/* * H.266/VVC helper functions for muxers * * Copyright (C) 2022, Thomas Siedel * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavcodec/get_bits.h" #include "libavcodec/put_bits.h" #include "libavcodec/golomb.h" #include "libavcodec/vvc.h" #include "libavutil/avassert.h" #include "libavutil/intreadwrite.h" #include "libavutil/mem.h" #include "avc.h" #include "avio.h" #include "avio_internal.h" #include "vvc.h" typedef struct VVCCNALUnitArray { uint8_t array_completeness; uint8_t NAL_unit_type; uint16_t num_nalus; uint16_t *nal_unit_length; uint8_t **nal_unit; } VVCCNALUnitArray; typedef struct VVCPTLRecord { uint8_t num_bytes_constraint_info; uint8_t general_profile_idc; uint8_t general_tier_flag; uint8_t general_level_idc; uint8_t ptl_frame_only_constraint_flag; uint8_t ptl_multilayer_enabled_flag; uint8_t general_constraint_info[9]; uint8_t ptl_sublayer_level_present_flag[VVC_MAX_SUBLAYERS - 1]; uint8_t sublayer_level_idc[VVC_MAX_SUBLAYERS - 1]; uint8_t ptl_num_sub_profiles; uint32_t general_sub_profile_idc[VVC_MAX_SUB_PROFILES]; } VVCPTLRecord; typedef struct VVCDecoderConfigurationRecord { uint8_t lengthSizeMinusOne; uint8_t ptl_present_flag; uint16_t ols_idx; uint8_t num_sublayers; uint8_t constant_frame_rate; uint8_t chroma_format_idc; uint8_t bit_depth_minus8; VVCPTLRecord ptl; uint16_t max_picture_width; uint16_t max_picture_height; uint16_t avg_frame_rate; uint8_t num_of_arrays; VVCCNALUnitArray *array; } VVCDecoderConfigurationRecord; static void vvcc_update_ptl(VVCDecoderConfigurationRecord *vvcc, VVCPTLRecord *ptl) { /* * The level indication general_level_idc must indicate a level of * capability equal to or greater than the highest level indicated for the * highest tier in all the parameter sets. */ if (vvcc->ptl.general_tier_flag < ptl->general_tier_flag) vvcc->ptl.general_level_idc = ptl->general_level_idc; else vvcc->ptl.general_level_idc = FFMAX(vvcc->ptl.general_level_idc, ptl->general_level_idc); /* * The tier indication general_tier_flag must indicate a tier equal to or * greater than the highest tier indicated in all the parameter sets. */ vvcc->ptl.general_tier_flag = FFMAX(vvcc->ptl.general_tier_flag, ptl->general_tier_flag); /* * The profile indication general_profile_idc must indicate a profile to * which the stream associated with this configuration record conforms. * * If the sequence parameter sets are marked with different profiles, then * the stream may need examination to determine which profile, if any, the * entire stream conforms to. If the entire stream is not examined, or the * examination reveals that there is no profile to which the entire stream * conforms, then the entire stream must be split into two or more * sub-streams with separate configuration records in which these rules can * be met. * * Note: set the profile to the highest value for the sake of simplicity. */ vvcc->ptl.general_profile_idc = FFMAX(vvcc->ptl.general_profile_idc, ptl->general_profile_idc); /* * Each bit in flags may only be set if all * the parameter sets set that bit. */ vvcc->ptl.ptl_frame_only_constraint_flag &= ptl->ptl_frame_only_constraint_flag; vvcc->ptl.ptl_multilayer_enabled_flag &= ptl->ptl_multilayer_enabled_flag; /* * Constraints Info */ if (ptl->num_bytes_constraint_info) { vvcc->ptl.num_bytes_constraint_info = ptl->num_bytes_constraint_info; memcpy(&vvcc->ptl.general_constraint_info[0], &ptl->general_constraint_info[0], ptl->num_bytes_constraint_info); } else { vvcc->ptl.num_bytes_constraint_info = 1; memset(&vvcc->ptl.general_constraint_info[0], 0, sizeof(vvcc->ptl.general_constraint_info)); } /* * Each bit in flags may only be set if one of * the parameter sets set that bit. */ memset(vvcc->ptl.ptl_sublayer_level_present_flag, 0, sizeof(uint8_t) * vvcc->num_sublayers - 1); memset(vvcc->ptl.sublayer_level_idc, 0, sizeof(uint8_t) * vvcc->num_sublayers - 1); for (int i = vvcc->num_sublayers - 2; i >= 0; i--) { vvcc->ptl.ptl_sublayer_level_present_flag[i] |= ptl->ptl_sublayer_level_present_flag[i]; if (vvcc->ptl.ptl_sublayer_level_present_flag[i]) { vvcc->ptl.sublayer_level_idc[i] = FFMAX(vvcc->ptl.sublayer_level_idc[i], ptl->sublayer_level_idc[i]); } else { if (i == vvcc->num_sublayers - 1) { vvcc->ptl.sublayer_level_idc[i] = vvcc->ptl.general_level_idc; } else { vvcc->ptl.sublayer_level_idc[i] = vvcc->ptl.sublayer_level_idc[i + 1]; } } } vvcc->ptl.ptl_num_sub_profiles = FFMAX(vvcc->ptl.ptl_num_sub_profiles, ptl->ptl_num_sub_profiles); if (vvcc->ptl.ptl_num_sub_profiles) { for (int i = 0; i < vvcc->ptl.ptl_num_sub_profiles; i++) { vvcc->ptl.general_sub_profile_idc[i] = ptl->general_sub_profile_idc[i]; } } } static void vvcc_parse_ptl(GetBitContext *gb, VVCDecoderConfigurationRecord *vvcc, unsigned int profileTierPresentFlag, unsigned int max_sub_layers_minus1) { VVCPTLRecord general_ptl = { 0 }; if (profileTierPresentFlag) { general_ptl.general_profile_idc = get_bits(gb, 7); general_ptl.general_tier_flag = get_bits1(gb); } general_ptl.general_level_idc = get_bits(gb, 8); general_ptl.ptl_frame_only_constraint_flag = get_bits1(gb); general_ptl.ptl_multilayer_enabled_flag = get_bits1(gb); if (profileTierPresentFlag) { // parse constraint info general_ptl.num_bytes_constraint_info = get_bits1(gb); // gci_present_flag if (general_ptl.num_bytes_constraint_info) { int gci_num_reserved_bits, j; for (j = 0; j < 8; j++) general_ptl.general_constraint_info[j] = get_bits(gb, 8); general_ptl.general_constraint_info[j++] = get_bits(gb, 7); gci_num_reserved_bits = get_bits(gb, 8); general_ptl.num_bytes_constraint_info = j; skip_bits(gb, gci_num_reserved_bits); } align_get_bits(gb); } for (int i = max_sub_layers_minus1 - 1; i >= 0; i--) general_ptl.ptl_sublayer_level_present_flag[i] = get_bits1(gb); align_get_bits(gb); for (int i = max_sub_layers_minus1 - 1; i >= 0; i--) { if (general_ptl.ptl_sublayer_level_present_flag[i]) general_ptl.sublayer_level_idc[i] = get_bits(gb, 8); } if (profileTierPresentFlag) { general_ptl.ptl_num_sub_profiles = get_bits(gb, 8); if (general_ptl.ptl_num_sub_profiles) { for (int i = 0; i < general_ptl.ptl_num_sub_profiles; i++) general_ptl.general_sub_profile_idc[i] = get_bits_long(gb, 32); } } vvcc_update_ptl(vvcc, &general_ptl); } static int vvcc_parse_vps(GetBitContext *gb, VVCDecoderConfigurationRecord *vvcc) { unsigned int vps_max_layers_minus1; unsigned int vps_max_sublayers_minus1; unsigned int vps_default_ptl_dpb_hrd_max_tid_flag; unsigned int vps_all_independent_layers_flag; unsigned int vps_pt_present_flag[VVC_MAX_PTLS]; unsigned int vps_ptl_max_tid[VVC_MAX_PTLS]; unsigned int vps_num_ptls_minus1 = 0; /* * vps_video_parameter_set_id u(4) */ skip_bits(gb, 4); vps_max_layers_minus1 = get_bits(gb, 6); vps_max_sublayers_minus1 = get_bits(gb, 3); /* * numTemporalLayers greater than 1 indicates that the stream to which this * configuration record applies is temporally scalable and the contained * number of temporal layers (also referred to as temporal sub-layer or * sub-layer in ISO/IEC 23008-2) is equal to numTemporalLayers. Value 1 * indicates that the stream is not temporally scalable. Value 0 indicates * that it is unknown whether the stream is temporally scalable. */ vvcc->num_sublayers = FFMAX(vvcc->num_sublayers, vps_max_sublayers_minus1 + 1); if (vps_max_layers_minus1 > 0 && vps_max_sublayers_minus1 > 0) vps_default_ptl_dpb_hrd_max_tid_flag = get_bits1(gb); else vps_default_ptl_dpb_hrd_max_tid_flag = 0; if (vps_max_layers_minus1 > 0) vps_all_independent_layers_flag = get_bits1(gb); else vps_all_independent_layers_flag = 1; for (int i = 0; i <= vps_max_layers_minus1; i++) { skip_bits(gb, 6); //vps_layer_id[i] if (i > 0 && !vps_all_independent_layers_flag) { if (!get_bits1(gb)) { // vps_independent_layer_flag[i] unsigned int vps_max_tid_ref_present_flag = get_bits1(gb); for (int j = 0; j < i; j++) { unsigned int vps_direct_ref_layer_flag = get_bits1(gb); if (vps_max_tid_ref_present_flag && vps_direct_ref_layer_flag) skip_bits(gb, 3); // vps_max_tid_il_ref_pics_plus1 } } } } if (vps_max_layers_minus1 > 0) { unsigned int vps_each_layer_is_an_ols_flag; if (vps_all_independent_layers_flag) vps_each_layer_is_an_ols_flag = get_bits1(gb); else vps_each_layer_is_an_ols_flag = 0; if (!vps_each_layer_is_an_ols_flag) { unsigned int vps_ols_mode_idc; if (!vps_all_independent_layers_flag) vps_ols_mode_idc = get_bits(gb, 2); else vps_ols_mode_idc = 2; if (vps_ols_mode_idc == 2) { unsigned int vps_num_output_layer_sets_minus2 = get_bits(gb, 8); for (int i = 1; i <= vps_num_output_layer_sets_minus2 + 1; i++) { for (int j = 0; j <= vps_max_layers_minus1; j++) { skip_bits1(gb); // vps_ols_output_layer_flag[i][j] } } } } vps_num_ptls_minus1 = get_bits(gb, 8); } for (int i = 0; i <= vps_num_ptls_minus1; i++) { if (i > 0) vps_pt_present_flag[i] = get_bits1(gb); else vps_pt_present_flag[i] = 1; if (!vps_default_ptl_dpb_hrd_max_tid_flag) vps_ptl_max_tid[i] = get_bits(gb, 3); else vps_ptl_max_tid[i] = vps_max_sublayers_minus1; } align_get_bits(gb); for (int i = 0; i <= vps_num_ptls_minus1; i++) vvcc_parse_ptl(gb, vvcc, vps_pt_present_flag[i], vps_ptl_max_tid[i]); vvcc->ptl_present_flag = 1; /* nothing useful for vvcc past this point */ return 0; } static int vvcc_parse_sps(GetBitContext *gb, VVCDecoderConfigurationRecord *vvcc) { unsigned int sps_max_sublayers_minus1, sps_log2_ctu_size_minus5; unsigned int sps_subpic_same_size_flag, sps_pic_height_max_in_luma_samples, sps_pic_width_max_in_luma_samples; unsigned int sps_independent_subpics_flag; skip_bits(gb, 8); // sps_seq_parameter_set_id && sps_video_parameter_set_id sps_max_sublayers_minus1 = get_bits(gb, 3); /* * numTemporalLayers greater than 1 indicates that the stream to which this * configuration record applies is temporally scalable and the contained * number of temporal layers (also referred to as temporal sub-layer or * sub-layer in ISO/IEC 23008-2) is equal to numTemporalLayers. Value 1 * indicates that the stream is not temporally scalable. Value 0 indicates * that it is unknown whether the stream is temporally scalable. */ vvcc->num_sublayers = FFMAX(vvcc->num_sublayers, sps_max_sublayers_minus1 + 1); vvcc->chroma_format_idc = get_bits(gb, 2); sps_log2_ctu_size_minus5 = get_bits(gb, 2); if (get_bits1(gb)) { // sps_ptl_dpb_hrd_params_present_flag vvcc->ptl_present_flag = 1; vvcc_parse_ptl(gb, vvcc, 1, sps_max_sublayers_minus1); } skip_bits1(gb); // sps_gdr_enabled_flag if (get_bits(gb, 1)) // sps_ref_pic_resampling_enabled_flag skip_bits1(gb); // sps_res_change_in_clvs_allowed_flag sps_pic_width_max_in_luma_samples = get_ue_golomb_long(gb); vvcc->max_picture_width = FFMAX(vvcc->max_picture_width, sps_pic_width_max_in_luma_samples); sps_pic_height_max_in_luma_samples = get_ue_golomb_long(gb); vvcc->max_picture_height = FFMAX(vvcc->max_picture_height, sps_pic_height_max_in_luma_samples); if (get_bits1(gb)) { get_ue_golomb_long(gb); // sps_conf_win_left_offset get_ue_golomb_long(gb); // sps_conf_win_right_offset get_ue_golomb_long(gb); // sps_conf_win_top_offset get_ue_golomb_long(gb); // sps_conf_win_bottom_offset } if (get_bits1(gb)) { // sps_subpic_info_present_flag const unsigned int sps_num_subpics_minus1 = get_ue_golomb_long(gb); const int ctb_log2_size_y = sps_log2_ctu_size_minus5 + 5; const int ctb_size_y = 1 << ctb_log2_size_y; const int tmp_width_val = AV_CEIL_RSHIFT(sps_pic_width_max_in_luma_samples, ctb_log2_size_y); const int tmp_height_val = AV_CEIL_RSHIFT(sps_pic_height_max_in_luma_samples, ctb_log2_size_y); const int wlen = av_ceil_log2(tmp_width_val); const int hlen = av_ceil_log2(tmp_height_val); if (sps_num_subpics_minus1 > 0) { // sps_num_subpics_minus1 sps_independent_subpics_flag = get_bits1(gb); sps_subpic_same_size_flag = get_bits1(gb); } for (int i = 0; sps_num_subpics_minus1 > 0 && i <= sps_num_subpics_minus1; i++) { if (!sps_subpic_same_size_flag || i == 0) { if (i > 0 && sps_pic_width_max_in_luma_samples > ctb_size_y) skip_bits(gb, wlen); if (i > 0 && sps_pic_height_max_in_luma_samples > ctb_size_y) skip_bits(gb, hlen); if (i < sps_num_subpics_minus1 && sps_pic_width_max_in_luma_samples > ctb_size_y) skip_bits(gb, wlen); if (i < sps_num_subpics_minus1 && sps_pic_height_max_in_luma_samples > ctb_size_y) skip_bits(gb, hlen); } if (!sps_independent_subpics_flag) { skip_bits(gb, 2); // sps_subpic_treated_as_pic_flag && sps_loop_filter_across_subpic_enabled_flag } } get_ue_golomb_long(gb); // sps_subpic_id_len_minus1 if (get_bits1(gb)) { // sps_subpic_id_mapping_explicitly_signalled_flag if (get_bits1(gb)) // sps_subpic_id_mapping_present_flag for (int i = 0; i <= sps_num_subpics_minus1; i++) { skip_bits1(gb); // sps_subpic_id[i] } } } vvcc->bit_depth_minus8 = get_ue_golomb_long(gb); /* nothing useful for vvcc past this point */ return 0; } static int vvcc_parse_pps(GetBitContext *gb, VVCDecoderConfigurationRecord *vvcc) { // Nothing of importance to parse in PPS /* nothing useful for vvcc past this point */ return 0; } static void nal_unit_parse_header(GetBitContext *gb, uint8_t *nal_type) { /* * forbidden_zero_bit u(1) * nuh_reserved_zero_bit u(1) * nuh_layer_id u(6) */ skip_bits(gb, 8); *nal_type = get_bits(gb, 5); /* * nuh_temporal_id_plus1 u(3) */ skip_bits(gb, 3); } static int vvcc_array_add_nal_unit(uint8_t *nal_buf, uint32_t nal_size, uint8_t nal_type, int ps_array_completeness, VVCDecoderConfigurationRecord *vvcc) { int ret; uint8_t index; uint16_t num_nalus; VVCCNALUnitArray *array; for (index = 0; index < vvcc->num_of_arrays; index++) if (vvcc->array[index].NAL_unit_type == nal_type) break; if (index >= vvcc->num_of_arrays) { uint8_t i; ret = av_reallocp_array(&vvcc->array, index + 1, sizeof(VVCCNALUnitArray)); if (ret < 0) return ret; for (i = vvcc->num_of_arrays; i <= index; i++) memset(&vvcc->array[i], 0, sizeof(VVCCNALUnitArray)); vvcc->num_of_arrays = index + 1; } array = &vvcc->array[index]; num_nalus = array->num_nalus; ret = av_reallocp_array(&array->nal_unit, num_nalus + 1, sizeof(uint8_t *)); if (ret < 0) return ret; ret = av_reallocp_array(&array->nal_unit_length, num_nalus + 1, sizeof(uint16_t)); if (ret < 0) return ret; array->nal_unit[num_nalus] = nal_buf; array->nal_unit_length[num_nalus] = nal_size; array->NAL_unit_type = nal_type; array->num_nalus++; /* * When the sample entry name is 'vvc1', the following applies: * • The value of array_completeness shall be equal to 1 for arrays of SPS, * and PPS NAL units. * • If a VVC bitstream includes DCI NAL unit(s), the value of * array_completeness shall be equal to 1 for the array of DCI units. * Otherwise, NAL_unit_type shall not indicate DCI NAL units. * • If a VVC bitstream includes VPS NAL unit(s), the value of * array_completeness shall be equal to 1 for the array of VPS NAL units. * Otherwise, NAL_unit_type shall not indicate VPS NAL units. * When the value of array_completeness is equal to 1 for an array of a * particular NAL_unit_type value, NAL units of that NAL_unit_type value * cannot be updated without causing a different sample entry to be used. * When the sample entry name is 'vvi1', the value of array_completeness * of at least one of the following arrays shall be equal to 0: • The array of DCI NAL units, if present. • The array of VPS NAL units, if present. • The array of SPS NAL units • The array of PPS NAL units. */ if (nal_type == VVC_VPS_NUT || nal_type == VVC_SPS_NUT || nal_type == VVC_PPS_NUT || nal_type == VVC_DCI_NUT ) array->array_completeness = ps_array_completeness; return 0; } static int vvcc_add_nal_unit(uint8_t *nal_buf, uint32_t nal_size, int ps_array_completeness, VVCDecoderConfigurationRecord *vvcc) { int ret = 0; GetBitContext gbc; uint8_t nal_type; uint8_t *rbsp_buf; uint32_t rbsp_size; rbsp_buf = ff_nal_unit_extract_rbsp(nal_buf, nal_size, &rbsp_size, 2); if (!rbsp_buf) { ret = AVERROR(ENOMEM); goto end; } ret = init_get_bits8(&gbc, rbsp_buf, rbsp_size); if (ret < 0) goto end; nal_unit_parse_header(&gbc, &nal_type); /* * Note: only 'declarative' SEI messages are allowed in * vvcc. Perhaps the SEI playload type should be checked * and non-declarative SEI messages discarded? */ switch (nal_type) { case VVC_OPI_NUT: case VVC_VPS_NUT: case VVC_SPS_NUT: case VVC_PPS_NUT: case VVC_PREFIX_SEI_NUT: case VVC_SUFFIX_SEI_NUT: ret = vvcc_array_add_nal_unit(nal_buf, nal_size, nal_type, ps_array_completeness, vvcc); if (ret < 0) goto end; else if (nal_type == VVC_VPS_NUT) ret = vvcc_parse_vps(&gbc, vvcc); else if (nal_type == VVC_SPS_NUT) ret = vvcc_parse_sps(&gbc, vvcc); else if (nal_type == VVC_PPS_NUT) ret = vvcc_parse_pps(&gbc, vvcc); else if (nal_type == VVC_OPI_NUT) { // not yet supported } if (ret < 0) goto end; break; default: ret = AVERROR_INVALIDDATA; goto end; } end: av_free(rbsp_buf); return ret; } static void vvcc_init(VVCDecoderConfigurationRecord *vvcc) { memset(vvcc, 0, sizeof(VVCDecoderConfigurationRecord)); vvcc->lengthSizeMinusOne = 3; // 4 bytes } static void vvcc_close(VVCDecoderConfigurationRecord *vvcc) { uint8_t i; for (i = 0; i < vvcc->num_of_arrays; i++) { vvcc->array[i].num_nalus = 0; av_freep(&vvcc->array[i].nal_unit); av_freep(&vvcc->array[i].nal_unit_length); } vvcc->num_of_arrays = 0; av_freep(&vvcc->array); } static int vvcc_write(AVIOContext *pb, VVCDecoderConfigurationRecord *vvcc) { uint8_t i; uint16_t j, vps_count = 0, sps_count = 0, pps_count = 0; /* * It's unclear how to properly compute these fields, so * let's always set them to values meaning 'unspecified'. */ vvcc->avg_frame_rate = 0; vvcc->constant_frame_rate = 1; av_log(NULL, AV_LOG_TRACE, "lengthSizeMinusOne: %" PRIu8 "\n", vvcc->lengthSizeMinusOne); av_log(NULL, AV_LOG_TRACE, "ptl_present_flag: %" PRIu8 "\n", vvcc->ptl_present_flag); av_log(NULL, AV_LOG_TRACE, "ols_idx: %" PRIu16 "\n", vvcc->ols_idx); av_log(NULL, AV_LOG_TRACE, "num_sublayers: %" PRIu8 "\n", vvcc->num_sublayers); av_log(NULL, AV_LOG_TRACE, "constant_frame_rate: %" PRIu8 "\n", vvcc->constant_frame_rate); av_log(NULL, AV_LOG_TRACE, "chroma_format_idc: %" PRIu8 "\n", vvcc->chroma_format_idc); av_log(NULL, AV_LOG_TRACE, "bit_depth_minus8: %" PRIu8 "\n", vvcc->bit_depth_minus8); av_log(NULL, AV_LOG_TRACE, "num_bytes_constraint_info: %" PRIu8 "\n", vvcc->ptl.num_bytes_constraint_info); av_log(NULL, AV_LOG_TRACE, "general_profile_idc: %" PRIu8 "\n", vvcc->ptl.general_profile_idc); av_log(NULL, AV_LOG_TRACE, "general_tier_flag: %" PRIu8 "\n", vvcc->ptl.general_tier_flag); av_log(NULL, AV_LOG_TRACE, "general_level_idc: %" PRIu8 "\n", vvcc->ptl.general_level_idc); av_log(NULL, AV_LOG_TRACE, "ptl_frame_only_constraint_flag: %" PRIu8 "\n", vvcc->ptl.ptl_frame_only_constraint_flag); av_log(NULL, AV_LOG_TRACE, "ptl_multilayer_enabled_flag: %" PRIu8 "\n", vvcc->ptl.ptl_multilayer_enabled_flag); for (i = 0; i < vvcc->ptl.num_bytes_constraint_info; i++) { av_log(NULL, AV_LOG_TRACE, "general_constraint_info[%d]: %" PRIu8 "\n", i, vvcc->ptl.general_constraint_info[i]); } for (i = 0; i < vvcc->num_sublayers - 1; i++) { av_log(NULL, AV_LOG_TRACE, "ptl_sublayer_level_present_flag[%" PRIu8 "]: %" PRIu8 "\n", i, vvcc->ptl.ptl_sublayer_level_present_flag[i]); av_log(NULL, AV_LOG_TRACE, "sublayer_level_idc[%" PRIu8 "]: %" PRIu8 "\n", i, vvcc->ptl.sublayer_level_idc[i]); } av_log(NULL, AV_LOG_TRACE, "num_sub_profiles: %" PRIu8 "\n", vvcc->ptl.ptl_num_sub_profiles); for (i = 0; i < vvcc->ptl.ptl_num_sub_profiles; i++) { av_log(NULL, AV_LOG_TRACE, "general_sub_profile_idc[%" PRIu8 "]: %" PRIx32 "\n", i, vvcc->ptl.general_sub_profile_idc[i]); } av_log(NULL, AV_LOG_TRACE, "max_picture_width: %" PRIu16 "\n", vvcc->max_picture_width); av_log(NULL, AV_LOG_TRACE, "max_picture_height: %" PRIu16 "\n", vvcc->max_picture_height); av_log(NULL, AV_LOG_TRACE, "avg_frame_rate: %" PRIu16 "\n", vvcc->avg_frame_rate); av_log(NULL, AV_LOG_TRACE, "num_of_arrays: %" PRIu8 "\n", vvcc->num_of_arrays); for (i = 0; i < vvcc->num_of_arrays; i++) { av_log(NULL, AV_LOG_TRACE, "array_completeness[%" PRIu8 "]: %" PRIu8 "\n", i, vvcc->array[i].array_completeness); av_log(NULL, AV_LOG_TRACE, "NAL_unit_type[%" PRIu8 "]: %" PRIu8 "\n", i, vvcc->array[i].NAL_unit_type); av_log(NULL, AV_LOG_TRACE, "num_nalus[%" PRIu8 "]: %" PRIu16 "\n", i, vvcc->array[i].num_nalus); for (j = 0; j < vvcc->array[i].num_nalus; j++) av_log(NULL, AV_LOG_TRACE, "nal_unit_length[%" PRIu8 "][%" PRIu16 "]: %" PRIu16 "\n", i, j, vvcc->array[i].nal_unit_length[j]); } /* * We need at least one of each: VPS and SPS. */ for (i = 0; i < vvcc->num_of_arrays; i++) switch (vvcc->array[i].NAL_unit_type) { case VVC_VPS_NUT: vps_count += vvcc->array[i].num_nalus; break; case VVC_SPS_NUT: sps_count += vvcc->array[i].num_nalus; break; case VVC_PPS_NUT: pps_count += vvcc->array[i].num_nalus; break; default: break; } if (vps_count > VVC_MAX_VPS_COUNT) return AVERROR_INVALIDDATA; if (!sps_count || sps_count > VVC_MAX_SPS_COUNT) return AVERROR_INVALIDDATA; if (!pps_count || pps_count > VVC_MAX_PPS_COUNT) return AVERROR_INVALIDDATA; /* bit(5) reserved = ‘11111’b; unsigned int (2) LengthSizeMinusOne unsigned int (1) ptl_present_flag */ avio_w8(pb, vvcc->lengthSizeMinusOne << 1 | vvcc->ptl_present_flag | 0xf8); if (vvcc->ptl_present_flag) { uint8_t buf[64]; PutBitContext pbc; init_put_bits(&pbc, buf, sizeof(buf)); /* * unsigned int(9) ols_idx; * unsigned int(3) num_sublayers; * unsigned int(2) constant_frame_rate; * unsigned int(2) chroma_format_idc; */ avio_wb16(pb, vvcc->ols_idx << 7 | vvcc->num_sublayers << 4 | vvcc-> constant_frame_rate << 2 | vvcc->chroma_format_idc); /* unsigned int(3) bit_depth_minus8; bit(5) reserved = ‘11111’b; */ avio_w8(pb, vvcc->bit_depth_minus8 << 5 | 0x1f); //VVCPTLRecord /* bit(2) reserved = ‘00’b; unsigned int (6) num_bytes_constraint_info */ avio_w8(pb, vvcc->ptl.num_bytes_constraint_info & 0x3f); /* unsigned int (7) general_profile_idc unsigned int (1) general_tier_flag */ avio_w8(pb, vvcc->ptl.general_profile_idc << 1 | vvcc->ptl.general_tier_flag); /* unsigned int (8) general_level_idc */ avio_w8(pb, vvcc->ptl.general_level_idc); /* * unsigned int (1) ptl_frame_only_constraint_flag * unsigned int (1) ptl_multilayer_enabled_flag * unsigned int (8*num_bytes_constraint_info -2) general_constraint_info */ put_bits(&pbc, 1, vvcc->ptl.ptl_frame_only_constraint_flag); put_bits(&pbc, 1, vvcc->ptl.ptl_multilayer_enabled_flag); av_assert0(vvcc->ptl.num_bytes_constraint_info); if (vvcc->ptl.num_bytes_constraint_info > 1) ff_copy_bits(&pbc, vvcc->ptl.general_constraint_info, (vvcc->ptl.num_bytes_constraint_info - 1) * 8); put_bits(&pbc, 6, vvcc->ptl.general_constraint_info[vvcc->ptl.num_bytes_constraint_info - 1] & 0x3f); flush_put_bits(&pbc); avio_write(pb, buf, put_bytes_count(&pbc, 1)); if (vvcc->num_sublayers > 1) { uint8_t ptl_sublayer_level_present_flags = 0; for (int i = vvcc->num_sublayers - 2; i >= 0; i--) { ptl_sublayer_level_present_flags = (ptl_sublayer_level_present_flags << 1 | vvcc->ptl. ptl_sublayer_level_present_flag[i]); } avio_w8(pb, ptl_sublayer_level_present_flags); } for (int i = vvcc->num_sublayers - 2; i >= 0; i--) { if (vvcc->ptl.ptl_sublayer_level_present_flag[i]) avio_w8(pb, vvcc->ptl.sublayer_level_idc[i]); } /* unsigned int(8) num_sub_profiles; */ avio_w8(pb, vvcc->ptl.ptl_num_sub_profiles); for (int j = 0; j < vvcc->ptl.ptl_num_sub_profiles; j++) { /* unsigned int(32) general_sub_profile_idc[j]; */ avio_wb32(pb, vvcc->ptl.general_sub_profile_idc[j]); } //End of VvcPTLRecord /* * unsigned int(16) max_picture_width;*/ avio_wb16(pb, vvcc->max_picture_width); /* * unsigned int(16) max_picture_height;*/ avio_wb16(pb, vvcc->max_picture_height); /* * unsigned int(16) avg_frame_rate; */ avio_wb16(pb, vvcc->avg_frame_rate); } /* unsigned int(8) num_of_arrays; */ avio_w8(pb, vvcc->num_of_arrays); for (i = 0; i < vvcc->num_of_arrays; i++) { /* * bit(1) array_completeness; * unsigned int(2) reserved = 0; * unsigned int(5) NAL_unit_type; */ avio_w8(pb, vvcc->array[i].array_completeness << 7 | vvcc->array[i].NAL_unit_type & 0x1f); /* unsigned int(16) num_nalus; */ if (vvcc->array[i].NAL_unit_type != VVC_DCI_NUT && vvcc->array[i].NAL_unit_type != VVC_OPI_NUT) avio_wb16(pb, vvcc->array[i].num_nalus); for (j = 0; j < vvcc->array[i].num_nalus; j++) { /* unsigned int(16) nal_unit_length; */ avio_wb16(pb, vvcc->array[i].nal_unit_length[j]); /* bit(8*nal_unit_length) nal_unit; */ avio_write(pb, vvcc->array[i].nal_unit[j], vvcc->array[i].nal_unit_length[j]); } } return 0; } int ff_vvc_annexb2mp4(AVIOContext *pb, const uint8_t *buf_in, int size, int filter_ps, int *ps_count) { int num_ps = 0, ret = 0; uint8_t *buf, *end, *start = NULL; if (!filter_ps) { ret = ff_avc_parse_nal_units(pb, buf_in, size); goto end; } ret = ff_avc_parse_nal_units_buf(buf_in, &start, &size); if (ret < 0) goto end; ret = 0; buf = start; end = start + size; while (end - buf > 4) { uint32_t len = FFMIN(AV_RB32(buf), end - buf - 4); uint8_t type = (buf[5] >> 3); buf += 4; switch (type) { case VVC_VPS_NUT: case VVC_SPS_NUT: case VVC_PPS_NUT: num_ps++; break; default: ret += 4 + len; avio_wb32(pb, len); avio_write(pb, buf, len); break; } buf += len; } end: av_free(start); if (ps_count) *ps_count = num_ps; return ret; } int ff_vvc_annexb2mp4_buf(const uint8_t *buf_in, uint8_t **buf_out, int *size, int filter_ps, int *ps_count) { AVIOContext *pb; int ret; ret = avio_open_dyn_buf(&pb); if (ret < 0) return ret; ret = ff_vvc_annexb2mp4(pb, buf_in, *size, filter_ps, ps_count); if (ret < 0) { ffio_free_dyn_buf(&pb); return ret; } *size = avio_close_dyn_buf(pb, buf_out); return 0; } int ff_isom_write_vvcc(AVIOContext *pb, const uint8_t *data, int size, int ps_array_completeness) { VVCDecoderConfigurationRecord vvcc; uint8_t *buf, *end, *start; int ret; if (size < 6) { /* We can't write a valid vvcc from the provided data */ return AVERROR_INVALIDDATA; } else if ((*data & 0xf8) == 0xf8) { /* Data is already vvcc-formatted */ avio_write(pb, data, size); return 0; } else if (!(AV_RB24(data) == 1 || AV_RB32(data) == 1)) { /* Not a valid Annex B start code prefix */ return AVERROR_INVALIDDATA; } ret = ff_avc_parse_nal_units_buf(data, &start, &size); if (ret < 0) return ret; vvcc_init(&vvcc); buf = start; end = start + size; while (end - buf > 4) { uint32_t len = FFMIN(AV_RB32(buf), end - buf - 4); uint8_t type = (buf[5] >> 3); buf += 4; switch (type) { case VVC_OPI_NUT: case VVC_VPS_NUT: case VVC_SPS_NUT: case VVC_PPS_NUT: case VVC_PREFIX_SEI_NUT: case VVC_SUFFIX_SEI_NUT: ret = vvcc_add_nal_unit(buf, len, ps_array_completeness, &vvcc); if (ret < 0) goto end; break; default: break; } buf += len; } ret = vvcc_write(pb, &vvcc); end: vvcc_close(&vvcc); av_free(start); return ret; }