/* * Copyright (c) 2016 Muhammad Faiz * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/channel_layout.h" #include "libavutil/file_open.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/eval.h" #include "libavutil/avassert.h" #include "libavutil/tx.h" #include "avfilter.h" #include "filters.h" #include "internal.h" #include "audio.h" #define RDFT_BITS_MIN 4 #define RDFT_BITS_MAX 16 enum WindowFunc { WFUNC_RECTANGULAR, WFUNC_HANN, WFUNC_HAMMING, WFUNC_BLACKMAN, WFUNC_NUTTALL3, WFUNC_MNUTTALL3, WFUNC_NUTTALL, WFUNC_BNUTTALL, WFUNC_BHARRIS, WFUNC_TUKEY, NB_WFUNC }; enum Scale { SCALE_LINLIN, SCALE_LINLOG, SCALE_LOGLIN, SCALE_LOGLOG, NB_SCALE }; #define NB_GAIN_ENTRY_MAX 4096 typedef struct GainEntry { double freq; double gain; } GainEntry; typedef struct OverlapIndex { int buf_idx; int overlap_idx; } OverlapIndex; typedef struct FIREqualizerContext { const AVClass *class; AVTXContext *analysis_rdft; av_tx_fn analysis_rdft_fn; AVTXContext *analysis_irdft; av_tx_fn analysis_irdft_fn; AVTXContext *rdft; av_tx_fn rdft_fn; AVTXContext *irdft; av_tx_fn irdft_fn; AVTXContext *fft_ctx; av_tx_fn fft_fn; AVTXContext *cepstrum_rdft; av_tx_fn cepstrum_rdft_fn; AVTXContext *cepstrum_irdft; av_tx_fn cepstrum_irdft_fn; int analysis_rdft_len; int rdft_len; int cepstrum_len; float *analysis_buf; float *analysis_tbuf; float *dump_buf; float *kernel_tmp_buf; float *kernel_tmp_tbuf; float *kernel_buf; float *tx_buf; float *cepstrum_buf; float *cepstrum_tbuf; float *conv_buf; OverlapIndex *conv_idx; int fir_len; int nsamples_max; int64_t next_pts; int frame_nsamples_max; int remaining; char *gain_cmd; char *gain_entry_cmd; const char *gain; const char *gain_entry; double delay; double accuracy; int wfunc; int fixed; int multi; int zero_phase; int scale; char *dumpfile; int dumpscale; int fft2; int min_phase; int nb_gain_entry; int gain_entry_err; GainEntry gain_entry_tbl[NB_GAIN_ENTRY_MAX]; } FIREqualizerContext; #define OFFSET(x) offsetof(FIREqualizerContext, x) #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM #define TFLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption firequalizer_options[] = { { "gain", "set gain curve", OFFSET(gain), AV_OPT_TYPE_STRING, { .str = "gain_interpolate(f)" }, 0, 0, TFLAGS }, { "gain_entry", "set gain entry", OFFSET(gain_entry), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, TFLAGS }, { "delay", "set delay", OFFSET(delay), AV_OPT_TYPE_DOUBLE, { .dbl = 0.01 }, 0.0, 1e10, FLAGS }, { "accuracy", "set accuracy", OFFSET(accuracy), AV_OPT_TYPE_DOUBLE, { .dbl = 5.0 }, 0.0, 1e10, FLAGS }, { "wfunc", "set window function", OFFSET(wfunc), AV_OPT_TYPE_INT, { .i64 = WFUNC_HANN }, 0, NB_WFUNC-1, FLAGS, .unit = "wfunc" }, { "rectangular", "rectangular window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_RECTANGULAR }, 0, 0, FLAGS, .unit = "wfunc" }, { "hann", "hann window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HANN }, 0, 0, FLAGS, .unit = "wfunc" }, { "hamming", "hamming window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_HAMMING }, 0, 0, FLAGS, .unit = "wfunc" }, { "blackman", "blackman window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BLACKMAN }, 0, 0, FLAGS, .unit = "wfunc" }, { "nuttall3", "3-term nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL3 }, 0, 0, FLAGS, .unit = "wfunc" }, { "mnuttall3", "minimum 3-term nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_MNUTTALL3 }, 0, 0, FLAGS, .unit = "wfunc" }, { "nuttall", "nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_NUTTALL }, 0, 0, FLAGS, .unit = "wfunc" }, { "bnuttall", "blackman-nuttall window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BNUTTALL }, 0, 0, FLAGS, .unit = "wfunc" }, { "bharris", "blackman-harris window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_BHARRIS }, 0, 0, FLAGS, .unit = "wfunc" }, { "tukey", "tukey window", 0, AV_OPT_TYPE_CONST, { .i64 = WFUNC_TUKEY }, 0, 0, FLAGS, .unit = "wfunc" }, { "fixed", "set fixed frame samples", OFFSET(fixed), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, { "multi", "set multi channels mode", OFFSET(multi), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, { "zero_phase", "set zero phase mode", OFFSET(zero_phase), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, { "scale", "set gain scale", OFFSET(scale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, .unit = "scale" }, { "linlin", "linear-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLIN }, 0, 0, FLAGS, .unit = "scale" }, { "linlog", "linear-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LINLOG }, 0, 0, FLAGS, .unit = "scale" }, { "loglin", "logarithmic-freq linear-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLIN }, 0, 0, FLAGS, .unit = "scale" }, { "loglog", "logarithmic-freq logarithmic-gain", 0, AV_OPT_TYPE_CONST, { .i64 = SCALE_LOGLOG }, 0, 0, FLAGS, .unit = "scale" }, { "dumpfile", "set dump file", OFFSET(dumpfile), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS }, { "dumpscale", "set dump scale", OFFSET(dumpscale), AV_OPT_TYPE_INT, { .i64 = SCALE_LINLOG }, 0, NB_SCALE-1, FLAGS, .unit = "scale" }, { "fft2", "set 2-channels fft", OFFSET(fft2), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, { "min_phase", "set minimum phase mode", OFFSET(min_phase), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(firequalizer); static void common_uninit(FIREqualizerContext *s) { av_tx_uninit(&s->analysis_rdft); av_tx_uninit(&s->analysis_irdft); av_tx_uninit(&s->rdft); av_tx_uninit(&s->irdft); av_tx_uninit(&s->fft_ctx); av_tx_uninit(&s->cepstrum_rdft); av_tx_uninit(&s->cepstrum_irdft); s->analysis_rdft = s->analysis_irdft = s->rdft = s->irdft = NULL; s->fft_ctx = NULL; s->cepstrum_rdft = NULL; s->cepstrum_irdft = NULL; av_freep(&s->analysis_buf); av_freep(&s->analysis_tbuf); av_freep(&s->dump_buf); av_freep(&s->kernel_tmp_buf); av_freep(&s->kernel_tmp_tbuf); av_freep(&s->kernel_buf); av_freep(&s->tx_buf); av_freep(&s->cepstrum_buf); av_freep(&s->cepstrum_tbuf); av_freep(&s->conv_buf); av_freep(&s->conv_idx); } static av_cold void uninit(AVFilterContext *ctx) { FIREqualizerContext *s = ctx->priv; common_uninit(s); av_freep(&s->gain_cmd); av_freep(&s->gain_entry_cmd); } static void fast_convolute(FIREqualizerContext *restrict s, const float *restrict kernel_buf, float *restrict conv_buf, OverlapIndex *restrict idx, float *restrict data, int nsamples) { if (nsamples <= s->nsamples_max) { float *buf = conv_buf + idx->buf_idx * s->rdft_len; float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx; float *tbuf = s->tx_buf; int center = s->fir_len/2; int k; memset(buf, 0, center * sizeof(*data)); memcpy(buf + center, data, nsamples * sizeof(*data)); memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*data)); s->rdft_fn(s->rdft, tbuf, buf, sizeof(float)); for (k = 0; k <= s->rdft_len/2; k++) { tbuf[2*k] *= kernel_buf[k]; tbuf[2*k+1] *= kernel_buf[k]; } s->irdft_fn(s->irdft, buf, tbuf, sizeof(AVComplexFloat)); for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) buf[k] += obuf[k]; memcpy(data, buf, nsamples * sizeof(*data)); idx->buf_idx = !idx->buf_idx; idx->overlap_idx = nsamples; } else { while (nsamples > s->nsamples_max * 2) { fast_convolute(s, kernel_buf, conv_buf, idx, data, s->nsamples_max); data += s->nsamples_max; nsamples -= s->nsamples_max; } fast_convolute(s, kernel_buf, conv_buf, idx, data, nsamples/2); fast_convolute(s, kernel_buf, conv_buf, idx, data + nsamples/2, nsamples - nsamples/2); } } static void fast_convolute_nonlinear(FIREqualizerContext *restrict s, const float *restrict kernel_buf, float *restrict conv_buf, OverlapIndex *restrict idx, float *restrict data, int nsamples) { if (nsamples <= s->nsamples_max) { float *buf = conv_buf + idx->buf_idx * s->rdft_len; float *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx; float *tbuf = s->tx_buf; int k; memcpy(buf, data, nsamples * sizeof(*data)); memset(buf + nsamples, 0, (s->rdft_len - nsamples) * sizeof(*data)); s->rdft_fn(s->rdft, tbuf, buf, sizeof(float)); for (k = 0; k < s->rdft_len + 2; k += 2) { float re, im; re = tbuf[k] * kernel_buf[k] - tbuf[k+1] * kernel_buf[k+1]; im = tbuf[k] * kernel_buf[k+1] + tbuf[k+1] * kernel_buf[k]; tbuf[k] = re; tbuf[k+1] = im; } s->irdft_fn(s->irdft, buf, tbuf, sizeof(AVComplexFloat)); for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) buf[k] += obuf[k]; memcpy(data, buf, nsamples * sizeof(*data)); idx->buf_idx = !idx->buf_idx; idx->overlap_idx = nsamples; } else { while (nsamples > s->nsamples_max * 2) { fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data, s->nsamples_max); data += s->nsamples_max; nsamples -= s->nsamples_max; } fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data, nsamples/2); fast_convolute_nonlinear(s, kernel_buf, conv_buf, idx, data + nsamples/2, nsamples - nsamples/2); } } static void fast_convolute2(FIREqualizerContext *restrict s, const float *restrict kernel_buf, AVComplexFloat *restrict conv_buf, OverlapIndex *restrict idx, float *restrict data0, float *restrict data1, int nsamples) { if (nsamples <= s->nsamples_max) { AVComplexFloat *buf = conv_buf + idx->buf_idx * s->rdft_len; AVComplexFloat *obuf = conv_buf + !idx->buf_idx * s->rdft_len + idx->overlap_idx; AVComplexFloat *tbuf = (AVComplexFloat *)s->tx_buf; int center = s->fir_len/2; int k; float tmp; memset(buf, 0, center * sizeof(*buf)); for (k = 0; k < nsamples; k++) { buf[center+k].re = data0[k]; buf[center+k].im = data1[k]; } memset(buf + center + nsamples, 0, (s->rdft_len - nsamples - center) * sizeof(*buf)); s->fft_fn(s->fft_ctx, tbuf, buf, sizeof(AVComplexFloat)); /* swap re <-> im, do backward fft using forward fft_ctx */ /* normalize with 0.5f */ tmp = tbuf[0].re; tbuf[0].re = 0.5f * kernel_buf[0] * tbuf[0].im; tbuf[0].im = 0.5f * kernel_buf[0] * tmp; for (k = 1; k < s->rdft_len/2; k++) { int m = s->rdft_len - k; tmp = tbuf[k].re; tbuf[k].re = 0.5f * kernel_buf[k] * tbuf[k].im; tbuf[k].im = 0.5f * kernel_buf[k] * tmp; tmp = tbuf[m].re; tbuf[m].re = 0.5f * kernel_buf[k] * tbuf[m].im; tbuf[m].im = 0.5f * kernel_buf[k] * tmp; } tmp = tbuf[k].re; tbuf[k].re = 0.5f * kernel_buf[k] * tbuf[k].im; tbuf[k].im = 0.5f * kernel_buf[k] * tmp; s->fft_fn(s->fft_ctx, buf, tbuf, sizeof(AVComplexFloat)); for (k = 0; k < s->rdft_len - idx->overlap_idx; k++) { buf[k].re += obuf[k].re; buf[k].im += obuf[k].im; } /* swapped re <-> im */ for (k = 0; k < nsamples; k++) { data0[k] = buf[k].im; data1[k] = buf[k].re; } idx->buf_idx = !idx->buf_idx; idx->overlap_idx = nsamples; } else { while (nsamples > s->nsamples_max * 2) { fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, s->nsamples_max); data0 += s->nsamples_max; data1 += s->nsamples_max; nsamples -= s->nsamples_max; } fast_convolute2(s, kernel_buf, conv_buf, idx, data0, data1, nsamples/2); fast_convolute2(s, kernel_buf, conv_buf, idx, data0 + nsamples/2, data1 + nsamples/2, nsamples - nsamples/2); } } static void dump_fir(AVFilterContext *ctx, FILE *fp, int ch) { FIREqualizerContext *s = ctx->priv; int rate = ctx->inputs[0]->sample_rate; int xlog = s->dumpscale == SCALE_LOGLIN || s->dumpscale == SCALE_LOGLOG; int ylog = s->dumpscale == SCALE_LINLOG || s->dumpscale == SCALE_LOGLOG; int x; int center = s->fir_len / 2; double delay = s->zero_phase ? 0.0 : (double) center / rate; double vx, ya, yb; if (!s->min_phase) { s->analysis_buf[0] *= s->rdft_len/2; for (x = 1; x <= center; x++) { s->analysis_buf[x] *= s->rdft_len/2; s->analysis_buf[s->analysis_rdft_len - x] *= s->rdft_len/2; } } else { for (x = 0; x < s->fir_len; x++) s->analysis_buf[x] *= s->rdft_len/2; } if (ch) fprintf(fp, "\n\n"); fprintf(fp, "# time[%d] (time amplitude)\n", ch); if (!s->min_phase) { for (x = center; x > 0; x--) fprintf(fp, "%15.10f %15.10f\n", delay - (double) x / rate, (double) s->analysis_buf[s->analysis_rdft_len - x]); for (x = 0; x <= center; x++) fprintf(fp, "%15.10f %15.10f\n", delay + (double)x / rate , (double) s->analysis_buf[x]); } else { for (x = 0; x < s->fir_len; x++) fprintf(fp, "%15.10f %15.10f\n", (double)x / rate, (double) s->analysis_buf[x]); } s->analysis_rdft_fn(s->analysis_rdft, s->analysis_tbuf, s->analysis_buf, sizeof(float)); fprintf(fp, "\n\n# freq[%d] (frequency desired_gain actual_gain)\n", ch); for (x = 0; x <= s->analysis_rdft_len/2; x++) { int i = 2 * x; vx = (double)x * rate / s->analysis_rdft_len; if (xlog) vx = log2(0.05*vx); ya = s->dump_buf[i]; yb = s->min_phase ? hypotf(s->analysis_tbuf[i], s->analysis_tbuf[i+1]) : s->analysis_tbuf[i]; if (s->min_phase) yb = fabs(yb); if (ylog) { ya = 20.0 * log10(fabs(ya)); yb = 20.0 * log10(fabs(yb)); } fprintf(fp, "%17.10f %17.10f %17.10f\n", vx, ya, yb); } } static double entry_func(void *p, double freq, double gain) { AVFilterContext *ctx = p; FIREqualizerContext *s = ctx->priv; if (s->nb_gain_entry >= NB_GAIN_ENTRY_MAX) { av_log(ctx, AV_LOG_ERROR, "entry table overflow.\n"); s->gain_entry_err = AVERROR(EINVAL); return 0; } if (isnan(freq)) { av_log(ctx, AV_LOG_ERROR, "nan frequency (%g, %g).\n", freq, gain); s->gain_entry_err = AVERROR(EINVAL); return 0; } if (s->nb_gain_entry > 0 && freq <= s->gain_entry_tbl[s->nb_gain_entry - 1].freq) { av_log(ctx, AV_LOG_ERROR, "unsorted frequency (%g, %g).\n", freq, gain); s->gain_entry_err = AVERROR(EINVAL); return 0; } s->gain_entry_tbl[s->nb_gain_entry].freq = freq; s->gain_entry_tbl[s->nb_gain_entry].gain = gain; s->nb_gain_entry++; return 0; } static int gain_entry_compare(const void *key, const void *memb) { const double *freq = key; const GainEntry *entry = memb; if (*freq < entry[0].freq) return -1; if (*freq > entry[1].freq) return 1; return 0; } static double gain_interpolate_func(void *p, double freq) { AVFilterContext *ctx = p; FIREqualizerContext *s = ctx->priv; GainEntry *res; double d0, d1, d; if (isnan(freq)) return freq; if (!s->nb_gain_entry) return 0; if (freq <= s->gain_entry_tbl[0].freq) return s->gain_entry_tbl[0].gain; if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq) return s->gain_entry_tbl[s->nb_gain_entry-1].gain; res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare); av_assert0(res); d = res[1].freq - res[0].freq; d0 = freq - res[0].freq; d1 = res[1].freq - freq; if (d0 && d1) return (d0 * res[1].gain + d1 * res[0].gain) / d; if (d0) return res[1].gain; return res[0].gain; } static double cubic_interpolate_func(void *p, double freq) { AVFilterContext *ctx = p; FIREqualizerContext *s = ctx->priv; GainEntry *res; double x, x2, x3; double a, b, c, d; double m0, m1, m2, msum, unit; if (!s->nb_gain_entry) return 0; if (freq <= s->gain_entry_tbl[0].freq) return s->gain_entry_tbl[0].gain; if (freq >= s->gain_entry_tbl[s->nb_gain_entry-1].freq) return s->gain_entry_tbl[s->nb_gain_entry-1].gain; res = bsearch(&freq, &s->gain_entry_tbl, s->nb_gain_entry - 1, sizeof(*res), gain_entry_compare); av_assert0(res); unit = res[1].freq - res[0].freq; m0 = res != s->gain_entry_tbl ? unit * (res[0].gain - res[-1].gain) / (res[0].freq - res[-1].freq) : 0; m1 = res[1].gain - res[0].gain; m2 = res != s->gain_entry_tbl + s->nb_gain_entry - 2 ? unit * (res[2].gain - res[1].gain) / (res[2].freq - res[1].freq) : 0; msum = fabs(m0) + fabs(m1); m0 = msum > 0 ? (fabs(m0) * m1 + fabs(m1) * m0) / msum : 0; msum = fabs(m1) + fabs(m2); m1 = msum > 0 ? (fabs(m1) * m2 + fabs(m2) * m1) / msum : 0; d = res[0].gain; c = m0; b = 3 * res[1].gain - m1 - 2 * c - 3 * d; a = res[1].gain - b - c - d; x = (freq - res[0].freq) / unit; x2 = x * x; x3 = x2 * x; return a * x3 + b * x2 + c * x + d; } static const char *const var_names[] = { "f", "sr", "ch", "chid", "chs", "chlayout", NULL }; enum VarOffset { VAR_F, VAR_SR, VAR_CH, VAR_CHID, VAR_CHS, VAR_CHLAYOUT, VAR_NB }; static void generate_min_phase_kernel(FIREqualizerContext *s, float *rdft_buf) { int k, cepstrum_len = s->cepstrum_len, rdft_len = s->rdft_len; double norm = 2.0 / cepstrum_len; double minval = 1e-7 / rdft_len; memset(s->cepstrum_buf, 0, cepstrum_len * sizeof(*s->cepstrum_buf)); memset(s->cepstrum_tbuf, 0, (cepstrum_len + 2) * sizeof(*s->cepstrum_tbuf)); memcpy(s->cepstrum_buf, rdft_buf, rdft_len/2 * sizeof(*rdft_buf)); memcpy(s->cepstrum_buf + cepstrum_len - rdft_len/2, rdft_buf + rdft_len/2, rdft_len/2 * sizeof(*rdft_buf)); s->cepstrum_rdft_fn(s->cepstrum_rdft, s->cepstrum_tbuf, s->cepstrum_buf, sizeof(float)); for (k = 0; k < cepstrum_len + 2; k += 2) { s->cepstrum_tbuf[k] = log(FFMAX(s->cepstrum_tbuf[k], minval)); s->cepstrum_tbuf[k+1] = 0; } s->cepstrum_irdft_fn(s->cepstrum_irdft, s->cepstrum_buf, s->cepstrum_tbuf, sizeof(AVComplexFloat)); memset(s->cepstrum_buf + cepstrum_len/2 + 1, 0, (cepstrum_len/2 - 1) * sizeof(*s->cepstrum_buf)); for (k = 1; k <= cepstrum_len/2; k++) s->cepstrum_buf[k] *= 2; s->cepstrum_rdft_fn(s->cepstrum_rdft, s->cepstrum_tbuf, s->cepstrum_buf, sizeof(float)); for (k = 0; k < cepstrum_len + 2; k += 2) { double mag = exp(s->cepstrum_tbuf[k] * norm) * norm; double ph = s->cepstrum_tbuf[k+1] * norm; s->cepstrum_tbuf[k] = mag * cos(ph); s->cepstrum_tbuf[k+1] = mag * sin(ph); } s->cepstrum_irdft_fn(s->cepstrum_irdft, s->cepstrum_buf, s->cepstrum_tbuf, sizeof(AVComplexFloat)); memset(rdft_buf, 0, s->rdft_len * sizeof(*rdft_buf)); memcpy(rdft_buf, s->cepstrum_buf, s->fir_len * sizeof(*rdft_buf)); if (s->dumpfile) { memset(s->analysis_buf, 0, (s->analysis_rdft_len + 2) * sizeof(*s->analysis_buf)); memcpy(s->analysis_buf, s->cepstrum_buf, s->fir_len * sizeof(*s->analysis_buf)); } } static int generate_kernel(AVFilterContext *ctx, const char *gain, const char *gain_entry) { FIREqualizerContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; const char *gain_entry_func_names[] = { "entry", NULL }; const char *gain_func_names[] = { "gain_interpolate", "cubic_interpolate", NULL }; double (*gain_entry_funcs[])(void *, double, double) = { entry_func, NULL }; double (*gain_funcs[])(void *, double) = { gain_interpolate_func, cubic_interpolate_func, NULL }; double vars[VAR_NB]; AVExpr *gain_expr; int ret, k, center, ch; int xlog = s->scale == SCALE_LOGLIN || s->scale == SCALE_LOGLOG; int ylog = s->scale == SCALE_LINLOG || s->scale == SCALE_LOGLOG; FILE *dump_fp = NULL; s->nb_gain_entry = 0; s->gain_entry_err = 0; if (gain_entry) { double result = 0.0; ret = av_expr_parse_and_eval(&result, gain_entry, NULL, NULL, NULL, NULL, gain_entry_func_names, gain_entry_funcs, ctx, 0, ctx); if (ret < 0) return ret; if (s->gain_entry_err < 0) return s->gain_entry_err; } av_log(ctx, AV_LOG_DEBUG, "nb_gain_entry = %d.\n", s->nb_gain_entry); ret = av_expr_parse(&gain_expr, gain, var_names, gain_func_names, gain_funcs, NULL, NULL, 0, ctx); if (ret < 0) return ret; if (s->dumpfile && (!s->dump_buf || !s->analysis_rdft || !(dump_fp = avpriv_fopen_utf8(s->dumpfile, "w")))) av_log(ctx, AV_LOG_WARNING, "dumping failed.\n"); vars[VAR_CHS] = inlink->ch_layout.nb_channels; vars[VAR_CHLAYOUT] = inlink->ch_layout.order == AV_CHANNEL_ORDER_NATIVE ? inlink->ch_layout.u.mask : 0; vars[VAR_SR] = inlink->sample_rate; for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) { float *rdft_buf = s->kernel_tmp_buf + ch * (s->rdft_len * 2); float *rdft_tbuf = s->kernel_tmp_tbuf; double result; vars[VAR_CH] = ch; vars[VAR_CHID] = av_channel_layout_channel_from_index(&inlink->ch_layout, ch); for (k = 0; k <= s->analysis_rdft_len/2; k++) { vars[VAR_F] = k * ((double)inlink->sample_rate /(double)s->analysis_rdft_len); if (xlog) vars[VAR_F] = log2(0.05 * vars[VAR_F]); result = av_expr_eval(gain_expr, vars, ctx); s->analysis_tbuf[2*k] = ylog ? pow(10.0, 0.05 * result) : s->min_phase ? fabs(result) : result; s->analysis_tbuf[2*k+1] = 0.0; } if (s->dump_buf) memcpy(s->dump_buf, s->analysis_tbuf, (s->analysis_rdft_len + 2) * sizeof(*s->analysis_tbuf)); s->analysis_irdft_fn(s->analysis_irdft, s->analysis_buf, s->analysis_tbuf, sizeof(AVComplexFloat)); center = s->fir_len / 2; for (k = 0; k <= center; k++) { double u = k * (M_PI/center); double win; switch (s->wfunc) { case WFUNC_RECTANGULAR: win = 1.0; break; case WFUNC_HANN: win = 0.5 + 0.5 * cos(u); break; case WFUNC_HAMMING: win = 0.53836 + 0.46164 * cos(u); break; case WFUNC_BLACKMAN: win = 0.42 + 0.5 * cos(u) + 0.08 * cos(2*u); break; case WFUNC_NUTTALL3: win = 0.40897 + 0.5 * cos(u) + 0.09103 * cos(2*u); break; case WFUNC_MNUTTALL3: win = 0.4243801 + 0.4973406 * cos(u) + 0.0782793 * cos(2*u); break; case WFUNC_NUTTALL: win = 0.355768 + 0.487396 * cos(u) + 0.144232 * cos(2*u) + 0.012604 * cos(3*u); break; case WFUNC_BNUTTALL: win = 0.3635819 + 0.4891775 * cos(u) + 0.1365995 * cos(2*u) + 0.0106411 * cos(3*u); break; case WFUNC_BHARRIS: win = 0.35875 + 0.48829 * cos(u) + 0.14128 * cos(2*u) + 0.01168 * cos(3*u); break; case WFUNC_TUKEY: win = (u <= 0.5 * M_PI) ? 1.0 : (0.5 + 0.5 * cos(2*u - M_PI)); break; default: av_assert0(0); } s->analysis_buf[k] *= (2.0/s->analysis_rdft_len) * (2.0/s->rdft_len) * win; if (k) s->analysis_buf[s->analysis_rdft_len - k] = s->analysis_buf[k]; } memset(s->analysis_buf + center + 1, 0, (s->analysis_rdft_len - s->fir_len) * sizeof(*s->analysis_buf)); memcpy(rdft_tbuf, s->analysis_buf, s->rdft_len/2 * sizeof(*s->analysis_buf)); memcpy(rdft_tbuf + s->rdft_len/2, s->analysis_buf + s->analysis_rdft_len - s->rdft_len/2, s->rdft_len/2 * sizeof(*s->analysis_buf)); if (s->min_phase) generate_min_phase_kernel(s, rdft_tbuf); s->rdft_fn(s->rdft, rdft_buf, rdft_tbuf, sizeof(float)); for (k = 0; k < s->rdft_len + 2; k++) { if (isnan(rdft_buf[k]) || isinf(rdft_buf[k])) { av_log(ctx, AV_LOG_ERROR, "filter kernel contains nan or infinity.\n"); av_expr_free(gain_expr); if (dump_fp) fclose(dump_fp); return AVERROR(EINVAL); } } if (!s->min_phase) { for (k = 0; k <= s->rdft_len/2; k++) rdft_buf[k] = rdft_buf[2*k]; } if (dump_fp) dump_fir(ctx, dump_fp, ch); if (!s->multi) break; } memcpy(s->kernel_buf, s->kernel_tmp_buf, (s->multi ? inlink->ch_layout.nb_channels : 1) * (s->rdft_len * 2) * sizeof(*s->kernel_buf)); av_expr_free(gain_expr); if (dump_fp) fclose(dump_fp); return 0; } #define SELECT_GAIN(s) (s->gain_cmd ? s->gain_cmd : s->gain) #define SELECT_GAIN_ENTRY(s) (s->gain_entry_cmd ? s->gain_entry_cmd : s->gain_entry) static int config_input(AVFilterLink *inlink) { FilterLink *l = ff_filter_link(inlink); AVFilterContext *ctx = inlink->dst; FIREqualizerContext *s = ctx->priv; float iscale, scale = 1.f; int rdft_bits, ret; common_uninit(s); s->next_pts = 0; s->frame_nsamples_max = 0; s->fir_len = FFMAX(2 * (int)(inlink->sample_rate * s->delay) + 1, 3); s->remaining = s->fir_len - 1; for (rdft_bits = RDFT_BITS_MIN; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) { s->rdft_len = 1 << rdft_bits; s->nsamples_max = s->rdft_len - s->fir_len + 1; if (s->nsamples_max * 2 >= s->fir_len) break; } if (rdft_bits > RDFT_BITS_MAX) { av_log(ctx, AV_LOG_ERROR, "too large delay, please decrease it.\n"); return AVERROR(EINVAL); } iscale = 0.5f; if (((ret = av_tx_init(&s->rdft, &s->rdft_fn, AV_TX_FLOAT_RDFT, 0, 1 << rdft_bits, &scale, 0)) < 0) || ((ret = av_tx_init(&s->irdft, &s->irdft_fn, AV_TX_FLOAT_RDFT, 1, 1 << rdft_bits, &iscale, 0)) < 0)) return ret; scale = 1.f; if (s->fft2 && !s->multi && inlink->ch_layout.nb_channels > 1 && ((ret = av_tx_init(&s->fft_ctx, &s->fft_fn, AV_TX_FLOAT_FFT, 0, 1 << rdft_bits, &scale, 0)) < 0)) return ret; if (s->min_phase) { int cepstrum_bits = rdft_bits + 2; if (cepstrum_bits > RDFT_BITS_MAX) { av_log(ctx, AV_LOG_ERROR, "too large delay, please decrease it.\n"); return AVERROR(EINVAL); } cepstrum_bits = FFMIN(RDFT_BITS_MAX, cepstrum_bits + 1); scale = 1.f; ret = av_tx_init(&s->cepstrum_rdft, &s->cepstrum_rdft_fn, AV_TX_FLOAT_RDFT, 0, 1 << cepstrum_bits, &scale, 0); if (ret < 0) return ret; iscale = 0.5f; ret = av_tx_init(&s->cepstrum_irdft, &s->cepstrum_irdft_fn, AV_TX_FLOAT_RDFT, 1, 1 << cepstrum_bits, &iscale, 0); if (ret < 0) return ret; s->cepstrum_len = 1 << cepstrum_bits; s->cepstrum_buf = av_malloc_array(s->cepstrum_len, sizeof(*s->cepstrum_buf)); if (!s->cepstrum_buf) return AVERROR(ENOMEM); s->cepstrum_tbuf = av_malloc_array(s->cepstrum_len + 2, sizeof(*s->cepstrum_tbuf)); if (!s->cepstrum_tbuf) return AVERROR(ENOMEM); } for ( ; rdft_bits <= RDFT_BITS_MAX; rdft_bits++) { s->analysis_rdft_len = 1 << rdft_bits; if (inlink->sample_rate <= s->accuracy * s->analysis_rdft_len) break; } if (rdft_bits > RDFT_BITS_MAX) { av_log(ctx, AV_LOG_ERROR, "too small accuracy, please increase it.\n"); return AVERROR(EINVAL); } iscale = 0.5f; if ((ret = av_tx_init(&s->analysis_irdft, &s->analysis_irdft_fn, AV_TX_FLOAT_RDFT, 1, 1 << rdft_bits, &iscale, 0)) < 0) return ret; if (s->dumpfile) { scale = 1.f; if ((ret = av_tx_init(&s->analysis_rdft, &s->analysis_rdft_fn, AV_TX_FLOAT_RDFT, 0, 1 << rdft_bits, &scale, 0)) < 0) return ret; s->dump_buf = av_malloc_array(s->analysis_rdft_len + 2, sizeof(*s->dump_buf)); } s->analysis_buf = av_malloc_array((s->analysis_rdft_len + 2), sizeof(*s->analysis_buf)); s->analysis_tbuf = av_malloc_array(s->analysis_rdft_len + 2, sizeof(*s->analysis_tbuf)); s->kernel_tmp_buf = av_malloc_array((s->rdft_len * 2) * (s->multi ? inlink->ch_layout.nb_channels : 1), sizeof(*s->kernel_tmp_buf)); s->kernel_tmp_tbuf = av_malloc_array(s->rdft_len, sizeof(*s->kernel_tmp_tbuf)); s->kernel_buf = av_malloc_array((s->rdft_len * 2) * (s->multi ? inlink->ch_layout.nb_channels : 1), sizeof(*s->kernel_buf)); s->tx_buf = av_malloc_array(2 * (s->rdft_len + 2), sizeof(*s->kernel_buf)); s->conv_buf = av_calloc(2 * s->rdft_len * inlink->ch_layout.nb_channels, sizeof(*s->conv_buf)); s->conv_idx = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->conv_idx)); if (!s->analysis_buf || !s->analysis_tbuf || !s->kernel_tmp_buf || !s->kernel_buf || !s->conv_buf || !s->conv_idx || !s->kernel_tmp_tbuf || !s->tx_buf) return AVERROR(ENOMEM); av_log(ctx, AV_LOG_DEBUG, "sample_rate = %d, channels = %d, analysis_rdft_len = %d, rdft_len = %d, fir_len = %d, nsamples_max = %d.\n", inlink->sample_rate, inlink->ch_layout.nb_channels, s->analysis_rdft_len, s->rdft_len, s->fir_len, s->nsamples_max); if (s->fixed) l->min_samples = l->max_samples = s->nsamples_max; return generate_kernel(ctx, SELECT_GAIN(s), SELECT_GAIN_ENTRY(s)); } static int filter_frame(AVFilterLink *inlink, AVFrame *frame) { AVFilterContext *ctx = inlink->dst; FIREqualizerContext *s = ctx->priv; int ch; if (!s->min_phase) { for (ch = 0; ch + 1 < inlink->ch_layout.nb_channels && s->fft_ctx; ch += 2) { fast_convolute2(s, s->kernel_buf, (AVComplexFloat *)(s->conv_buf + 2 * ch * s->rdft_len), s->conv_idx + ch, (float *) frame->extended_data[ch], (float *) frame->extended_data[ch+1], frame->nb_samples); } for ( ; ch < inlink->ch_layout.nb_channels; ch++) { fast_convolute(s, s->kernel_buf + (s->multi ? ch * (s->rdft_len * 2) : 0), s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch, (float *) frame->extended_data[ch], frame->nb_samples); } } else { for (ch = 0; ch < inlink->ch_layout.nb_channels; ch++) { fast_convolute_nonlinear(s, s->kernel_buf + (s->multi ? ch * (s->rdft_len * 2) : 0), s->conv_buf + 2 * ch * s->rdft_len, s->conv_idx + ch, (float *) frame->extended_data[ch], frame->nb_samples); } } s->next_pts = AV_NOPTS_VALUE; if (frame->pts != AV_NOPTS_VALUE) { s->next_pts = frame->pts + av_rescale_q(frame->nb_samples, av_make_q(1, inlink->sample_rate), inlink->time_base); if (s->zero_phase && !s->min_phase) frame->pts -= av_rescale_q(s->fir_len/2, av_make_q(1, inlink->sample_rate), inlink->time_base); } s->frame_nsamples_max = FFMAX(s->frame_nsamples_max, frame->nb_samples); return ff_filter_frame(ctx->outputs[0], frame); } static int request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; FIREqualizerContext *s= ctx->priv; int ret; ret = ff_request_frame(ctx->inputs[0]); if (ret == AVERROR_EOF && s->remaining > 0 && s->frame_nsamples_max > 0) { AVFrame *frame = ff_get_audio_buffer(outlink, FFMIN(s->remaining, s->frame_nsamples_max)); if (!frame) return AVERROR(ENOMEM); av_samples_set_silence(frame->extended_data, 0, frame->nb_samples, outlink->ch_layout.nb_channels, frame->format); frame->pts = s->next_pts; s->remaining -= frame->nb_samples; ret = filter_frame(ctx->inputs[0], frame); } return ret; } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { FIREqualizerContext *s = ctx->priv; int ret = AVERROR(ENOSYS); if (!strcmp(cmd, "gain")) { char *gain_cmd; if (SELECT_GAIN(s) && !strcmp(SELECT_GAIN(s), args)) { av_log(ctx, AV_LOG_DEBUG, "equal gain, do not rebuild.\n"); return 0; } gain_cmd = av_strdup(args); if (!gain_cmd) return AVERROR(ENOMEM); ret = generate_kernel(ctx, gain_cmd, SELECT_GAIN_ENTRY(s)); if (ret >= 0) { av_freep(&s->gain_cmd); s->gain_cmd = gain_cmd; } else { av_freep(&gain_cmd); } } else if (!strcmp(cmd, "gain_entry")) { char *gain_entry_cmd; if (SELECT_GAIN_ENTRY(s) && !strcmp(SELECT_GAIN_ENTRY(s), args)) { av_log(ctx, AV_LOG_DEBUG, "equal gain_entry, do not rebuild.\n"); return 0; } gain_entry_cmd = av_strdup(args); if (!gain_entry_cmd) return AVERROR(ENOMEM); ret = generate_kernel(ctx, SELECT_GAIN(s), gain_entry_cmd); if (ret >= 0) { av_freep(&s->gain_entry_cmd); s->gain_entry_cmd = gain_entry_cmd; } else { av_freep(&gain_entry_cmd); } } return ret; } static const AVFilterPad firequalizer_inputs[] = { { .name = "default", .flags = AVFILTERPAD_FLAG_NEEDS_WRITABLE, .config_props = config_input, .filter_frame = filter_frame, .type = AVMEDIA_TYPE_AUDIO, }, }; static const AVFilterPad firequalizer_outputs[] = { { .name = "default", .request_frame = request_frame, .type = AVMEDIA_TYPE_AUDIO, }, }; const AVFilter ff_af_firequalizer = { .name = "firequalizer", .description = NULL_IF_CONFIG_SMALL("Finite Impulse Response Equalizer."), .uninit = uninit, .process_command = process_command, .priv_size = sizeof(FIREqualizerContext), FILTER_INPUTS(firequalizer_inputs), FILTER_OUTPUTS(firequalizer_outputs), FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_FLTP), .priv_class = &firequalizer_class, };