/* * Copyright (c) 2002-2004 Michael Niedermayer * Copyright (c) 2014 Clément Bœsch * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Codec debug viewer filter. * * All the MV drawing code from Michael Niedermayer is extracted from * libavcodec/mpegvideo.c. * * TODO: segmentation */ #include "libavutil/mem.h" #include "libavutil/motion_vector.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/video_enc_params.h" #include "avfilter.h" #include "filters.h" #include "qp_table.h" #include "video.h" #define MV_P_FOR (1<<0) #define MV_B_FOR (1<<1) #define MV_B_BACK (1<<2) #define MV_TYPE_FOR (1<<0) #define MV_TYPE_BACK (1<<1) #define FRAME_TYPE_I (1<<0) #define FRAME_TYPE_P (1<<1) #define FRAME_TYPE_B (1<<2) typedef struct CodecViewContext { const AVClass *class; unsigned mv; unsigned frame_type; unsigned mv_type; int hsub, vsub; int qp; int block; } CodecViewContext; #define OFFSET(x) offsetof(CodecViewContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM #define CONST(name, help, val, u) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, 0, 0, FLAGS, .unit = u } static const AVOption codecview_options[] = { { "mv", "set motion vectors to visualize", OFFSET(mv), AV_OPT_TYPE_FLAGS, {.i64=0}, 0, INT_MAX, FLAGS, .unit = "mv" }, CONST("pf", "forward predicted MVs of P-frames", MV_P_FOR, "mv"), CONST("bf", "forward predicted MVs of B-frames", MV_B_FOR, "mv"), CONST("bb", "backward predicted MVs of B-frames", MV_B_BACK, "mv"), { "qp", NULL, OFFSET(qp), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, .flags = FLAGS }, { "mv_type", "set motion vectors type", OFFSET(mv_type), AV_OPT_TYPE_FLAGS, {.i64=0}, 0, INT_MAX, FLAGS, .unit = "mv_type" }, { "mvt", "set motion vectors type", OFFSET(mv_type), AV_OPT_TYPE_FLAGS, {.i64=0}, 0, INT_MAX, FLAGS, .unit = "mv_type" }, CONST("fp", "forward predicted MVs", MV_TYPE_FOR, "mv_type"), CONST("bp", "backward predicted MVs", MV_TYPE_BACK, "mv_type"), { "frame_type", "set frame types to visualize motion vectors of", OFFSET(frame_type), AV_OPT_TYPE_FLAGS, {.i64=0}, 0, INT_MAX, FLAGS, .unit = "frame_type" }, { "ft", "set frame types to visualize motion vectors of", OFFSET(frame_type), AV_OPT_TYPE_FLAGS, {.i64=0}, 0, INT_MAX, FLAGS, .unit = "frame_type" }, CONST("if", "I-frames", FRAME_TYPE_I, "frame_type"), CONST("pf", "P-frames", FRAME_TYPE_P, "frame_type"), CONST("bf", "B-frames", FRAME_TYPE_B, "frame_type"), { "block", "set block partitioning structure to visualize", OFFSET(block), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(codecview); static int clip_line(int *sx, int *sy, int *ex, int *ey, int maxx) { if(*sx > *ex) return clip_line(ex, ey, sx, sy, maxx); if (*sx < 0) { if (*ex < 0) return 1; *sy = *ey + (*sy - *ey) * (int64_t)*ex / (*ex - *sx); *sx = 0; } if (*ex > maxx) { if (*sx > maxx) return 1; *ey = *sy + (*ey - *sy) * (int64_t)(maxx - *sx) / (*ex - *sx); *ex = maxx; } return 0; } /** * Draw a line from (ex, ey) -> (sx, sy). * @param w width of the image * @param h height of the image * @param stride stride/linesize of the image * @param color color of the arrow */ static void draw_line(uint8_t *buf, int sx, int sy, int ex, int ey, int w, int h, ptrdiff_t stride, int color) { int x, y, fr, f; if (clip_line(&sx, &sy, &ex, &ey, w - 1)) return; if (clip_line(&sy, &sx, &ey, &ex, h - 1)) return; sx = av_clip(sx, 0, w - 1); sy = av_clip(sy, 0, h - 1); ex = av_clip(ex, 0, w - 1); ey = av_clip(ey, 0, h - 1); buf[sy * stride + sx] += color; if (FFABS(ex - sx) > FFABS(ey - sy)) { if (sx > ex) { FFSWAP(int, sx, ex); FFSWAP(int, sy, ey); } buf += sx + sy * stride; ex -= sx; f = ((ey - sy) * (1 << 16)) / ex; for (x = 0; x <= ex; x++) { y = (x * f) >> 16; fr = (x * f) & 0xFFFF; buf[ y * stride + x] += (color * (0x10000 - fr)) >> 16; if(fr) buf[(y + 1) * stride + x] += (color * fr ) >> 16; } } else { if (sy > ey) { FFSWAP(int, sx, ex); FFSWAP(int, sy, ey); } buf += sx + sy * stride; ey -= sy; if (ey) f = ((ex - sx) * (1 << 16)) / ey; else f = 0; for(y= 0; y <= ey; y++){ x = (y*f) >> 16; fr = (y*f) & 0xFFFF; buf[y * stride + x ] += (color * (0x10000 - fr)) >> 16; if(fr) buf[y * stride + x + 1] += (color * fr ) >> 16; } } } /** * Draw an arrow from (ex, ey) -> (sx, sy). * @param w width of the image * @param h height of the image * @param stride stride/linesize of the image * @param color color of the arrow */ static void draw_arrow(uint8_t *buf, int sx, int sy, int ex, int ey, int w, int h, ptrdiff_t stride, int color, int tail, int direction) { int dx,dy; if (direction) { FFSWAP(int, sx, ex); FFSWAP(int, sy, ey); } sx = av_clip(sx, -100, w + 100); sy = av_clip(sy, -100, h + 100); ex = av_clip(ex, -100, w + 100); ey = av_clip(ey, -100, h + 100); dx = ex - sx; dy = ey - sy; if (dx * dx + dy * dy > 3 * 3) { int rx = dx + dy; int ry = -dx + dy; int length = sqrt((rx * rx + ry * ry) << 8); // FIXME subpixel accuracy rx = ROUNDED_DIV(rx * (3 << 4), length); ry = ROUNDED_DIV(ry * (3 << 4), length); if (tail) { rx = -rx; ry = -ry; } draw_line(buf, sx, sy, sx + rx, sy + ry, w, h, stride, color); draw_line(buf, sx, sy, sx - ry, sy + rx, w, h, stride, color); } draw_line(buf, sx, sy, ex, ey, w, h, stride, color); } static void draw_block_rectangle(uint8_t *buf, int sx, int sy, int w, int h, ptrdiff_t stride, int color) { for (int x = sx; x < sx + w; x++) buf[x] = color; for (int y = sy; y < sy + h; y++) { buf[sx] = color; buf[sx + w - 1] = color; buf += stride; } } static int filter_frame(AVFilterLink *inlink, AVFrame *frame) { AVFilterContext *ctx = inlink->dst; CodecViewContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; if (s->qp) { enum AVVideoEncParamsType qp_type; int qstride, ret; int8_t *qp_table; ret = ff_qp_table_extract(frame, &qp_table, &qstride, NULL, &qp_type); if (ret < 0) { av_frame_free(&frame); return ret; } if (qp_table) { int x, y; const int w = AV_CEIL_RSHIFT(frame->width, s->hsub); const int h = AV_CEIL_RSHIFT(frame->height, s->vsub); uint8_t *pu = frame->data[1]; uint8_t *pv = frame->data[2]; const ptrdiff_t lzu = frame->linesize[1]; const ptrdiff_t lzv = frame->linesize[2]; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { const int qp = ff_norm_qscale(qp_table[(y >> 3) * qstride + (x >> 3)], qp_type) * 128/31; pu[x] = pv[x] = qp; } pu += lzu; pv += lzv; } } av_freep(&qp_table); } if (s->block) { AVFrameSideData *sd = av_frame_get_side_data(frame, AV_FRAME_DATA_VIDEO_ENC_PARAMS); if (sd) { AVVideoEncParams *par = (AVVideoEncParams*)sd->data; const ptrdiff_t stride = frame->linesize[0]; if (par->nb_blocks) { for (int block_idx = 0; block_idx < par->nb_blocks; block_idx++) { AVVideoBlockParams *b = av_video_enc_params_block(par, block_idx); uint8_t *buf = frame->data[0] + b->src_y * stride; draw_block_rectangle(buf, b->src_x, b->src_y, b->w, b->h, stride, 100); } } } } if (s->mv || s->mv_type) { AVFrameSideData *sd = av_frame_get_side_data(frame, AV_FRAME_DATA_MOTION_VECTORS); if (sd) { int i; const AVMotionVector *mvs = (const AVMotionVector *)sd->data; const int is_iframe = (s->frame_type & FRAME_TYPE_I) && frame->pict_type == AV_PICTURE_TYPE_I; const int is_pframe = (s->frame_type & FRAME_TYPE_P) && frame->pict_type == AV_PICTURE_TYPE_P; const int is_bframe = (s->frame_type & FRAME_TYPE_B) && frame->pict_type == AV_PICTURE_TYPE_B; for (i = 0; i < sd->size / sizeof(*mvs); i++) { const AVMotionVector *mv = &mvs[i]; const int direction = mv->source > 0; if (s->mv_type) { const int is_fp = direction == 0 && (s->mv_type & MV_TYPE_FOR); const int is_bp = direction == 1 && (s->mv_type & MV_TYPE_BACK); if ((!s->frame_type && (is_fp || is_bp)) || is_iframe && is_fp || is_iframe && is_bp || is_pframe && is_fp || is_bframe && is_fp || is_bframe && is_bp) draw_arrow(frame->data[0], mv->dst_x, mv->dst_y, mv->src_x, mv->src_y, frame->width, frame->height, frame->linesize[0], 100, 0, direction); } else if (s->mv) if ((direction == 0 && (s->mv & MV_P_FOR) && frame->pict_type == AV_PICTURE_TYPE_P) || (direction == 0 && (s->mv & MV_B_FOR) && frame->pict_type == AV_PICTURE_TYPE_B) || (direction == 1 && (s->mv & MV_B_BACK) && frame->pict_type == AV_PICTURE_TYPE_B)) draw_arrow(frame->data[0], mv->dst_x, mv->dst_y, mv->src_x, mv->src_y, frame->width, frame->height, frame->linesize[0], 100, 0, direction); } } } return ff_filter_frame(outlink, frame); } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; CodecViewContext *s = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); s->hsub = desc->log2_chroma_w; s->vsub = desc->log2_chroma_h; return 0; } static const AVFilterPad codecview_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .flags = AVFILTERPAD_FLAG_NEEDS_WRITABLE, .filter_frame = filter_frame, .config_props = config_input, }, }; const AVFilter ff_vf_codecview = { .name = "codecview", .description = NULL_IF_CONFIG_SMALL("Visualize information about some codecs."), .priv_size = sizeof(CodecViewContext), FILTER_INPUTS(codecview_inputs), FILTER_OUTPUTS(ff_video_default_filterpad), // TODO: we can probably add way more pixel formats without any other // changes; anything with 8-bit luma in first plane should be working FILTER_SINGLE_PIXFMT(AV_PIX_FMT_YUV420P), .priv_class = &codecview_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, };