/* * Ut Video encoder * Copyright (c) 2012 Jan Ekström * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Ut Video encoder */ #include "libavutil/intreadwrite.h" #include "avcodec.h" #include "internal.h" #include "bytestream.h" #include "put_bits.h" #include "dsputil.h" #include "mathops.h" #include "utvideo.h" /* Compare huffentry symbols */ static int huff_cmp_sym(const void *a, const void *b) { const HuffEntry *aa = a, *bb = b; return aa->sym - bb->sym; } static av_cold int utvideo_encode_close(AVCodecContext *avctx) { UtvideoContext *c = avctx->priv_data; av_freep(&avctx->coded_frame); av_freep(&c->slice_bits); av_freep(&c->slice_buffer); return 0; } static av_cold int utvideo_encode_init(AVCodecContext *avctx) { UtvideoContext *c = avctx->priv_data; uint32_t original_format; c->avctx = avctx; c->frame_info_size = 4; switch (avctx->pix_fmt) { case PIX_FMT_RGB24: c->planes = 3; avctx->codec_tag = MKTAG('U', 'L', 'R', 'G'); original_format = UTVIDEO_RGB; break; case PIX_FMT_RGBA: c->planes = 4; avctx->codec_tag = MKTAG('U', 'L', 'R', 'A'); original_format = UTVIDEO_RGBA; break; case PIX_FMT_YUV420P: if (avctx->width & 1 || avctx->height & 1) { av_log(avctx, AV_LOG_ERROR, "4:2:0 video requires even width and height.\n"); return AVERROR_INVALIDDATA; } c->planes = 3; avctx->codec_tag = MKTAG('U', 'L', 'Y', '0'); original_format = UTVIDEO_420; break; case PIX_FMT_YUV422P: if (avctx->width & 1) { av_log(avctx, AV_LOG_ERROR, "4:2:2 video requires even width.\n"); return AVERROR_INVALIDDATA; } c->planes = 3; avctx->codec_tag = MKTAG('U', 'L', 'Y', '2'); original_format = UTVIDEO_422; break; default: av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n", avctx->pix_fmt); return AVERROR_INVALIDDATA; } ff_dsputil_init(&c->dsp, avctx); /* Check the prediction method, and error out if unsupported */ if (avctx->prediction_method < 0 || avctx->prediction_method > 4) { av_log(avctx, AV_LOG_WARNING, "Prediction method %d is not supported in Ut Video.\n", avctx->prediction_method); return AVERROR_OPTION_NOT_FOUND; } if (avctx->prediction_method == FF_PRED_PLANE) { av_log(avctx, AV_LOG_ERROR, "Plane prediction is not supported in Ut Video.\n"); return AVERROR_OPTION_NOT_FOUND; } /* Convert from libavcodec prediction type to Ut Video's */ c->frame_pred = ff_ut_pred_order[avctx->prediction_method]; if (c->frame_pred == PRED_GRADIENT) { av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n"); return AVERROR_OPTION_NOT_FOUND; } avctx->coded_frame = avcodec_alloc_frame(); if (!avctx->coded_frame) { av_log(avctx, AV_LOG_ERROR, "Could not allocate frame.\n"); utvideo_encode_close(avctx); return AVERROR(ENOMEM); } /* extradata size is 4 * 32bit */ avctx->extradata_size = 16; avctx->extradata = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE); if (!avctx->extradata) { av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n"); utvideo_encode_close(avctx); return AVERROR(ENOMEM); } c->slice_buffer = av_malloc(avctx->width * avctx->height + FF_INPUT_BUFFER_PADDING_SIZE); if (!c->slice_buffer) { av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n"); utvideo_encode_close(avctx); return AVERROR(ENOMEM); } /* * Set the version of the encoder. * Last byte is "implementation ID", which is * obtained from the creator of the format. * Libavcodec has been assigned with the ID 0xF0. */ AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0)); /* * Set the "original format" * Not used for anything during decoding. */ AV_WL32(avctx->extradata + 4, original_format); /* Write 4 as the 'frame info size' */ AV_WL32(avctx->extradata + 8, c->frame_info_size); /* * Set how many slices are going to be used. * Set one slice for now. */ c->slices = 1; /* Set compression mode */ c->compression = COMP_HUFF; /* * Set the encoding flags: * - Slice count minus 1 * - Interlaced encoding mode flag, set to zero for now. * - Compression mode (none/huff) * And write the flags. */ c->flags = (c->slices - 1) << 24; c->flags |= 0 << 11; // bit field to signal interlaced encoding mode c->flags |= c->compression; AV_WL32(avctx->extradata + 12, c->flags); return 0; } static void mangle_rgb_planes(uint8_t *src, int step, int stride, int width, int height) { int i, j; uint8_t r, g, b; for (j = 0; j < height; j++) { for (i = 0; i < width * step; i += step) { r = src[i]; g = src[i + 1]; b = src[i + 2]; src[i] = r - g + 0x80; src[i + 2] = b - g + 0x80; } src += stride; } } /* Write data to a plane, no prediction applied */ static void write_plane(uint8_t *src, uint8_t *dst, int step, int stride, int width, int height) { int i, j; for (j = 0; j < height; j++) { for (i = 0; i < width * step; i += step) *dst++ = src[i]; src += stride; } } /* Write data to a plane with left prediction */ static void left_predict(uint8_t *src, uint8_t *dst, int step, int stride, int width, int height) { int i, j; uint8_t prev; prev = 0x80; /* Set the initial value */ for (j = 0; j < height; j++) { for (i = 0; i < width * step; i += step) { *dst++ = src[i] - prev; prev = src[i]; } src += stride; } } /* Write data to a plane with median prediction */ static void median_predict(uint8_t *src, uint8_t *dst, int step, int stride, int width, int height) { int i, j; int A, B, C; uint8_t prev; /* First line uses left neighbour prediction */ prev = 0x80; /* Set the initial value */ for (i = 0; i < width * step; i += step) { *dst++ = src[i] - prev; prev = src[i]; } if (height == 1) return; src += stride; /* * Second line uses top prediction for the first sample, * and median for the rest. */ C = src[-stride]; *dst++ = src[0] - C; A = src[0]; for (i = step; i < width * step; i += step) { B = src[i - stride]; *dst++ = src[i] - mid_pred(A, B, (A + B - C) & 0xFF); C = B; A = src[i]; } src += stride; /* Rest of the coded part uses median prediction */ for (j = 2; j < height; j++) { for (i = 0; i < width * step; i += step) { B = src[i - stride]; *dst++ = src[i] - mid_pred(A, B, (A + B - C) & 0xFF); C = B; A = src[i]; } src += stride; } } /* Count the usage of values in a plane */ static void count_usage(uint8_t *src, int width, int height, uint32_t *counts) { int i, j; for (j = 0; j < height; j++) { for (i = 0; i < width; i++) { counts[src[i]]++; } src += width; } } static uint32_t add_weights(uint32_t w1, uint32_t w2) { uint32_t max = (w1 & 0xFF) > (w2 & 0xFF) ? (w1 & 0xFF) : (w2 & 0xFF); return ((w1 & 0xFFFFFF00) + (w2 & 0xFFFFFF00)) | (1 + max); } static void up_heap(uint32_t val, uint32_t *heap, uint32_t *weights) { uint32_t initial_val = heap[val]; while (weights[initial_val] < weights[heap[val >> 1]]) { heap[val] = heap[val >> 1]; val >>= 1; } heap[val] = initial_val; } static void down_heap(uint32_t nr_heap, uint32_t *heap, uint32_t *weights) { uint32_t val = 1; uint32_t val2; uint32_t initial_val = heap[val]; while (1) { val2 = val << 1; if (val2 > nr_heap) break; if (val2 < nr_heap && weights[heap[val2 + 1]] < weights[heap[val2]]) val2++; if (weights[initial_val] < weights[heap[val2]]) break; heap[val] = heap[val2]; val = val2; } heap[val] = initial_val; } /* Calculate the huffman code lengths from value counts */ static void calculate_code_lengths(uint8_t *lengths, uint32_t *counts) { uint32_t nr_nodes, nr_heap, node1, node2; int i, j; int32_t k; /* Heap and node entries start from 1 */ uint32_t weights[512]; uint32_t heap[512]; int32_t parents[512]; /* Set initial weights */ for (i = 0; i < 256; i++) weights[i + 1] = (counts[i] ? counts[i] : 1) << 8; nr_nodes = 256; nr_heap = 0; heap[0] = 0; weights[0] = 0; parents[0] = -2; /* Create initial nodes */ for (i = 1; i <= 256; i++) { parents[i] = -1; heap[++nr_heap] = i; up_heap(nr_heap, heap, weights); } /* Build the tree */ while (nr_heap > 1) { node1 = heap[1]; heap[1] = heap[nr_heap--]; down_heap(nr_heap, heap, weights); node2 = heap[1]; heap[1] = heap[nr_heap--]; down_heap(nr_heap, heap, weights); nr_nodes++; parents[node1] = parents[node2] = nr_nodes; weights[nr_nodes] = add_weights(weights[node1], weights[node2]); parents[nr_nodes] = -1; heap[++nr_heap] = nr_nodes; up_heap(nr_heap, heap, weights); } /* Generate lengths */ for (i = 1; i <= 256; i++) { j = 0; k = i; while (parents[k] >= 0) { k = parents[k]; j++; } lengths[i - 1] = j; } } /* Calculate the actual huffman codes from the code lengths */ static void calculate_codes(HuffEntry *he) { int last, i; uint32_t code; qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len); last = 255; while (he[last].len == 255 && last) last--; code = 1; for (i = last; i >= 0; i--) { he[i].code = code >> (32 - he[i].len); code += 0x80000000u >> (he[i].len - 1); } qsort(he, 256, sizeof(*he), huff_cmp_sym); } /* Write huffman bit codes to a memory block */ static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size, int width, int height, HuffEntry *he) { PutBitContext pb; int i, j; int count; init_put_bits(&pb, dst, dst_size); /* Write the codes */ for (j = 0; j < height; j++) { for (i = 0; i < width; i++) put_bits(&pb, he[src[i]].len, he[src[i]].code); src += width; } /* Pad output to a 32bit boundary */ count = put_bits_count(&pb) & 0x1F; if (count) put_bits(&pb, 32 - count, 0); /* Get the amount of bits written */ count = put_bits_count(&pb); /* Flush the rest with zeroes */ flush_put_bits(&pb); return count; } static int encode_plane(AVCodecContext *avctx, uint8_t *src, uint8_t *dst, int step, int stride, int width, int height, PutByteContext *pb) { UtvideoContext *c = avctx->priv_data; uint8_t lengths[256]; uint32_t counts[256] = { 0 }; HuffEntry he[256]; uint32_t offset = 0, slice_len = 0; int i, sstart, send = 0; int symbol; /* Do prediction / make planes */ switch (c->frame_pred) { case PRED_NONE: for (i = 0; i < c->slices; i++) { sstart = send; send = height * (i + 1) / c->slices; write_plane(src + sstart * stride, dst + sstart * width, step, stride, width, send - sstart); } break; case PRED_LEFT: for (i = 0; i < c->slices; i++) { sstart = send; send = height * (i + 1) / c->slices; left_predict(src + sstart * stride, dst + sstart * width, step, stride, width, send - sstart); } break; case PRED_MEDIAN: for (i = 0; i < c->slices; i++) { sstart = send; send = height * (i + 1) / c->slices; median_predict(src + sstart * stride, dst + sstart * width, step, stride, width, send - sstart); } break; default: av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n", c->frame_pred); return AVERROR_OPTION_NOT_FOUND; } /* Count the usage of values */ count_usage(dst, width, height, counts); /* Check for a special case where only one symbol was used */ for (symbol = 0; symbol < 256; symbol++) { /* If non-zero count is found, see if it matches width * height */ if (counts[symbol]) { /* Special case if only one symbol was used */ if (counts[symbol] == width * height) { /* * Write a zero for the single symbol * used in the plane, else 0xFF. */ for (i = 0; i < 256; i++) { if (i == symbol) bytestream2_put_byte(pb, 0); else bytestream2_put_byte(pb, 0xFF); } /* Write zeroes for lengths */ for (i = 0; i < c->slices; i++) bytestream2_put_le32(pb, 0); /* And that's all for that plane folks */ return 0; } break; } } /* Calculate huffman lengths */ calculate_code_lengths(lengths, counts); /* * Write the plane's header into the output packet: * - huffman code lengths (256 bytes) * - slice end offsets (gotten from the slice lengths) */ for (i = 0; i < 256; i++) { bytestream2_put_byte(pb, lengths[i]); he[i].len = lengths[i]; he[i].sym = i; } /* Calculate the huffman codes themselves */ calculate_codes(he); send = 0; for (i = 0; i < c->slices; i++) { sstart = send; send = height * (i + 1) / c->slices; /* * Write the huffman codes to a buffer, * get the offset in bits and convert to bytes. */ offset += write_huff_codes(dst + sstart * width, c->slice_bits, width * (send - sstart), width, send - sstart, he) >> 3; slice_len = offset - slice_len; /* Byteswap the written huffman codes */ c->dsp.bswap_buf((uint32_t *) c->slice_bits, (uint32_t *) c->slice_bits, slice_len >> 2); /* Write the offset to the stream */ bytestream2_put_le32(pb, offset); /* Seek to the data part of the packet */ bytestream2_seek_p(pb, 4 * (c->slices - i - 1) + offset - slice_len, SEEK_CUR); /* Write the slices' data into the output packet */ bytestream2_put_buffer(pb, c->slice_bits, slice_len); /* Seek back to the slice offsets */ bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset, SEEK_CUR); slice_len = offset; } /* And at the end seek to the end of written slice(s) */ bytestream2_seek_p(pb, offset, SEEK_CUR); return 0; } static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pic, int *got_packet) { UtvideoContext *c = avctx->priv_data; PutByteContext pb; uint32_t frame_info; uint8_t *dst; int width = avctx->width, height = avctx->height; int i, ret = 0; /* Allocate a new packet if needed, and set it to the pointer dst */ ret = ff_alloc_packet2(avctx, pkt, (256 + 4 * c->slices + width * height) * c->planes + 4); if (ret < 0) return ret; dst = pkt->data; bytestream2_init_writer(&pb, dst, pkt->size); av_fast_malloc(&c->slice_bits, &c->slice_bits_size, width * height + FF_INPUT_BUFFER_PADDING_SIZE); if (!c->slice_bits) { av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n"); return AVERROR(ENOMEM); } /* In case of RGB, mangle the planes to Ut Video's format */ if (avctx->pix_fmt == PIX_FMT_RGBA || avctx->pix_fmt == PIX_FMT_RGB24) mangle_rgb_planes(pic->data[0], c->planes, pic->linesize[0], width, height); /* Deal with the planes */ switch (avctx->pix_fmt) { case PIX_FMT_RGB24: case PIX_FMT_RGBA: for (i = 0; i < c->planes; i++) { ret = encode_plane(avctx, pic->data[0] + ff_ut_rgb_order[i], c->slice_buffer, c->planes, pic->linesize[0], width, height, &pb); if (ret) { av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i); return ret; } } break; case PIX_FMT_YUV422P: for (i = 0; i < c->planes; i++) { ret = encode_plane(avctx, pic->data[i], c->slice_buffer, 1, pic->linesize[i], width >> !!i, height, &pb); if (ret) { av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i); return ret; } } break; case PIX_FMT_YUV420P: for (i = 0; i < c->planes; i++) { ret = encode_plane(avctx, pic->data[i], c->slice_buffer, 1, pic->linesize[i], width >> !!i, height >> !!i, &pb); if (ret) { av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i); return ret; } } break; default: av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n", avctx->pix_fmt); return AVERROR_INVALIDDATA; } /* * Write frame information (LE 32bit unsigned) * into the output packet. * Contains the prediction method. */ frame_info = c->frame_pred << 8; bytestream2_put_le32(&pb, frame_info); /* * At least currently Ut Video is IDR only. * Set flags accordingly. */ avctx->coded_frame->reference = 0; avctx->coded_frame->key_frame = 1; avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I; pkt->size = bytestream2_tell_p(&pb); pkt->flags |= AV_PKT_FLAG_KEY; /* Packet should be done */ *got_packet = 1; return 0; } AVCodec ff_utvideo_encoder = { .name = "utvideo", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_UTVIDEO, .priv_data_size = sizeof(UtvideoContext), .init = utvideo_encode_init, .encode2 = utvideo_encode_frame, .close = utvideo_encode_close, .pix_fmts = (const enum PixelFormat[]) { PIX_FMT_RGB24, PIX_FMT_RGBA, PIX_FMT_YUV422P, PIX_FMT_YUV420P, PIX_FMT_NONE }, .long_name = NULL_IF_CONFIG_SMALL("Ut Video"), };