { unsigned val = 0; ff_sws_pack_op_decode(op, mask, shift); for (int i = 0; i < 4; i++) val |= (x[i].num & mask[i]) << shift[i]; x[0] = Q(val); return; } case SWS_OP_SWAP_BYTES: switch (ff_sws_pixel_type_size(op->type)) { case 2: for (int i = 0; i < 4; i++) x[i].num = av_bswap16(x[i].num); break; case 4: for (int i = 0; i < 4; i++) x[i].num = av_bswap32(x[i].num); break; } return; case SWS_OP_CLEAR: for (int i = 0; i < 4; i++) { if (op->c.q4[i].den) x[i] = op->c.q4[i]; } return; case SWS_OP_LSHIFT: { AVRational mult = Q(1 << op->c.u); for (int i = 0; i < 4; i++) x[i] = x[i].den ? av_mul_q(x[i], mult) : x[i]; return; } case SWS_OP_RSHIFT: { AVRational mult = Q(1 << op->c.u); for (int i = 0; i < 4; i++) x[i] = x[i].den ? av_div_q(x[i], mult) : x[i]; return; } case SWS_OP_SWIZZLE: { const AVRational orig[4] = { x[0], x[1], x[2], x[3] }; for (int i = 0; i < 4; i++) x[i] = orig[op->swizzle.in[i]]; return; } case SWS_OP_CONVERT: if (ff_sws_pixel_type_is_int(op->convert.to)) { const AVRational scale = ff_sws_pixel_expand(op->type, op->convert.to); for (int i = 0; i < 4; i++) { x[i] = x[i].den ? Q(x[i].num / x[i].den) : x[i]; if (op->convert.expand) x[i] = av_mul_q(x[i], scale); } } return; case SWS_OP_DITHER: for (int i = 0; i < 4; i++) x[i] = x[i].den ? av_add_q(x[i], av_make_q(1, 2)) : x[i]; return; case SWS_OP_MIN: for (int i = 0; i < 4; i++) x[i] = av_min_q(x[i], op->c.q4[i]); return; case SWS_OP_MAX: for (int i = 0; i < 4; i++) x[i] = av_max_q(x[i], op->c.q4[i]); return; case SWS_OP_LINEAR: { const AVRational orig[4] = { x[0], x[1], x[2], x[3] }; for (int i = 0; i < 4; i++) { AVRational sum = op->lin.m[i][4]; for (int j = 0; j < 4; j++) sum = av_add_q(sum, av_mul_q(orig[j], op->lin.m[i][j])); x[i] = sum; } return; } case SWS_OP_SCALE: for (int i = 0; i < 4; i++) x[i] = x[i].den ? av_mul_q(x[i], op->c.q) : x[i]; return; } av_unreachable("Invalid operation type!"); } static void op_uninit(SwsOp *op) { switch (op->op) { case SWS_OP_DITHER: av_refstruct_unref(&op->dither.matrix); break; } *op = (SwsOp) {0}; } SwsOpList *ff_sws_op_list_alloc(void) { SwsOpList *ops = av_mallocz(sizeof(SwsOpList)); if (!ops) return NULL; ff_fmt_clear(&ops->src); ff_fmt_clear(&ops->dst); return ops; } void ff_sws_op_list_free(SwsOpList **p_ops) { SwsOpList *ops = *p_ops; if (!ops) return; for (int i = 0; i < ops->num_ops; i++) op_uninit(&ops->ops[i]); av_freep(&ops->ops); av_free(ops); *p_ops = NULL; } SwsOpList *ff_sws_op_list_duplicate(const SwsOpList *ops) { SwsOpList *copy = av_malloc(sizeof(*copy)); if (!copy) return NULL; int num = ops->num_ops; if (num) num = 1 << av_ceil_log2(num); *copy = *ops; copy->ops = av_memdup(ops->ops, num * sizeof(ops->ops[0])); if (!copy->ops) { av_free(copy); return NULL; } for (int i = 0; i < ops->num_ops; i++) { const SwsOp *op = &ops->ops[i]; switch (op->op) { case SWS_OP_DITHER: av_refstruct_ref(copy->ops[i].dither.matrix); break; } } return copy; } void ff_sws_op_list_remove_at(SwsOpList *ops, int index, int count) { const int end = ops->num_ops - count; av_assert2(index >= 0 && count >= 0 && index + count <= ops->num_ops); op_uninit(&ops->ops[index]); for (int i = index; i < end; i++) ops->ops[i] = ops->ops[i + count]; ops->num_ops = end; } int ff_sws_op_list_insert_at(SwsOpList *ops, int index, SwsOp *op) { void *ret = av_dynarray2_add((void **) &ops->ops, &ops->num_ops, sizeof(*op), NULL); if (!ret) { op_uninit(op); return AVERROR(ENOMEM); } for (int i = ops->num_ops - 1; i > index; i--) ops->ops[i] = ops->ops[i - 1]; ops->ops[index] = *op; return 0; } int ff_sws_op_list_append(SwsOpList *ops, SwsOp *op) { return ff_sws_op_list_insert_at(ops, ops->num_ops, op); } int ff_sws_op_list_max_size(const SwsOpList *ops) { int max_size = 0; for (int i = 0; i < ops->num_ops; i++) { const int size = ff_sws_pixel_type_size(ops->ops[i].type); max_size = FFMAX(max_size, size); } return max_size; } uint32_t ff_sws_linear_mask(const SwsLinearOp c) { uint32_t mask = 0; for (int i = 0; i < 4; i++) { for (int j = 0; j < 5; j++) { if (av_cmp_q(c.m[i][j], Q(i == j))) mask |= SWS_MASK(i, j); } } return mask; } static const char *describe_lin_mask(uint32_t mask) { /* Try to be fairly descriptive without assuming too much */ static const struct { char name[24]; uint32_t mask; } patterns[] = { { "noop", 0 }, { "luma", SWS_MASK_LUMA }, { "alpha", SWS_MASK_ALPHA }, { "luma+alpha", SWS_MASK_LUMA | SWS_MASK_ALPHA }, { "dot3", 0x7 }, { "dot4", 0xF }, { "row0", SWS_MASK_ROW(0) }, { "row0+alpha", SWS_MASK_ROW(0) | SWS_MASK_ALPHA }, { "col0", SWS_MASK_COL(0) }, { "col0+off3", SWS_MASK_COL(0) | SWS_MASK_OFF3 }, { "off3", SWS_MASK_OFF3 }, { "off3+alpha", SWS_MASK_OFF3 | SWS_MASK_ALPHA }, { "diag3", SWS_MASK_DIAG3 }, { "diag4", SWS_MASK_DIAG4 }, { "diag3+alpha", SWS_MASK_DIAG3 | SWS_MASK_ALPHA }, { "diag3+off3", SWS_MASK_DIAG3 | SWS_MASK_OFF3 }, { "diag3+off3+alpha", SWS_MASK_DIAG3 | SWS_MASK_OFF3 | SWS_MASK_ALPHA }, { "diag4+off4", SWS_MASK_DIAG4 | SWS_MASK_OFF4 }, { "matrix3", SWS_MASK_MAT3 }, { "matrix3+off3", SWS_MASK_MAT3 | SWS_MASK_OFF3 }, { "matrix3+off3+alpha", SWS_MASK_MAT3 | SWS_MASK_OFF3 | SWS_MASK_ALPHA }, { "matrix4", SWS_MASK_MAT4 }, { "matrix4+off4", SWS_MASK_MAT4 | SWS_MASK_OFF4 }, }; for (int i = 0; i < FF_ARRAY_ELEMS(patterns); i++) { if (!(mask & ~patterns[i].mask)) return patterns[i].name; } av_unreachable("Invalid linear mask!"); return "ERR"; } static char describe_comp_flags(unsigned flags) { if (flags & SWS_COMP_GARBAGE) return 'X'; else if (flags & SWS_COMP_ZERO) return '0'; else if (flags & SWS_COMP_EXACT) return '+'; else return '.'; } static const char *print_q(const AVRational q, char buf[], int buf_len) { if (!q.den) { return q.num > 0 ? "inf" : q.num < 0 ? "-inf" : "nan"; } else if (q.den == 1) { snprintf(buf, buf_len, "%d", q.num); return buf; } else if (abs(q.num) > 1000 || abs(q.den) > 1000) { snprintf(buf, buf_len, "%f", av_q2d(q)); return buf; } else { snprintf(buf, buf_len, "%d/%d", q.num, q.den); return buf; } } #define PRINTQ(q) print_q(q, (char[32]){0}, sizeof(char[32]) - 1) void ff_sws_op_list_print(void *log, int lev, const SwsOpList *ops) { if (!ops->num_ops) { av_log(log, lev, " (empty)\n"); return; } for (int i = 0; i < ops->num_ops; i++) { const SwsOp *op = &ops->ops[i]; av_log(log, lev, " [%3s %c%c%c%c -> %c%c%c%c] ", ff_sws_pixel_type_name(op->type), op->comps.unused[0] ? 'X' : '.', op->comps.unused[1] ? 'X' : '.', op->comps.unused[2] ? 'X' : '.', op->comps.unused[3] ? 'X' : '.', describe_comp_flags(op->comps.flags[0]), describe_comp_flags(op->comps.flags[1]), describe_comp_flags(op->comps.flags[2]), describe_comp_flags(op->comps.flags[3])); switch (op->op) { case SWS_OP_INVALID: av_log(log, lev, "SWS_OP_INVALID\n"); break; case SWS_OP_READ: case SWS_OP_WRITE: av_log(log, lev, "%-20s: %d elem(s) %s >> %d\n", op->op == SWS_OP_READ ? "SWS_OP_READ" : "SWS_OP_WRITE", op->rw.elems, op->rw.packed ? "packed" : "planar", op->rw.frac); break; case SWS_OP_SWAP_BYTES: av_log(log, lev, "SWS_OP_SWAP_BYTES\n"); break; case SWS_OP_LSHIFT: av_log(log, lev, "%-20s: << %u\n", "SWS_OP_LSHIFT", op->c.u); break; case SWS_OP_RSHIFT: av_log(log, lev, "%-20s: >> %u\n", "SWS_OP_RSHIFT", op->c.u); break; case SWS_OP_PACK: case SWS_OP_UNPACK: av_log(log, lev, "%-20s: {%d %d %d %d}\n", op->op == SWS_OP_PACK ? "SWS_OP_PACK" : "SWS_OP_UNPACK", op->pack.pattern[0], op->pack.pattern[1], op->pack.pattern[2], op->pack.pattern[3]); break; case SWS_OP_CLEAR: av_log(log, lev, "%-20s: {%s %s %s %s}\n", "SWS_OP_CLEAR", op->c.q4[0].den ? PRINTQ(op->c.q4[0]) : "_", op->c.q4[1].den ? PRINTQ(op->c.q4[1]) : "_", op->c.q4[2].den ? PRINTQ(op->c.q4[2]) : "_", op->c.q4[3].den ? PRINTQ(op->c.q4[3]) : "_"); break; case SWS_OP_SWIZZLE: av_log(log, lev, "%-20s: %d%d%d%d\n", "SWS_OP_SWIZZLE", op->swizzle.x, op->swizzle.y, op->swizzle.z, op->swizzle.w); break; case SWS_OP_CONVERT: av_log(log, lev, "%-20s: %s -> %s%s\n", "SWS_OP_CONVERT", ff_sws_pixel_type_name(op->type), ff_sws_pixel_type_name(op->convert.to), op->convert.expand ? " (expand)" : ""); break; case SWS_OP_DITHER: av_log(log, lev, "%-20s: %dx%d matrix\n", "SWS_OP_DITHER", 1 << op->dither.size_log2, 1 << op->dither.size_log2); break; case SWS_OP_MIN: av_log(log, lev, "%-20s: x <= {%s %s %s %s}\n", "SWS_OP_MIN", op->c.q4[0].den ? PRINTQ(op->c.q4[0]) : "_", op->c.q4[1].den ? PRINTQ(op->c.q4[1]) : "_", op->c.q4[2].den ? PRINTQ(op->c.q4[2]) : "_", op->c.q4[3].den ? PRINTQ(op->c.q4[3]) : "_"); break; case SWS_OP_MAX: av_log(log, lev, "%-20s: {%s %s %s %s} <= x\n", "SWS_OP_MAX", op->c.q4[0].den ? PRINTQ(op->c.q4[0]) : "_", op->c.q4[1].den ? PRINTQ(op->c.q4[1]) : "_", op->c.q4[2].den ? PRINTQ(op->c.q4[2]) : "_", op->c.q4[3].den ? PRINTQ(op->c.q4[3]) : "_"); break; case SWS_OP_LINEAR: av_log(log, lev, "%-20s: %s [[%s %s %s %s %s] " "[%s %s %s %s %s] " "[%s %s %s %s %s] " "[%s %s %s %s %s]]\n", "SWS_OP_LINEAR", describe_lin_mask(op->lin.mask), PRINTQ(op->lin.m[0][0]), PRINTQ(op->lin.m[0][1]), PRINTQ(op->lin.m[0][2]), PRINTQ(op->lin.m[0][3]), PRINTQ(op->lin.m[0][4]), PRINTQ(op->lin.m[1][0]), PRINTQ(op->lin.m[1][1]), PRINTQ(op->lin.m[1][2]), PRINTQ(op->lin.m[1][3]), PRINTQ(op->lin.m[1][4]), PRINTQ(op->lin.m[2][0]), PRINTQ(op->lin.m[2][1]), PRINTQ(op->lin.m[2][2]), PRINTQ(op->lin.m[2][3]), PRINTQ(op->lin.m[2][4]), PRINTQ(op->lin.m[3][0]), PRINTQ(op->lin.m[3][1]), PRINTQ(op->lin.m[3][2]), PRINTQ(op->lin.m[3][3]), PRINTQ(op->lin.m[3][4])); break; case SWS_OP_SCALE: av_log(log, lev, "%-20s: * %s\n", "SWS_OP_SCALE", PRINTQ(op->c.q)); break; case SWS_OP_TYPE_NB: break; } if (op->comps.min[0].den || op->comps.min[1].den || op->comps.min[2].den || op->comps.min[3].den || op->comps.max[0].den || op->comps.max[1].den || op->comps.max[2].den || op->comps.max[3].den) { av_log(log, AV_LOG_TRACE, " min: {%s, %s, %s, %s}, max: {%s, %s, %s, %s}\n", PRINTQ(op->comps.min[0]), PRINTQ(op->comps.min[1]), PRINTQ(op->comps.min[2]), PRINTQ(op->comps.min[3]), PRINTQ(op->comps.max[0]), PRINTQ(op->comps.max[1]), PRINTQ(op->comps.max[2]), PRINTQ(op->comps.max[3])); } } av_log(log, lev, " (X = unused, + = exact, 0 = zero)\n"); } int ff_sws_ops_compile_backend(SwsContext *ctx, const SwsOpBackend *backend, const SwsOpList *ops, SwsCompiledOp *out) { SwsOpList *copy, rest; SwsCompiledOp compiled = {0}; int ret = 0; copy = ff_sws_op_list_duplicate(ops); if (!copy) return AVERROR(ENOMEM); /* Ensure these are always set during compilation */ ff_sws_op_list_update_comps(copy); /* Make an on-stack copy of `ops` to ensure we can still properly clean up * the copy afterwards */ rest = *copy; ret = backend->compile(ctx, &rest, &compiled); if (ret < 0) { int msg_lev = ret == AVERROR(ENOTSUP) ? AV_LOG_TRACE : AV_LOG_ERROR; av_log(ctx, msg_lev, "Backend '%s' failed to compile operations: %s\n", backend->name, av_err2str(ret)); if (rest.num_ops != ops->num_ops) { av_log(ctx, msg_lev, "Uncompiled remainder:\n"); ff_sws_op_list_print(ctx, msg_lev, &rest); } } else { *out = compiled; } ff_sws_op_list_free(©); return ret; } int ff_sws_ops_compile(SwsContext *ctx, const SwsOpList *ops, SwsCompiledOp *out) { for (int n = 0; ff_sws_op_backends[n]; n++) { const SwsOpBackend *backend = ff_sws_op_backends[n]; if (ff_sws_ops_compile_backend(ctx, backend, ops, out) < 0) continue; av_log(ctx, AV_LOG_VERBOSE, "Compiled using backend '%s': " "block size = %d, over-read = %d, over-write = %d, cpu flags = 0x%x\n", backend->name, out->block_size, out->over_read, out->over_write, out->cpu_flags); return 0; } av_log(ctx, AV_LOG_WARNING, "No backend found for operations:\n"); ff_sws_op_list_print(ctx, AV_LOG_WARNING, ops); return AVERROR(ENOTSUP); } typedef struct SwsOpPass { SwsCompiledOp comp; SwsOpExec exec_base; int num_blocks; int tail_off_in; int tail_off_out; int tail_size_in; int tail_size_out; int planes_in; int planes_out; int pixel_bits_in; int pixel_bits_out; bool memcpy_in; bool memcpy_out; } SwsOpPass; static void op_pass_free(void *ptr) { SwsOpPass *p = ptr; if (!p) return; if (p->comp.free) p->comp.free(p->comp.priv); av_free(p); } static void op_pass_setup(const SwsImg *out, const SwsImg *in, const SwsPass *pass) { const AVPixFmtDescriptor *indesc = av_pix_fmt_desc_get(in->fmt); const AVPixFmtDescriptor *outdesc = av_pix_fmt_desc_get(out->fmt); SwsOpPass *p = pass->priv; SwsOpExec *exec = &p->exec_base; const SwsCompiledOp *comp = &p->comp; const int block_size = comp->block_size; p->num_blocks = (pass->width + block_size - 1) / block_size; /* Set up main loop parameters */ const int aligned_w = p->num_blocks * block_size; const int safe_width = (p->num_blocks - 1) * block_size; const int tail_size = pass->width - safe_width; p->tail_off_in = safe_width * p->pixel_bits_in >> 3; p->tail_off_out = safe_width * p->pixel_bits_out >> 3; p->tail_size_in = tail_size * p->pixel_bits_in >> 3; p->tail_size_out = tail_size * p->pixel_bits_out >> 3; p->memcpy_in = false; p->memcpy_out = false; for (int i = 0; i < p->planes_in; i++) { const int sub_x = (i == 1 || i == 2) ? indesc->log2_chroma_w : 0; const int plane_w = (aligned_w + sub_x) >> sub_x; const int plane_pad = (comp->over_read + sub_x) >> sub_x; const int plane_size = plane_w * p->pixel_bits_in >> 3; p->memcpy_in |= plane_size + plane_pad > in->linesize[i]; exec->in_stride[i] = in->linesize[i]; } for (int i = 0; i < p->planes_out; i++) { const int sub_x = (i == 1 || i == 2) ? outdesc->log2_chroma_w : 0; const int plane_w = (aligned_w + sub_x) >> sub_x; const int plane_pad = (comp->over_write + sub_x) >> sub_x; const int plane_size = plane_w * p->pixel_bits_out >> 3; p->memcpy_out |= plane_size + plane_pad > out->linesize[i]; exec->out_stride[i] = out->linesize[i]; } /* Pre-fill pointer bump for the main section only; this value does not * matter at all for the tail / last row handlers because they only ever * process a single line */ const int blocks_main = p->num_blocks - p->memcpy_out; for (int i = 0; i < 4; i++) { exec->in_bump[i] = in->linesize[i] - blocks_main * exec->block_size_in; exec->out_bump[i] = out->linesize[i] - blocks_main * exec->block_size_out; } } /* Dispatch kernel over the last column of the image using memcpy */ static av_always_inline void handle_tail(const SwsOpPass *p, SwsOpExec *exec, const SwsImg *out_base, const bool copy_out, const SwsImg *in_base, const bool copy_in, int y, const int h) { DECLARE_ALIGNED_64(uint8_t, tmp)[2][4][sizeof(uint32_t[128])]; const SwsCompiledOp *comp = &p->comp; const int tail_size_in = p->tail_size_in; const int tail_size_out = p->tail_size_out; const int bx = p->num_blocks - 1; SwsImg in = ff_sws_img_shift(in_base, y); SwsImg out = ff_sws_img_shift(out_base, y); for (int i = 0; i < p->planes_in; i++) { in.data[i] += p->tail_off_in; if (copy_in) { exec->in[i] = (void *) tmp[0][i]; exec->in_stride[i] = sizeof(tmp[0][i]); } else { exec->in[i] = in.data[i]; } } for (int i = 0; i < p->planes_out; i++) { out.data[i] += p->tail_off_out; if (copy_out) { exec->out[i] = (void *) tmp[1][i]; exec->out_stride[i] = sizeof(tmp[1][i]); } else { exec->out[i] = out.data[i]; } } for (int y_end = y + h; y < y_end; y++) { if (copy_in) { for (int i = 0; i < p->planes_in; i++) { av_assert2(tmp[0][i] + tail_size_in < (uint8_t *) tmp[1]); memcpy(tmp[0][i], in.data[i], tail_size_in); in.data[i] += in.linesize[i]; } } comp->func(exec, comp->priv, bx, y, p->num_blocks, y + 1); if (copy_out) { for (int i = 0; i < p->planes_out; i++) { av_assert2(tmp[1][i] + tail_size_out < (uint8_t *) tmp[2]); memcpy(out.data[i], tmp[1][i], tail_size_out); out.data[i] += out.linesize[i]; } } for (int i = 0; i < 4; i++) { if (!copy_in) exec->in[i] += in.linesize[i]; if (!copy_out) exec->out[i] += out.linesize[i]; } } } static void op_pass_run(const SwsImg *out_base, const SwsImg *in_base, const int y, const int h, const SwsPass *pass) { const SwsOpPass *p = pass->priv; const SwsCompiledOp *comp = &p->comp; const SwsImg in = ff_sws_img_shift(in_base, y); const SwsImg out = ff_sws_img_shift(out_base, y); /* Fill exec metadata for this slice */ DECLARE_ALIGNED_32(SwsOpExec, exec) = p->exec_base; exec.slice_y = y; exec.slice_h = h; for (int i = 0; i < 4; i++) { exec.in[i] = in.data[i]; exec.out[i] = out.data[i]; } /** * To ensure safety, we need to consider the following: * * 1. We can overread the input, unless this is the last line of an * unpadded buffer. All defined operations can handle arbitrary pixel * input, so overread of arbitrary data is fine. * * 2. We can overwrite the output, as long as we don't write more than the * amount of pixels that fit into one linesize. So we always need to * memcpy the last column on the output side if unpadded. * * 3. For the last row, we also need to memcpy the remainder of the input, * to avoid reading past the end of the buffer. Note that since we know * the run() function is called on stripes of the same buffer, we don't * need to worry about this for the end of a slice. */ const int last_slice = y + h == pass->height; const bool memcpy_in = last_slice && p->memcpy_in; const bool memcpy_out = p->memcpy_out; const int num_blocks = p->num_blocks; const int blocks_main = num_blocks - memcpy_out; const int h_main = h - memcpy_in; /* Handle main section */ comp->func(&exec, comp->priv, 0, y, blocks_main, y + h_main); if (memcpy_in) { /* Safe part of last row */ for (int i = 0; i < 4; i++) { exec.in[i] += h_main * in.linesize[i]; exec.out[i] += h_main * out.linesize[i]; } comp->func(&exec, comp->priv, 0, y + h_main, num_blocks - 1, y + h); } /* Handle last column via memcpy, takes over `exec` so call these last */ if (memcpy_out) handle_tail(p, &exec, out_base, true, in_base, false, y, h_main); if (memcpy_in) handle_tail(p, &exec, out_base, memcpy_out, in_base, true, y + h_main, 1); } static int rw_planes(const SwsOp *op) { return op->rw.packed ? 1 : op->rw.elems; } static int rw_pixel_bits(const SwsOp *op) { const int elems = op->rw.packed ? op->rw.elems : 1; const int size = ff_sws_pixel_type_size(op->type); const int bits = 8 >> op->rw.frac; av_assert1(bits >= 1); return elems * size * bits; } int ff_sws_compile_pass(SwsGraph *graph, SwsOpList *ops, int flags, SwsFormat dst, SwsPass *input, SwsPass **output) { SwsContext *ctx = graph->ctx; SwsOpPass *p = NULL; const SwsOp *read = &ops->ops[0]; const SwsOp *write = &ops->ops[ops->num_ops - 1]; SwsPass *pass; int ret; if (ops->num_ops < 2) { av_log(ctx, AV_LOG_ERROR, "Need at least two operations.\n"); return AVERROR(EINVAL); } if (read->op != SWS_OP_READ || write->op != SWS_OP_WRITE) { av_log(ctx, AV_LOG_ERROR, "First and last operations must be a read " "and write, respectively.\n"); return AVERROR(EINVAL); } if (flags & SWS_OP_FLAG_OPTIMIZE) RET(ff_sws_op_list_optimize(ops)); else ff_sws_op_list_update_comps(ops); p = av_mallocz(sizeof(*p)); if (!p) return AVERROR(ENOMEM); ret = ff_sws_ops_compile(ctx, ops, &p->comp); if (ret < 0) goto fail; p->planes_in = rw_planes(read); p->planes_out = rw_planes(write); p->pixel_bits_in = rw_pixel_bits(read); p->pixel_bits_out = rw_pixel_bits(write); p->exec_base = (SwsOpExec) { .width = dst.width, .height = dst.height, .block_size_in = p->comp.block_size * p->pixel_bits_in >> 3, .block_size_out = p->comp.block_size * p->pixel_bits_out >> 3, }; pass = ff_sws_graph_add_pass(graph, dst.format, dst.width, dst.height, input, 1, p, op_pass_run); if (!pass) { ret = AVERROR(ENOMEM); goto fail; } pass->setup = op_pass_setup; pass->free = op_pass_free; *output = pass; return 0; fail: op_pass_free(p); return ret; }