/* * Copyright (C) 2004 The FFmpeg project * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Standard C DSP-oriented functions cribbed from the original VP3 * source code. */ #include <string.h> #include "config.h" #include "libavutil/attributes.h" #include "libavutil/common.h" #include "libavutil/internal.h" #include "libavutil/intreadwrite.h" #include "libavutil/avassert.h" #include "rnd_avg.h" #include "vp3dsp.h" #define IdctAdjustBeforeShift 8 #define xC1S7 64277 #define xC2S6 60547 #define xC3S5 54491 #define xC4S4 46341 #define xC5S3 36410 #define xC6S2 25080 #define xC7S1 12785 #define M(a, b) ((int)((SUINT)(a) * (b)) >> 16) static av_always_inline void idct(uint8_t *dst, ptrdiff_t stride, int16_t *input, int type) { int16_t *ip = input; int A, B, C, D, Ad, Bd, Cd, Dd, E, F, G, H; int Ed, Gd, Add, Bdd, Fd, Hd; int i; /* Inverse DCT on the rows now */ for (i = 0; i < 8; i++) { /* Check for non-zero values */ if (ip[0 * 8] | ip[1 * 8] | ip[2 * 8] | ip[3 * 8] | ip[4 * 8] | ip[5 * 8] | ip[6 * 8] | ip[7 * 8]) { A = M(xC1S7, ip[1 * 8]) + M(xC7S1, ip[7 * 8]); B = M(xC7S1, ip[1 * 8]) - M(xC1S7, ip[7 * 8]); C = M(xC3S5, ip[3 * 8]) + M(xC5S3, ip[5 * 8]); D = M(xC3S5, ip[5 * 8]) - M(xC5S3, ip[3 * 8]); Ad = M(xC4S4, (A - C)); Bd = M(xC4S4, (B - D)); Cd = A + C; Dd = B + D; E = M(xC4S4, (ip[0 * 8] + ip[4 * 8])); F = M(xC4S4, (ip[0 * 8] - ip[4 * 8])); G = M(xC2S6, ip[2 * 8]) + M(xC6S2, ip[6 * 8]); H = M(xC6S2, ip[2 * 8]) - M(xC2S6, ip[6 * 8]); Ed = E - G; Gd = E + G; Add = F + Ad; Bdd = Bd - H; Fd = F - Ad; Hd = Bd + H; /* Final sequence of operations over-write original inputs. */ ip[0 * 8] = Gd + Cd; ip[7 * 8] = Gd - Cd; ip[1 * 8] = Add + Hd; ip[2 * 8] = Add - Hd; ip[3 * 8] = Ed + Dd; ip[4 * 8] = Ed - Dd; ip[5 * 8] = Fd + Bdd; ip[6 * 8] = Fd - Bdd; } ip += 1; /* next row */ } ip = input; for (i = 0; i < 8; i++) { /* Check for non-zero values (bitwise or faster than ||) */ if (ip[1] | ip[2] | ip[3] | ip[4] | ip[5] | ip[6] | ip[7]) { A = M(xC1S7, ip[1]) + M(xC7S1, ip[7]); B = M(xC7S1, ip[1]) - M(xC1S7, ip[7]); C = M(xC3S5, ip[3]) + M(xC5S3, ip[5]); D = M(xC3S5, ip[5]) - M(xC5S3, ip[3]); Ad = M(xC4S4, (A - C)); Bd = M(xC4S4, (B - D)); Cd = A + C; Dd = B + D; E = M(xC4S4, (ip[0] + ip[4])) + 8; F = M(xC4S4, (ip[0] - ip[4])) + 8; if (type == 1) { // HACK E += 16 * 128; F += 16 * 128; } G = M(xC2S6, ip[2]) + M(xC6S2, ip[6]); H = M(xC6S2, ip[2]) - M(xC2S6, ip[6]); Ed = E - G; Gd = E + G; Add = F + Ad; Bdd = Bd - H; Fd = F - Ad; Hd = Bd + H; /* Final sequence of operations over-write original inputs. */ if (type == 1) { dst[0 * stride] = av_clip_uint8((Gd + Cd) >> 4); dst[7 * stride] = av_clip_uint8((Gd - Cd) >> 4); dst[1 * stride] = av_clip_uint8((Add + Hd) >> 4); dst[2 * stride] = av_clip_uint8((Add - Hd) >> 4); dst[3 * stride] = av_clip_uint8((Ed + Dd) >> 4); dst[4 * stride] = av_clip_uint8((Ed - Dd) >> 4); dst[5 * stride] = av_clip_uint8((Fd + Bdd) >> 4); dst[6 * stride] = av_clip_uint8((Fd - Bdd) >> 4); } else { dst[0 * stride] = av_clip_uint8(dst[0 * stride] + ((Gd + Cd) >> 4)); dst[7 * stride] = av_clip_uint8(dst[7 * stride] + ((Gd - Cd) >> 4)); dst[1 * stride] = av_clip_uint8(dst[1 * stride] + ((Add + Hd) >> 4)); dst[2 * stride] = av_clip_uint8(dst[2 * stride] + ((Add - Hd) >> 4)); dst[3 * stride] = av_clip_uint8(dst[3 * stride] + ((Ed + Dd) >> 4)); dst[4 * stride] = av_clip_uint8(dst[4 * stride] + ((Ed - Dd) >> 4)); dst[5 * stride] = av_clip_uint8(dst[5 * stride] + ((Fd + Bdd) >> 4)); dst[6 * stride] = av_clip_uint8(dst[6 * stride] + ((Fd - Bdd) >> 4)); } } else { if (type == 1) { dst[0*stride] = dst[1*stride] = dst[2*stride] = dst[3*stride] = dst[4*stride] = dst[5*stride] = dst[6*stride] = dst[7*stride] = av_clip_uint8(128 + ((xC4S4 * ip[0] + (IdctAdjustBeforeShift << 16)) >> 20)); } else { if (ip[0]) { int v = (xC4S4 * ip[0] + (IdctAdjustBeforeShift << 16)) >> 20; dst[0 * stride] = av_clip_uint8(dst[0 * stride] + v); dst[1 * stride] = av_clip_uint8(dst[1 * stride] + v); dst[2 * stride] = av_clip_uint8(dst[2 * stride] + v); dst[3 * stride] = av_clip_uint8(dst[3 * stride] + v); dst[4 * stride] = av_clip_uint8(dst[4 * stride] + v); dst[5 * stride] = av_clip_uint8(dst[5 * stride] + v); dst[6 * stride] = av_clip_uint8(dst[6 * stride] + v); dst[7 * stride] = av_clip_uint8(dst[7 * stride] + v); } } } ip += 8; /* next column */ dst++; } } static av_always_inline void idct10(uint8_t *dst, ptrdiff_t stride, int16_t *input, int type) { int16_t *ip = input; int A, B, C, D, Ad, Bd, Cd, Dd, E, F, G, H; int Ed, Gd, Add, Bdd, Fd, Hd; int i; /* Inverse DCT on the rows now */ for (i = 0; i < 4; i++) { /* Check for non-zero values */ if (ip[0 * 8] | ip[1 * 8] | ip[2 * 8] | ip[3 * 8]) { A = M(xC1S7, ip[1 * 8]); B = M(xC7S1, ip[1 * 8]); C = M(xC3S5, ip[3 * 8]); D = -M(xC5S3, ip[3 * 8]); Ad = M(xC4S4, (A - C)); Bd = M(xC4S4, (B - D)); Cd = A + C; Dd = B + D; E = M(xC4S4, ip[0 * 8]); F = E; G = M(xC2S6, ip[2 * 8]); H = M(xC6S2, ip[2 * 8]); Ed = E - G; Gd = E + G; Add = F + Ad; Bdd = Bd - H; Fd = F - Ad; Hd = Bd + H; /* Final sequence of operations over-write original inputs */ ip[0 * 8] = Gd + Cd; ip[7 * 8] = Gd - Cd; ip[1 * 8] = Add + Hd; ip[2 * 8] = Add - Hd; ip[3 * 8] = Ed + Dd; ip[4 * 8] = Ed - Dd; ip[5 * 8] = Fd + Bdd; ip[6 * 8] = Fd - Bdd; } ip += 1; } ip = input; for (i = 0; i < 8; i++) { /* Check for non-zero values (bitwise or faster than ||) */ if (ip[0] | ip[1] | ip[2] | ip[3]) { A = M(xC1S7, ip[1]); B = M(xC7S1, ip[1]); C = M(xC3S5, ip[3]); D = -M(xC5S3, ip[3]); Ad = M(xC4S4, (A - C)); Bd = M(xC4S4, (B - D)); Cd = A + C; Dd = B + D; E = M(xC4S4, ip[0]); if (type == 1) E += 16 * 128; F = E; G = M(xC2S6, ip[2]); H = M(xC6S2, ip[2]); Ed = E - G; Gd = E + G; Add = F + Ad; Bdd = Bd - H; Fd = F - Ad; Hd = Bd + H; Gd += 8; Add += 8; Ed += 8; Fd += 8; /* Final sequence of operations over-write original inputs. */ if (type == 1) { dst[0 * stride] = av_clip_uint8((Gd + Cd) >> 4); dst[7 * stride] = av_clip_uint8((Gd - Cd) >> 4); dst[1 * stride] = av_clip_uint8((Add + Hd) >> 4); dst[2 * stride] = av_clip_uint8((Add - Hd) >> 4); dst[3 * stride] = av_clip_uint8((Ed + Dd) >> 4); dst[4 * stride] = av_clip_uint8((Ed - Dd) >> 4); dst[5 * stride] = av_clip_uint8((Fd + Bdd) >> 4); dst[6 * stride] = av_clip_uint8((Fd - Bdd) >> 4); } else { dst[0 * stride] = av_clip_uint8(dst[0 * stride] + ((Gd + Cd) >> 4)); dst[7 * stride] = av_clip_uint8(dst[7 * stride] + ((Gd - Cd) >> 4)); dst[1 * stride] = av_clip_uint8(dst[1 * stride] + ((Add + Hd) >> 4)); dst[2 * stride] = av_clip_uint8(dst[2 * stride] + ((Add - Hd) >> 4)); dst[3 * stride] = av_clip_uint8(dst[3 * stride] + ((Ed + Dd) >> 4)); dst[4 * stride] = av_clip_uint8(dst[4 * stride] + ((Ed - Dd) >> 4)); dst[5 * stride] = av_clip_uint8(dst[5 * stride] + ((Fd + Bdd) >> 4)); dst[6 * stride] = av_clip_uint8(dst[6 * stride] + ((Fd - Bdd) >> 4)); } } else { if (type == 1) { dst[0*stride] = dst[1*stride] = dst[2*stride] = dst[3*stride] = dst[4*stride] = dst[5*stride] = dst[6*stride] = dst[7*stride] = 128; } } ip += 8; dst++; } } void ff_vp3dsp_idct10_put(uint8_t *dest, ptrdiff_t stride, int16_t *block) { idct10(dest, stride, block, 1); memset(block, 0, sizeof(*block) * 64); } void ff_vp3dsp_idct10_add(uint8_t *dest, ptrdiff_t stride, int16_t *block) { idct10(dest, stride, block, 2); memset(block, 0, sizeof(*block) * 64); } static void vp3_idct_put_c(uint8_t *dest /* align 8 */, ptrdiff_t stride, int16_t *block /* align 16 */) { idct(dest, stride, block, 1); memset(block, 0, sizeof(*block) * 64); } static void vp3_idct_add_c(uint8_t *dest /* align 8 */, ptrdiff_t stride, int16_t *block /* align 16 */) { idct(dest, stride, block, 2); memset(block, 0, sizeof(*block) * 64); } static void vp3_idct_dc_add_c(uint8_t *dest /* align 8 */, ptrdiff_t stride, int16_t *block /* align 16 */) { int i, dc = (block[0] + 15) >> 5; for (i = 0; i < 8; i++) { dest[0] = av_clip_uint8(dest[0] + dc); dest[1] = av_clip_uint8(dest[1] + dc); dest[2] = av_clip_uint8(dest[2] + dc); dest[3] = av_clip_uint8(dest[3] + dc); dest[4] = av_clip_uint8(dest[4] + dc); dest[5] = av_clip_uint8(dest[5] + dc); dest[6] = av_clip_uint8(dest[6] + dc); dest[7] = av_clip_uint8(dest[7] + dc); dest += stride; } block[0] = 0; } static av_always_inline void vp3_v_loop_filter_c(uint8_t *first_pixel, ptrdiff_t stride, int *bounding_values, int count) { unsigned char *end; int filter_value; const ptrdiff_t nstride = -stride; for (end = first_pixel + count; first_pixel < end; first_pixel++) { filter_value = (first_pixel[2 * nstride] - first_pixel[stride]) + (first_pixel[0] - first_pixel[nstride]) * 3; filter_value = bounding_values[(filter_value + 4) >> 3]; first_pixel[nstride] = av_clip_uint8(first_pixel[nstride] + filter_value); first_pixel[0] = av_clip_uint8(first_pixel[0] - filter_value); } } static av_always_inline void vp3_h_loop_filter_c(uint8_t *first_pixel, ptrdiff_t stride, int *bounding_values, int count) { unsigned char *end; int filter_value; for (end = first_pixel + count * stride; first_pixel != end; first_pixel += stride) { filter_value = (first_pixel[-2] - first_pixel[1]) + (first_pixel[ 0] - first_pixel[-1]) * 3; filter_value = bounding_values[(filter_value + 4) >> 3]; first_pixel[-1] = av_clip_uint8(first_pixel[-1] + filter_value); first_pixel[ 0] = av_clip_uint8(first_pixel[ 0] - filter_value); } } #define LOOP_FILTER(prefix, suffix, dim, count) \ void prefix##_##dim##_loop_filter_##count##suffix(uint8_t *first_pixel, ptrdiff_t stride, \ int *bounding_values) \ { \ vp3_##dim##_loop_filter_c(first_pixel, stride, bounding_values, count); \ } static LOOP_FILTER(vp3,_c, v, 8) static LOOP_FILTER(vp3,_c, h, 8) LOOP_FILTER(ff_vp3dsp, , v, 12) LOOP_FILTER(ff_vp3dsp, , h, 12) static void put_no_rnd_pixels_l2(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, ptrdiff_t stride, int h) { int i; for (i = 0; i < h; i++) { uint32_t a, b; a = AV_RN32(&src1[i * stride]); b = AV_RN32(&src2[i * stride]); AV_WN32A(&dst[i * stride], no_rnd_avg32(a, b)); a = AV_RN32(&src1[i * stride + 4]); b = AV_RN32(&src2[i * stride + 4]); AV_WN32A(&dst[i * stride + 4], no_rnd_avg32(a, b)); } } av_cold void ff_vp3dsp_init(VP3DSPContext *c, int flags) { c->put_no_rnd_pixels_l2 = put_no_rnd_pixels_l2; c->idct_put = vp3_idct_put_c; c->idct_add = vp3_idct_add_c; c->idct_dc_add = vp3_idct_dc_add_c; c->v_loop_filter = c->v_loop_filter_unaligned = vp3_v_loop_filter_8_c; c->h_loop_filter = c->h_loop_filter_unaligned = vp3_h_loop_filter_8_c; #if ARCH_ARM ff_vp3dsp_init_arm(c, flags); #elif ARCH_PPC ff_vp3dsp_init_ppc(c, flags); #elif ARCH_X86 ff_vp3dsp_init_x86(c, flags); #elif ARCH_MIPS ff_vp3dsp_init_mips(c, flags); #endif } /* * This function initializes the loop filter boundary limits if the frame's * quality index is different from the previous frame's. * * where sizeof(bounding_values_array) is 256 * sizeof(int) * * The filter_limit_values may not be larger than 127. */ void ff_vp3dsp_set_bounding_values(int * bounding_values_array, int filter_limit) { int *bounding_values = bounding_values_array + 127; int x; int value; av_assert0(filter_limit < 128U); /* set up the bounding values */ memset(bounding_values_array, 0, 256 * sizeof(int)); for (x = 0; x < filter_limit; x++) { bounding_values[-x] = -x; bounding_values[x] = x; } for (x = value = filter_limit; x < 128 && value; x++, value--) { bounding_values[ x] = value; bounding_values[-x] = -value; } if (value) bounding_values[128] = value; bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202U; }