/* * MagicYUV encoder * Copyright (c) 2017 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/qsort.h" #include "avcodec.h" #include "bytestream.h" #include "codec_internal.h" #include "encode.h" #include "put_bits.h" #include "thread.h" #include "lossless_videoencdsp.h" #define MAGICYUV_EXTRADATA_SIZE 32 typedef enum Prediction { LEFT = 1, GRADIENT, MEDIAN, } Prediction; typedef struct HuffEntry { uint8_t len; uint32_t code; } HuffEntry; typedef struct PTable { int value; ///< input value int64_t prob; ///< number of occurences of this value in input } PTable; typedef struct MagicYUVContext { const AVClass *class; int frame_pred; PutBitContext pb; int planes; uint8_t format; int slice_height; int nb_slices; int correlate; int hshift[4]; int vshift[4]; uint8_t *slices[4]; unsigned slice_pos[4]; unsigned tables_size; uint8_t *decorrelate_buf[2]; HuffEntry he[4][256]; LLVidEncDSPContext llvidencdsp; void (*predict)(struct MagicYUVContext *s, const uint8_t *src, uint8_t *dst, ptrdiff_t stride, int width, int height); } MagicYUVContext; static void left_predict(MagicYUVContext *s, const uint8_t *src, uint8_t *dst, ptrdiff_t stride, int width, int height) { uint8_t prev = 0; int i, j; for (i = 0; i < width; i++) { dst[i] = src[i] - prev; prev = src[i]; } dst += width; src += stride; for (j = 1; j < height; j++) { prev = src[-stride]; for (i = 0; i < width; i++) { dst[i] = src[i] - prev; prev = src[i]; } dst += width; src += stride; } } static void gradient_predict(MagicYUVContext *s, const uint8_t *src, uint8_t *dst, ptrdiff_t stride, int width, int height) { int left = 0, top, lefttop; int i, j; for (i = 0; i < width; i++) { dst[i] = src[i] - left; left = src[i]; } dst += width; src += stride; for (j = 1; j < height; j++) { top = src[-stride]; left = src[0] - top; dst[0] = left; for (i = 1; i < width; i++) { top = src[i - stride]; lefttop = src[i - (stride + 1)]; left = src[i-1]; dst[i] = (src[i] - top) - left + lefttop; } dst += width; src += stride; } } static void median_predict(MagicYUVContext *s, const uint8_t *src, uint8_t *dst, ptrdiff_t stride, int width, int height) { int left = 0, lefttop; int i, j; for (i = 0; i < width; i++) { dst[i] = src[i] - left; left = src[i]; } dst += width; src += stride; for (j = 1; j < height; j++) { left = lefttop = src[-stride]; s->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &left, &lefttop); dst += width; src += stride; } } static av_cold int magy_encode_init(AVCodecContext *avctx) { MagicYUVContext *s = avctx->priv_data; PutByteContext pb; int i; switch (avctx->pix_fmt) { case AV_PIX_FMT_GBRP: avctx->codec_tag = MKTAG('M', '8', 'R', 'G'); s->correlate = 1; s->format = 0x65; break; case AV_PIX_FMT_GBRAP: avctx->codec_tag = MKTAG('M', '8', 'R', 'A'); s->correlate = 1; s->format = 0x66; break; case AV_PIX_FMT_YUV420P: avctx->codec_tag = MKTAG('M', '8', 'Y', '0'); s->hshift[1] = s->vshift[1] = s->hshift[2] = s->vshift[2] = 1; s->format = 0x69; break; case AV_PIX_FMT_YUV422P: avctx->codec_tag = MKTAG('M', '8', 'Y', '2'); s->hshift[1] = s->hshift[2] = 1; s->format = 0x68; break; case AV_PIX_FMT_YUV444P: avctx->codec_tag = MKTAG('M', '8', 'Y', '4'); s->format = 0x67; break; case AV_PIX_FMT_YUVA444P: avctx->codec_tag = MKTAG('M', '8', 'Y', 'A'); s->format = 0x6a; break; case AV_PIX_FMT_GRAY8: avctx->codec_tag = MKTAG('M', '8', 'G', '0'); s->format = 0x6b; break; } if (s->correlate) { s->decorrelate_buf[0] = av_calloc(2U * avctx->height, FFALIGN(avctx->width, 16)); if (!s->decorrelate_buf[0]) return AVERROR(ENOMEM); s->decorrelate_buf[1] = s->decorrelate_buf[0] + avctx->height * FFALIGN(avctx->width, 16); } ff_llvidencdsp_init(&s->llvidencdsp); s->planes = av_pix_fmt_count_planes(avctx->pix_fmt); s->nb_slices = 1; for (i = 0; i < s->planes; i++) { s->slices[i] = av_malloc(avctx->width * (avctx->height + 2) + AV_INPUT_BUFFER_PADDING_SIZE); if (!s->slices[i]) { av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer.\n"); return AVERROR(ENOMEM); } } switch (s->frame_pred) { case LEFT: s->predict = left_predict; break; case GRADIENT: s->predict = gradient_predict; break; case MEDIAN: s->predict = median_predict; break; } avctx->extradata_size = MAGICYUV_EXTRADATA_SIZE; avctx->extradata = av_mallocz(avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE); if (!avctx->extradata) { av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n"); return AVERROR(ENOMEM); } bytestream2_init_writer(&pb, avctx->extradata, MAGICYUV_EXTRADATA_SIZE); bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y')); bytestream2_put_le32(&pb, 32); bytestream2_put_byte(&pb, 7); bytestream2_put_byte(&pb, s->format); bytestream2_put_byte(&pb, 12); bytestream2_put_byte(&pb, 0); bytestream2_put_byte(&pb, 0); bytestream2_put_byte(&pb, 0); bytestream2_put_byte(&pb, 32); bytestream2_put_byte(&pb, 0); bytestream2_put_le32(&pb, avctx->width); bytestream2_put_le32(&pb, avctx->height); bytestream2_put_le32(&pb, avctx->width); bytestream2_put_le32(&pb, avctx->height); return 0; } static void calculate_codes(HuffEntry *he, uint16_t codes_count[33]) { for (unsigned i = 32, nb_codes = 0; i > 0; i--) { uint16_t curr = codes_count[i]; // # of leafs of length i codes_count[i] = nb_codes / 2; // # of non-leaf nodes on level i nb_codes = codes_count[i] + curr; // # of nodes on level i } for (unsigned i = 0; i < 256; i++) { he[i].code = codes_count[he[i].len]; codes_count[he[i].len]++; } } static void count_usage(uint8_t *src, int width, int height, PTable *counts) { int i, j; for (j = 0; j < height; j++) { for (i = 0; i < width; i++) { counts[src[i]].prob++; } src += width; } } typedef struct PackageMergerList { int nitems; ///< number of items in the list and probability ex. 4 int item_idx[515]; ///< index range for each item in items 0, 2, 5, 9, 13 int probability[514]; ///< probability of each item 3, 8, 18, 46 int items[257 * 16]; ///< chain of all individual values that make up items A, B, A, B, C, A, B, C, D, C, D, D, E } PackageMergerList; static int compare_by_prob(const void *a, const void *b) { const PTable *a2 = a; const PTable *b2 = b; return a2->prob - b2->prob; } static void magy_huffman_compute_bits(PTable *prob_table, HuffEntry *distincts, uint16_t codes_counts[33], int size, int max_length) { PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp; int times, i, j, k; int nbits[257] = {0}; int min; av_assert0(max_length > 0); to->nitems = 0; from->nitems = 0; to->item_idx[0] = 0; from->item_idx[0] = 0; AV_QSORT(prob_table, size, PTable, compare_by_prob); for (times = 0; times <= max_length; times++) { to->nitems = 0; to->item_idx[0] = 0; j = 0; k = 0; if (times < max_length) { i = 0; } while (i < size || j + 1 < from->nitems) { to->nitems++; to->item_idx[to->nitems] = to->item_idx[to->nitems - 1]; if (i < size && (j + 1 >= from->nitems || prob_table[i].prob < from->probability[j] + from->probability[j + 1])) { to->items[to->item_idx[to->nitems]++] = prob_table[i].value; to->probability[to->nitems - 1] = prob_table[i].prob; i++; } else { for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) { to->items[to->item_idx[to->nitems]++] = from->items[k]; } to->probability[to->nitems - 1] = from->probability[j] + from->probability[j + 1]; j += 2; } } temp = to; to = from; from = temp; } min = (size - 1 < from->nitems) ? size - 1 : from->nitems; for (i = 0; i < from->item_idx[min]; i++) { nbits[from->items[i]]++; } for (i = 0; i < size; i++) { distincts[i].len = nbits[i]; codes_counts[nbits[i]]++; } } static int encode_table(AVCodecContext *avctx, uint8_t *dst, int width, int height, PutBitContext *pb, HuffEntry *he) { PTable counts[256] = { {0} }; uint16_t codes_counts[33] = { 0 }; int i; count_usage(dst, width, height, counts); for (i = 0; i < 256; i++) { counts[i].prob++; counts[i].value = i; } magy_huffman_compute_bits(counts, he, codes_counts, 256, 12); calculate_codes(he, codes_counts); for (i = 0; i < 256; i++) { put_bits(pb, 1, 0); put_bits(pb, 7, he[i].len); } return 0; } static int encode_slice(uint8_t *src, uint8_t *dst, int dst_size, int width, int height, HuffEntry *he, int prediction) { PutBitContext pb; int i, j; int count; init_put_bits(&pb, dst, dst_size); put_bits(&pb, 8, 0); put_bits(&pb, 8, prediction); for (j = 0; j < height; j++) { for (i = 0; i < width; i++) { const int idx = src[i]; put_bits(&pb, he[idx].len, he[idx].code); } src += width; } count = put_bits_count(&pb) & 0x1F; if (count) put_bits(&pb, 32 - count, 0); flush_put_bits(&pb); return put_bytes_output(&pb); } static int magy_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet) { MagicYUVContext *s = avctx->priv_data; PutByteContext pb; const int width = avctx->width, height = avctx->height; int pos, slice, i, j, ret = 0; ret = ff_alloc_packet(avctx, pkt, (256 + 4 * s->nb_slices + width * height) * s->planes + 256); if (ret < 0) return ret; bytestream2_init_writer(&pb, pkt->data, pkt->size); bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y')); bytestream2_put_le32(&pb, 32); // header size bytestream2_put_byte(&pb, 7); // version bytestream2_put_byte(&pb, s->format); bytestream2_put_byte(&pb, 12); // max huffman length bytestream2_put_byte(&pb, 0); bytestream2_put_byte(&pb, 0); bytestream2_put_byte(&pb, 0); bytestream2_put_byte(&pb, 32); // coder type bytestream2_put_byte(&pb, 0); bytestream2_put_le32(&pb, avctx->width); bytestream2_put_le32(&pb, avctx->height); bytestream2_put_le32(&pb, avctx->width); bytestream2_put_le32(&pb, avctx->height); bytestream2_put_le32(&pb, 0); for (i = 0; i < s->planes; i++) { bytestream2_put_le32(&pb, 0); for (j = 1; j < s->nb_slices; j++) { bytestream2_put_le32(&pb, 0); } } bytestream2_put_byte(&pb, s->planes); for (i = 0; i < s->planes; i++) { for (slice = 0; slice < s->nb_slices; slice++) { bytestream2_put_byte(&pb, i); } } if (s->correlate) { uint8_t *r, *g, *b, *decorrelated[2] = { s->decorrelate_buf[0], s->decorrelate_buf[1] }; const int decorrelate_linesize = FFALIGN(width, 16); const uint8_t *const data[4] = { decorrelated[0], frame->data[0], decorrelated[1], frame->data[3] }; const int linesize[4] = { decorrelate_linesize, frame->linesize[0], decorrelate_linesize, frame->linesize[3] }; g = frame->data[0]; b = frame->data[1]; r = frame->data[2]; for (i = 0; i < height; i++) { s->llvidencdsp.diff_bytes(decorrelated[0], b, g, width); s->llvidencdsp.diff_bytes(decorrelated[1], r, g, width); g += frame->linesize[0]; b += frame->linesize[1]; r += frame->linesize[2]; decorrelated[0] += decorrelate_linesize; decorrelated[1] += decorrelate_linesize; } for (i = 0; i < s->planes; i++) { for (slice = 0; slice < s->nb_slices; slice++) { s->predict(s, data[i], s->slices[i], linesize[i], frame->width, frame->height); } } } else { for (i = 0; i < s->planes; i++) { for (slice = 0; slice < s->nb_slices; slice++) { s->predict(s, frame->data[i], s->slices[i], frame->linesize[i], AV_CEIL_RSHIFT(frame->width, s->hshift[i]), AV_CEIL_RSHIFT(frame->height, s->vshift[i])); } } } init_put_bits(&s->pb, pkt->data + bytestream2_tell_p(&pb), bytestream2_get_bytes_left_p(&pb)); for (i = 0; i < s->planes; i++) { encode_table(avctx, s->slices[i], AV_CEIL_RSHIFT(frame->width, s->hshift[i]), AV_CEIL_RSHIFT(frame->height, s->vshift[i]), &s->pb, s->he[i]); } s->tables_size = put_bytes_count(&s->pb, 1); bytestream2_skip_p(&pb, s->tables_size); for (i = 0; i < s->planes; i++) { unsigned slice_size; s->slice_pos[i] = bytestream2_tell_p(&pb); slice_size = encode_slice(s->slices[i], pkt->data + bytestream2_tell_p(&pb), bytestream2_get_bytes_left_p(&pb), AV_CEIL_RSHIFT(frame->width, s->hshift[i]), AV_CEIL_RSHIFT(frame->height, s->vshift[i]), s->he[i], s->frame_pred); bytestream2_skip_p(&pb, slice_size); } pos = bytestream2_tell_p(&pb); bytestream2_seek_p(&pb, 32, SEEK_SET); bytestream2_put_le32(&pb, s->slice_pos[0] - 32); for (i = 0; i < s->planes; i++) { bytestream2_put_le32(&pb, s->slice_pos[i] - 32); } bytestream2_seek_p(&pb, pos, SEEK_SET); pkt->size = bytestream2_tell_p(&pb); *got_packet = 1; return 0; } static av_cold int magy_encode_close(AVCodecContext *avctx) { MagicYUVContext *s = avctx->priv_data; int i; for (i = 0; i < s->planes; i++) av_freep(&s->slices[i]); av_freep(&s->decorrelate_buf); return 0; } #define OFFSET(x) offsetof(MagicYUVContext, x) #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { { "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, {.i64=LEFT}, LEFT, MEDIAN, VE, "pred" }, { "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, 0, 0, VE, "pred" }, { "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = GRADIENT }, 0, 0, VE, "pred" }, { "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, 0, 0, VE, "pred" }, { NULL}, }; static const AVClass magicyuv_class = { .class_name = "magicyuv", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; const AVCodec ff_magicyuv_encoder = { .name = "magicyuv", .long_name = NULL_IF_CONFIG_SMALL("MagicYUV video"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_MAGICYUV, .priv_data_size = sizeof(MagicYUVContext), .priv_class = &magicyuv_class, .init = magy_encode_init, .close = magy_encode_close, .encode2 = magy_encode_frame, .capabilities = AV_CODEC_CAP_FRAME_THREADS, .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE }, .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, };