/* * Copyright (c) 2003 The FFmpeg Project * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /* * How to use this decoder: * SVQ3 data is transported within Apple Quicktime files. Quicktime files * have stsd atoms to describe media trak properties. A stsd atom for a * video trak contains 1 or more ImageDescription atoms. These atoms begin * with the 4-byte length of the atom followed by the codec fourcc. Some * decoders need information in this atom to operate correctly. Such * is the case with SVQ3. In order to get the best use out of this decoder, * the calling app must make the SVQ3 ImageDescription atom available * via the AVCodecContext's extradata[_size] field: * * AVCodecContext.extradata = pointer to ImageDescription, first characters * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length * AVCodecContext.extradata_size = size of ImageDescription atom memory * buffer (which will be the same as the ImageDescription atom size field * from the QT file, minus 4 bytes since the length is missing) * * You will know you have these parameters passed correctly when the decoder * correctly decodes this file: * http://samples.mplayerhq.hu/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov */ #include "internal.h" #include "dsputil.h" #include "avcodec.h" #include "mpegvideo.h" #include "h264.h" #include "h264data.h" //FIXME FIXME FIXME #include "h264_mvpred.h" #include "golomb.h" #include "rectangle.h" #include "vdpau_internal.h" #if CONFIG_ZLIB #include #endif #include "svq1.h" /** * @file * svq3 decoder. */ typedef struct { H264Context h; int halfpel_flag; int thirdpel_flag; int unknown_flag; int next_slice_index; uint32_t watermark_key; uint8_t *buf; int buf_size; } SVQ3Context; #define FULLPEL_MODE 1 #define HALFPEL_MODE 2 #define THIRDPEL_MODE 3 #define PREDICT_MODE 4 /* dual scan (from some older h264 draft) o-->o-->o o | /| o o o / o | / | |/ | o o o o / o-->o-->o-->o */ static const uint8_t svq3_scan[16] = { 0+0*4, 1+0*4, 2+0*4, 2+1*4, 2+2*4, 3+0*4, 3+1*4, 3+2*4, 0+1*4, 0+2*4, 1+1*4, 1+2*4, 0+3*4, 1+3*4, 2+3*4, 3+3*4, }; static const uint8_t svq3_pred_0[25][2] = { { 0, 0 }, { 1, 0 }, { 0, 1 }, { 0, 2 }, { 1, 1 }, { 2, 0 }, { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 }, { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 }, { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 }, { 2, 4 }, { 3, 3 }, { 4, 2 }, { 4, 3 }, { 3, 4 }, { 4, 4 } }; static const int8_t svq3_pred_1[6][6][5] = { { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } }, { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 }, { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } }, { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 }, { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } }, { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 }, { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } }, { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 }, { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } }, { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 }, { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } }, }; static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = { { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 }, { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } }, { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 }, { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } } }; static const uint32_t svq3_dequant_coeff[32] = { 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718, 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873, 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683, 61694, 68745, 77615, 89113,100253,109366,126635,141533 }; void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *output, DCTELEM *input, int qp){ const int qmul = svq3_dequant_coeff[qp]; #define stride 16 int i; int temp[16]; static const uint8_t x_offset[4]={0, 1*stride, 4*stride, 5*stride}; for(i=0; i<4; i++){ const int z0 = 13*(input[4*i+0] + input[4*i+2]); const int z1 = 13*(input[4*i+0] - input[4*i+2]); const int z2 = 7* input[4*i+1] - 17*input[4*i+3]; const int z3 = 17* input[4*i+1] + 7*input[4*i+3]; temp[4*i+0] = z0+z3; temp[4*i+1] = z1+z2; temp[4*i+2] = z1-z2; temp[4*i+3] = z0-z3; } for(i=0; i<4; i++){ const int offset= x_offset[i]; const int z0= 13*(temp[4*0+i] + temp[4*2+i]); const int z1= 13*(temp[4*0+i] - temp[4*2+i]); const int z2= 7* temp[4*1+i] - 17*temp[4*3+i]; const int z3= 17* temp[4*1+i] + 7*temp[4*3+i]; output[stride* 0+offset] = ((z0 + z3)*qmul + 0x80000) >> 20; output[stride* 2+offset] = ((z1 + z2)*qmul + 0x80000) >> 20; output[stride* 8+offset] = ((z1 - z2)*qmul + 0x80000) >> 20; output[stride*10+offset] = ((z0 - z3)*qmul + 0x80000) >> 20; } } #undef stride void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc) { const int qmul = svq3_dequant_coeff[qp]; int i; if (dc) { dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2)); block[0] = 0; } for (i = 0; i < 4; i++) { const int z0 = 13*(block[0 + 4*i] + block[2 + 4*i]); const int z1 = 13*(block[0 + 4*i] - block[2 + 4*i]); const int z2 = 7* block[1 + 4*i] - 17*block[3 + 4*i]; const int z3 = 17* block[1 + 4*i] + 7*block[3 + 4*i]; block[0 + 4*i] = z0 + z3; block[1 + 4*i] = z1 + z2; block[2 + 4*i] = z1 - z2; block[3 + 4*i] = z0 - z3; } for (i = 0; i < 4; i++) { const int z0 = 13*(block[i + 4*0] + block[i + 4*2]); const int z1 = 13*(block[i + 4*0] - block[i + 4*2]); const int z2 = 7* block[i + 4*1] - 17*block[i + 4*3]; const int z3 = 17* block[i + 4*1] + 7*block[i + 4*3]; const int rr = (dc + 0x80000); dst[i + stride*0] = av_clip_uint8( dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ); dst[i + stride*1] = av_clip_uint8( dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ); dst[i + stride*2] = av_clip_uint8( dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ); dst[i + stride*3] = av_clip_uint8( dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ); } } static inline int svq3_decode_block(GetBitContext *gb, DCTELEM *block, int index, const int type) { static const uint8_t *const scan_patterns[4] = { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan }; int run, level, sign, vlc, limit; const int intra = (3 * type) >> 2; const uint8_t *const scan = scan_patterns[type]; for (limit = (16 >> intra); index < 16; index = limit, limit += 8) { for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) { if (vlc < 0) return -1; sign = (vlc & 0x1) - 1; vlc = (vlc + 1) >> 1; if (type == 3) { if (vlc < 3) { run = 0; level = vlc; } else if (vlc < 4) { run = 1; level = 1; } else { run = (vlc & 0x3); level = ((vlc + 9) >> 2) - run; } } else { if (vlc < 16U) { run = svq3_dct_tables[intra][vlc].run; level = svq3_dct_tables[intra][vlc].level; } else if (intra) { run = (vlc & 0x7); level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1))); } else { run = (vlc & 0xF); level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0))); } } if ((index += run) >= limit) return -1; block[scan[index]] = (level ^ sign) - sign; } if (type != 2) { break; } } return 0; } static inline void svq3_mc_dir_part(MpegEncContext *s, int x, int y, int width, int height, int mx, int my, int dxy, int thirdpel, int dir, int avg) { const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture; uint8_t *src, *dest; int i, emu = 0; int blocksize = 2 - (width>>3); //16->0, 8->1, 4->2 mx += x; my += y; if (mx < 0 || mx >= (s->h_edge_pos - width - 1) || my < 0 || my >= (s->v_edge_pos - height - 1)) { if ((s->flags & CODEC_FLAG_EMU_EDGE)) { emu = 1; } mx = av_clip (mx, -16, (s->h_edge_pos - width + 15)); my = av_clip (my, -16, (s->v_edge_pos - height + 15)); } /* form component predictions */ dest = s->current_picture.f.data[0] + x + y*s->linesize; src = pic->f.data[0] + mx + my*s->linesize; if (emu) { s->dsp.emulated_edge_mc(s->edge_emu_buffer, src, s->linesize, (width + 1), (height + 1), mx, my, s->h_edge_pos, s->v_edge_pos); src = s->edge_emu_buffer; } if (thirdpel) (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize, width, height); else (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize, height); if (!(s->flags & CODEC_FLAG_GRAY)) { mx = (mx + (mx < (int) x)) >> 1; my = (my + (my < (int) y)) >> 1; width = (width >> 1); height = (height >> 1); blocksize++; for (i = 1; i < 3; i++) { dest = s->current_picture.f.data[i] + (x >> 1) + (y >> 1) * s->uvlinesize; src = pic->f.data[i] + mx + my * s->uvlinesize; if (emu) { s->dsp.emulated_edge_mc(s->edge_emu_buffer, src, s->uvlinesize, (width + 1), (height + 1), mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1)); src = s->edge_emu_buffer; } if (thirdpel) (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->uvlinesize, width, height); else (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->uvlinesize, height); } } } static inline int svq3_mc_dir(H264Context *h, int size, int mode, int dir, int avg) { int i, j, k, mx, my, dx, dy, x, y; MpegEncContext *const s = (MpegEncContext *) h; const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1); const int part_height = 16 >> ((unsigned) (size + 1) / 3); const int extra_width = (mode == PREDICT_MODE) ? -16*6 : 0; const int h_edge_pos = 6*(s->h_edge_pos - part_width ) - extra_width; const int v_edge_pos = 6*(s->v_edge_pos - part_height) - extra_width; for (i = 0; i < 16; i += part_height) { for (j = 0; j < 16; j += part_width) { const int b_xy = (4*s->mb_x + (j >> 2)) + (4*s->mb_y + (i >> 2))*h->b_stride; int dxy; x = 16*s->mb_x + j; y = 16*s->mb_y + i; k = ((j >> 2) & 1) + ((i >> 1) & 2) + ((j >> 1) & 4) + (i & 8); if (mode != PREDICT_MODE) { pred_motion(h, k, (part_width >> 2), dir, 1, &mx, &my); } else { mx = s->next_picture.f.motion_val[0][b_xy][0] << 1; my = s->next_picture.f.motion_val[0][b_xy][1] << 1; if (dir == 0) { mx = ((mx * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1; my = ((my * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1; } else { mx = ((mx * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1; my = ((my * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1; } } /* clip motion vector prediction to frame border */ mx = av_clip(mx, extra_width - 6*x, h_edge_pos - 6*x); my = av_clip(my, extra_width - 6*y, v_edge_pos - 6*y); /* get (optional) motion vector differential */ if (mode == PREDICT_MODE) { dx = dy = 0; } else { dy = svq3_get_se_golomb(&s->gb); dx = svq3_get_se_golomb(&s->gb); if (dx == INVALID_VLC || dy == INVALID_VLC) { av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n"); return -1; } } /* compute motion vector */ if (mode == THIRDPEL_MODE) { int fx, fy; mx = ((mx + 1)>>1) + dx; my = ((my + 1)>>1) + dy; fx = ((unsigned)(mx + 0x3000))/3 - 0x1000; fy = ((unsigned)(my + 0x3000))/3 - 0x1000; dxy = (mx - 3*fx) + 4*(my - 3*fy); svq3_mc_dir_part(s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg); mx += mx; my += my; } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) { mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000; my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000; dxy = (mx&1) + 2*(my&1); svq3_mc_dir_part(s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0, dir, avg); mx *= 3; my *= 3; } else { mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000; my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000; svq3_mc_dir_part(s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg); mx *= 6; my *= 6; } /* update mv_cache */ if (mode != PREDICT_MODE) { int32_t mv = pack16to32(mx,my); if (part_height == 8 && i < 8) { *(int32_t *) h->mv_cache[dir][scan8[k] + 1*8] = mv; if (part_width == 8 && j < 8) { *(int32_t *) h->mv_cache[dir][scan8[k] + 1 + 1*8] = mv; } } if (part_width == 8 && j < 8) { *(int32_t *) h->mv_cache[dir][scan8[k] + 1] = mv; } if (part_width == 4 || part_height == 4) { *(int32_t *) h->mv_cache[dir][scan8[k]] = mv; } } /* write back motion vectors */ fill_rectangle(s->current_picture.f.motion_val[dir][b_xy], part_width >> 2, part_height >> 2, h->b_stride, pack16to32(mx, my), 4); } } return 0; } static int svq3_decode_mb(SVQ3Context *svq3, unsigned int mb_type) { H264Context *h = &svq3->h; int i, j, k, m, dir, mode; int cbp = 0; uint32_t vlc; int8_t *top, *left; MpegEncContext *const s = (MpegEncContext *) h; const int mb_xy = h->mb_xy; const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF; h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF; h->topright_samples_available = 0xFFFF; if (mb_type == 0) { /* SKIP */ if (s->pict_type == AV_PICTURE_TYPE_P || s->next_picture.f.mb_type[mb_xy] == -1) { svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0); if (s->pict_type == AV_PICTURE_TYPE_B) { svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 1, 1); } mb_type = MB_TYPE_SKIP; } else { mb_type = FFMIN(s->next_picture.f.mb_type[mb_xy], 6); if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 0, 0) < 0) return -1; if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 1, 1) < 0) return -1; mb_type = MB_TYPE_16x16; } } else if (mb_type < 8) { /* INTER */ if (svq3->thirdpel_flag && svq3->halfpel_flag == !get_bits1 (&s->gb)) { mode = THIRDPEL_MODE; } else if (svq3->halfpel_flag && svq3->thirdpel_flag == !get_bits1 (&s->gb)) { mode = HALFPEL_MODE; } else { mode = FULLPEL_MODE; } /* fill caches */ /* note ref_cache should contain here: ???????? ???11111 N??11111 N??11111 N??11111 */ for (m = 0; m < 2; m++) { if (s->mb_x > 0 && h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1]+6] != -1) { for (i = 0; i < 4; i++) { *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.f.motion_val[m][b_xy - 1 + i*h->b_stride]; } } else { for (i = 0; i < 4; i++) { *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = 0; } } if (s->mb_y > 0) { memcpy(h->mv_cache[m][scan8[0] - 1*8], s->current_picture.f.motion_val[m][b_xy - h->b_stride], 4*2*sizeof(int16_t)); memset(&h->ref_cache[m][scan8[0] - 1*8], (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1, 4); if (s->mb_x < (s->mb_width - 1)) { *(uint32_t *) h->mv_cache[m][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.f.motion_val[m][b_xy - h->b_stride + 4]; h->ref_cache[m][scan8[0] + 4 - 1*8] = (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride + 1]+6] == -1 || h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride ] ] == -1) ? PART_NOT_AVAILABLE : 1; }else h->ref_cache[m][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE; if (s->mb_x > 0) { *(uint32_t *) h->mv_cache[m][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.f.motion_val[m][b_xy - h->b_stride - 1]; h->ref_cache[m][scan8[0] - 1 - 1*8] = (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1]+3] == -1) ? PART_NOT_AVAILABLE : 1; }else h->ref_cache[m][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE; }else memset(&h->ref_cache[m][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8); if (s->pict_type != AV_PICTURE_TYPE_B) break; } /* decode motion vector(s) and form prediction(s) */ if (s->pict_type == AV_PICTURE_TYPE_P) { if (svq3_mc_dir(h, (mb_type - 1), mode, 0, 0) < 0) return -1; } else { /* AV_PICTURE_TYPE_B */ if (mb_type != 2) { if (svq3_mc_dir(h, 0, mode, 0, 0) < 0) return -1; } else { for (i = 0; i < 4; i++) { memset(s->current_picture.f.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t)); } } if (mb_type != 1) { if (svq3_mc_dir(h, 0, mode, 1, (mb_type == 3)) < 0) return -1; } else { for (i = 0; i < 4; i++) { memset(s->current_picture.f.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t)); } } } mb_type = MB_TYPE_16x16; } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */ memset(h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t)); if (mb_type == 8) { if (s->mb_x > 0) { for (i = 0; i < 4; i++) { h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1]+6-i]; } if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1) { h->left_samples_available = 0x5F5F; } } if (s->mb_y > 0) { h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+0]; h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+1]; h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+2]; h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+3]; if (h->intra4x4_pred_mode_cache[4+8*0] == -1) { h->top_samples_available = 0x33FF; } } /* decode prediction codes for luma blocks */ for (i = 0; i < 16; i+=2) { vlc = svq3_get_ue_golomb(&s->gb); if (vlc >= 25U){ av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc); return -1; } left = &h->intra4x4_pred_mode_cache[scan8[i] - 1]; top = &h->intra4x4_pred_mode_cache[scan8[i] - 8]; left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]]; left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]]; if (left[1] == -1 || left[2] == -1){ av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n"); return -1; } } } else { /* mb_type == 33, DC_128_PRED block type */ for (i = 0; i < 4; i++) { memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_PRED, 4); } } write_back_intra_pred_mode(h); if (mb_type == 8) { ff_h264_check_intra4x4_pred_mode(h); h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF; h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF; } else { for (i = 0; i < 4; i++) { memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_128_PRED, 4); } h->top_samples_available = 0x33FF; h->left_samples_available = 0x5F5F; } mb_type = MB_TYPE_INTRA4x4; } else { /* INTRA16x16 */ dir = i_mb_type_info[mb_type - 8].pred_mode; dir = (dir >> 1) ^ 3*(dir & 1) ^ 1; if ((h->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(h, dir, 0)) == -1){ av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n"); return -1; } cbp = i_mb_type_info[mb_type - 8].cbp; mb_type = MB_TYPE_INTRA16x16; } if (!IS_INTER(mb_type) && s->pict_type != AV_PICTURE_TYPE_I) { for (i = 0; i < 4; i++) { memset(s->current_picture.f.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t)); } if (s->pict_type == AV_PICTURE_TYPE_B) { for (i = 0; i < 4; i++) { memset(s->current_picture.f.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t)); } } } if (!IS_INTRA4x4(mb_type)) { memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy], DC_PRED, 8); } if (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B) { memset(h->non_zero_count_cache + 8, 0, 14*8*sizeof(uint8_t)); s->dsp.clear_blocks(h->mb+ 0); s->dsp.clear_blocks(h->mb+384); } if (!IS_INTRA16x16(mb_type) && (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B)) { if ((vlc = svq3_get_ue_golomb(&s->gb)) >= 48U){ av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc); return -1; } cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc] : golomb_to_inter_cbp[vlc]; } if (IS_INTRA16x16(mb_type) || (s->pict_type != AV_PICTURE_TYPE_I && s->adaptive_quant && cbp)) { s->qscale += svq3_get_se_golomb(&s->gb); if (s->qscale > 31U){ av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale); return -1; } } if (IS_INTRA16x16(mb_type)) { AV_ZERO128(h->mb_luma_dc[0]+0); AV_ZERO128(h->mb_luma_dc[0]+8); if (svq3_decode_block(&s->gb, h->mb_luma_dc, 0, 1)){ av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding intra luma dc\n"); return -1; } } if (cbp) { const int index = IS_INTRA16x16(mb_type) ? 1 : 0; const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1); for (i = 0; i < 4; i++) { if ((cbp & (1 << i))) { for (j = 0; j < 4; j++) { k = index ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j); h->non_zero_count_cache[ scan8[k] ] = 1; if (svq3_decode_block(&s->gb, &h->mb[16*k], index, type)){ av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding block\n"); return -1; } } } } if ((cbp & 0x30)) { for (i = 1; i < 3; ++i) { if (svq3_decode_block(&s->gb, &h->mb[16*16*i], 0, 3)){ av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma dc block\n"); return -1; } } if ((cbp & 0x20)) { for (i = 1; i < 3; i++) { for (j = 0; j < 4; j++) { k = 16*i + j; h->non_zero_count_cache[ scan8[k] ] = 1; if (svq3_decode_block(&s->gb, &h->mb[16*k], 1, 1)){ av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma ac block\n"); return -1; } } } } } } h->cbp= cbp; s->current_picture.f.mb_type[mb_xy] = mb_type; if (IS_INTRA(mb_type)) { h->chroma_pred_mode = ff_h264_check_intra_pred_mode(h, DC_PRED8x8, 1); } return 0; } static int svq3_decode_slice_header(AVCodecContext *avctx) { SVQ3Context *svq3 = avctx->priv_data; H264Context *h = &svq3->h; MpegEncContext *s = &h->s; const int mb_xy = h->mb_xy; int i, header; header = get_bits(&s->gb, 8); if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) { /* TODO: what? */ av_log(avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header); return -1; } else { int length = (header >> 5) & 3; svq3->next_slice_index = get_bits_count(&s->gb) + 8*show_bits(&s->gb, 8*length) + 8*length; if (svq3->next_slice_index > s->gb.size_in_bits) { av_log(avctx, AV_LOG_ERROR, "slice after bitstream end\n"); return -1; } s->gb.size_in_bits = svq3->next_slice_index - 8*(length - 1); skip_bits(&s->gb, 8); if (svq3->watermark_key) { uint32_t header = AV_RL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1]); AV_WL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1], header ^ svq3->watermark_key); } if (length > 0) { memcpy((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3], &s->gb.buffer[s->gb.size_in_bits >> 3], (length - 1)); } skip_bits_long(&s->gb, 0); } if ((i = svq3_get_ue_golomb(&s->gb)) >= 3U){ av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", i); return -1; } h->slice_type = golomb_to_pict_type[i]; if ((header & 0x9F) == 2) { i = (s->mb_num < 64) ? 6 : (1 + av_log2 (s->mb_num - 1)); s->mb_skip_run = get_bits(&s->gb, i) - (s->mb_x + (s->mb_y * s->mb_width)); } else { skip_bits1(&s->gb); s->mb_skip_run = 0; } h->slice_num = get_bits(&s->gb, 8); s->qscale = get_bits(&s->gb, 5); s->adaptive_quant = get_bits1(&s->gb); /* unknown fields */ skip_bits1(&s->gb); if (svq3->unknown_flag) { skip_bits1(&s->gb); } skip_bits1(&s->gb); skip_bits(&s->gb, 2); while (get_bits1(&s->gb)) { skip_bits(&s->gb, 8); } /* reset intra predictors and invalidate motion vector references */ if (s->mb_x > 0) { memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy - 1 ]+3, -1, 4*sizeof(int8_t)); memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy - s->mb_x] , -1, 8*sizeof(int8_t)*s->mb_x); } if (s->mb_y > 0) { memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy - s->mb_stride], -1, 8*sizeof(int8_t)*(s->mb_width - s->mb_x)); if (s->mb_x > 0) { h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1]+3] = -1; } } return 0; } static av_cold int svq3_decode_init(AVCodecContext *avctx) { SVQ3Context *svq3 = avctx->priv_data; H264Context *h = &svq3->h; MpegEncContext *s = &h->s; int m; unsigned char *extradata; unsigned char *extradata_end; unsigned int size; int marker_found = 0; if (ff_h264_decode_init(avctx) < 0) return -1; s->flags = avctx->flags; s->flags2 = avctx->flags2; s->unrestricted_mv = 1; h->is_complex=1; h->sps.chroma_format_idc = 1; avctx->pix_fmt = avctx->codec->pix_fmts[0]; if (!s->context_initialized) { h->chroma_qp[0] = h->chroma_qp[1] = 4; svq3->halfpel_flag = 1; svq3->thirdpel_flag = 1; svq3->unknown_flag = 0; /* prowl for the "SEQH" marker in the extradata */ extradata = (unsigned char *)avctx->extradata; extradata_end = avctx->extradata + avctx->extradata_size; if (extradata) { for (m = 0; m + 8 < avctx->extradata_size; m++) { if (!memcmp(extradata, "SEQH", 4)) { marker_found = 1; break; } extradata++; } } /* if a match was found, parse the extra data */ if (marker_found) { GetBitContext gb; int frame_size_code; size = AV_RB32(&extradata[4]); if (size > extradata_end - extradata - 8) return AVERROR_INVALIDDATA; init_get_bits(&gb, extradata + 8, size*8); /* 'frame size code' and optional 'width, height' */ frame_size_code = get_bits(&gb, 3); switch (frame_size_code) { case 0: avctx->width = 160; avctx->height = 120; break; case 1: avctx->width = 128; avctx->height = 96; break; case 2: avctx->width = 176; avctx->height = 144; break; case 3: avctx->width = 352; avctx->height = 288; break; case 4: avctx->width = 704; avctx->height = 576; break; case 5: avctx->width = 240; avctx->height = 180; break; case 6: avctx->width = 320; avctx->height = 240; break; case 7: avctx->width = get_bits(&gb, 12); avctx->height = get_bits(&gb, 12); break; } svq3->halfpel_flag = get_bits1(&gb); svq3->thirdpel_flag = get_bits1(&gb); /* unknown fields */ skip_bits1(&gb); skip_bits1(&gb); skip_bits1(&gb); skip_bits1(&gb); s->low_delay = get_bits1(&gb); /* unknown field */ skip_bits1(&gb); while (get_bits1(&gb)) { skip_bits(&gb, 8); } svq3->unknown_flag = get_bits1(&gb); avctx->has_b_frames = !s->low_delay; if (svq3->unknown_flag) { #if CONFIG_ZLIB unsigned watermark_width = svq3_get_ue_golomb(&gb); unsigned watermark_height = svq3_get_ue_golomb(&gb); int u1 = svq3_get_ue_golomb(&gb); int u2 = get_bits(&gb, 8); int u3 = get_bits(&gb, 2); int u4 = svq3_get_ue_golomb(&gb); unsigned long buf_len = watermark_width*watermark_height*4; int offset = (get_bits_count(&gb)+7)>>3; uint8_t *buf; if ((uint64_t)watermark_width*4 > UINT_MAX/watermark_height) return -1; buf = av_malloc(buf_len); av_log(avctx, AV_LOG_DEBUG, "watermark size: %dx%d\n", watermark_width, watermark_height); av_log(avctx, AV_LOG_DEBUG, "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n", u1, u2, u3, u4, offset); if (uncompress(buf, &buf_len, extradata + 8 + offset, size - offset) != Z_OK) { av_log(avctx, AV_LOG_ERROR, "could not uncompress watermark logo\n"); av_free(buf); return -1; } svq3->watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0); svq3->watermark_key = svq3->watermark_key << 16 | svq3->watermark_key; av_log(avctx, AV_LOG_DEBUG, "watermark key %#x\n", svq3->watermark_key); av_free(buf); #else av_log(avctx, AV_LOG_ERROR, "this svq3 file contains watermark which need zlib support compiled in\n"); return -1; #endif } } s->width = avctx->width; s->height = avctx->height; if (ff_MPV_common_init(s) < 0) return -1; h->b_stride = 4*s->mb_width; if (ff_h264_alloc_tables(h) < 0) { av_log(avctx, AV_LOG_ERROR, "svq3 memory allocation failed\n"); return AVERROR(ENOMEM); } } return 0; } static int svq3_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { SVQ3Context *svq3 = avctx->priv_data; H264Context *h = &svq3->h; MpegEncContext *s = &h->s; int buf_size = avpkt->size; int m, mb_type, left; uint8_t *buf; /* special case for last picture */ if (buf_size == 0) { if (s->next_picture_ptr && !s->low_delay) { *(AVFrame *) data = s->next_picture.f; s->next_picture_ptr = NULL; *data_size = sizeof(AVFrame); } return 0; } s->mb_x = s->mb_y = h->mb_xy = 0; if (svq3->watermark_key) { av_fast_malloc(&svq3->buf, &svq3->buf_size, buf_size+FF_INPUT_BUFFER_PADDING_SIZE); if (!svq3->buf) return AVERROR(ENOMEM); memcpy(svq3->buf, avpkt->data, buf_size); buf = svq3->buf; } else { buf = avpkt->data; } init_get_bits(&s->gb, buf, 8*buf_size); if (svq3_decode_slice_header(avctx)) return -1; s->pict_type = h->slice_type; s->picture_number = h->slice_num; if (avctx->debug&FF_DEBUG_PICT_INFO){ av_log(h->s.avctx, AV_LOG_DEBUG, "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n", av_get_picture_type_char(s->pict_type), svq3->halfpel_flag, svq3->thirdpel_flag, s->adaptive_quant, s->qscale, h->slice_num); } /* for skipping the frame */ s->current_picture.f.pict_type = s->pict_type; s->current_picture.f.key_frame = (s->pict_type == AV_PICTURE_TYPE_I); /* Skip B-frames if we do not have reference frames. */ if (s->last_picture_ptr == NULL && s->pict_type == AV_PICTURE_TYPE_B) return 0; if ( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B) ||(avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I) || avctx->skip_frame >= AVDISCARD_ALL) return 0; if (s->next_p_frame_damaged) { if (s->pict_type == AV_PICTURE_TYPE_B) return 0; else s->next_p_frame_damaged = 0; } if (ff_h264_frame_start(h) < 0) return -1; if (s->pict_type == AV_PICTURE_TYPE_B) { h->frame_num_offset = (h->slice_num - h->prev_frame_num); if (h->frame_num_offset < 0) { h->frame_num_offset += 256; } if (h->frame_num_offset == 0 || h->frame_num_offset >= h->prev_frame_num_offset) { av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n"); return -1; } } else { h->prev_frame_num = h->frame_num; h->frame_num = h->slice_num; h->prev_frame_num_offset = (h->frame_num - h->prev_frame_num); if (h->prev_frame_num_offset < 0) { h->prev_frame_num_offset += 256; } } for (m = 0; m < 2; m++){ int i; for (i = 0; i < 4; i++){ int j; for (j = -1; j < 4; j++) h->ref_cache[m][scan8[0] + 8*i + j]= 1; if (i < 3) h->ref_cache[m][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE; } } for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) { for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) { h->mb_xy = s->mb_x + s->mb_y*s->mb_stride; if ( (get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits && ((get_bits_count(&s->gb) & 7) == 0 || show_bits(&s->gb, (-get_bits_count(&s->gb) & 7)) == 0)) { skip_bits(&s->gb, svq3->next_slice_index - get_bits_count(&s->gb)); s->gb.size_in_bits = 8*buf_size; if (svq3_decode_slice_header(avctx)) return -1; /* TODO: support s->mb_skip_run */ } mb_type = svq3_get_ue_golomb(&s->gb); if (s->pict_type == AV_PICTURE_TYPE_I) { mb_type += 8; } else if (s->pict_type == AV_PICTURE_TYPE_B && mb_type >= 4) { mb_type += 4; } if ((unsigned)mb_type > 33 || svq3_decode_mb(svq3, mb_type)) { av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y); return -1; } if (mb_type != 0) { ff_h264_hl_decode_mb (h); } if (s->pict_type != AV_PICTURE_TYPE_B && !s->low_delay) { s->current_picture.f.mb_type[s->mb_x + s->mb_y * s->mb_stride] = (s->pict_type == AV_PICTURE_TYPE_P && mb_type < 8) ? (mb_type - 1) : -1; } } ff_draw_horiz_band(s, 16*s->mb_y, 16); } left = buf_size*8 - get_bits_count(&s->gb); if (s->mb_y != s->mb_height || s->mb_x != s->mb_width) { av_log(avctx, AV_LOG_INFO, "frame num %d incomplete pic x %d y %d left %d\n", avctx->frame_number, s->mb_y, s->mb_x, left); //av_hex_dump(stderr, buf+buf_size-8, 8); } if (left < 0) { av_log(avctx, AV_LOG_ERROR, "frame num %d left %d\n", avctx->frame_number, left); return -1; } ff_MPV_frame_end(s); if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) { *(AVFrame *) data = s->current_picture.f; } else { *(AVFrame *) data = s->last_picture.f; } /* Do not output the last pic after seeking. */ if (s->last_picture_ptr || s->low_delay) { *data_size = sizeof(AVFrame); } return buf_size; } static int svq3_decode_end(AVCodecContext *avctx) { SVQ3Context *svq3 = avctx->priv_data; H264Context *h = &svq3->h; MpegEncContext *s = &h->s; ff_h264_free_context(h); ff_MPV_common_end(s); av_freep(&svq3->buf); svq3->buf_size = 0; return 0; } AVCodec ff_svq3_decoder = { .name = "svq3", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_SVQ3, .priv_data_size = sizeof(SVQ3Context), .init = svq3_decode_init, .close = svq3_decode_end, .decode = svq3_decode_frame, .capabilities = CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1 | CODEC_CAP_DELAY, .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"), .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUVJ420P, PIX_FMT_NONE}, };