/* * Copyright (C) 2001-2003 Michael Niedermayer * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #define _SVID_SOURCE //needed for MAP_ANONYMOUS #include #include #include #include #include "config.h" #include #if HAVE_SYS_MMAN_H #include #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS) #define MAP_ANONYMOUS MAP_ANON #endif #endif #if HAVE_VIRTUALALLOC #define WIN32_LEAN_AND_MEAN #include #endif #include "swscale.h" #include "swscale_internal.h" #include "rgb2rgb.h" #include "libavutil/intreadwrite.h" #include "libavutil/x86_cpu.h" #include "libavutil/cpu.h" #include "libavutil/avutil.h" #include "libavutil/bswap.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" unsigned swscale_version(void) { return LIBSWSCALE_VERSION_INT; } const char *swscale_configuration(void) { return LIBAV_CONFIGURATION; } const char *swscale_license(void) { #define LICENSE_PREFIX "libswscale license: " return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1; } #define RET 0xC3 //near return opcode for x86 typedef struct FormatEntry { int is_supported_in, is_supported_out; } FormatEntry; const static FormatEntry format_entries[PIX_FMT_NB] = { [PIX_FMT_YUV420P] = { 1 , 1 }, [PIX_FMT_YUYV422] = { 1 , 1 }, [PIX_FMT_RGB24] = { 1 , 1 }, [PIX_FMT_BGR24] = { 1 , 1 }, [PIX_FMT_YUV422P] = { 1 , 1 }, [PIX_FMT_YUV444P] = { 1 , 1 }, [PIX_FMT_YUV410P] = { 1 , 1 }, [PIX_FMT_YUV411P] = { 1 , 1 }, [PIX_FMT_GRAY8] = { 1 , 1 }, [PIX_FMT_MONOWHITE] = { 1 , 1 }, [PIX_FMT_MONOBLACK] = { 1 , 1 }, [PIX_FMT_PAL8] = { 1 , 0 }, [PIX_FMT_YUVJ420P] = { 1 , 1 }, [PIX_FMT_YUVJ422P] = { 1 , 1 }, [PIX_FMT_YUVJ444P] = { 1 , 1 }, [PIX_FMT_UYVY422] = { 1 , 1 }, [PIX_FMT_UYYVYY411] = { 0 , 0 }, [PIX_FMT_BGR8] = { 1 , 1 }, [PIX_FMT_BGR4] = { 0 , 1 }, [PIX_FMT_BGR4_BYTE] = { 1 , 1 }, [PIX_FMT_RGB8] = { 1 , 1 }, [PIX_FMT_RGB4] = { 0 , 1 }, [PIX_FMT_RGB4_BYTE] = { 1 , 1 }, [PIX_FMT_NV12] = { 1 , 1 }, [PIX_FMT_NV21] = { 1 , 1 }, [PIX_FMT_ARGB] = { 1 , 1 }, [PIX_FMT_RGBA] = { 1 , 1 }, [PIX_FMT_ABGR] = { 1 , 1 }, [PIX_FMT_BGRA] = { 1 , 1 }, [PIX_FMT_GRAY16BE] = { 1 , 1 }, [PIX_FMT_GRAY16LE] = { 1 , 1 }, [PIX_FMT_YUV440P] = { 1 , 1 }, [PIX_FMT_YUVJ440P] = { 1 , 1 }, [PIX_FMT_YUVA420P] = { 1 , 1 }, [PIX_FMT_RGB48BE] = { 1 , 1 }, [PIX_FMT_RGB48LE] = { 1 , 1 }, [PIX_FMT_RGB565BE] = { 1 , 1 }, [PIX_FMT_RGB565LE] = { 1 , 1 }, [PIX_FMT_RGB555BE] = { 1 , 1 }, [PIX_FMT_RGB555LE] = { 1 , 1 }, [PIX_FMT_BGR565BE] = { 1 , 1 }, [PIX_FMT_BGR565LE] = { 1 , 1 }, [PIX_FMT_BGR555BE] = { 1 , 1 }, [PIX_FMT_BGR555LE] = { 1 , 1 }, [PIX_FMT_YUV420P16LE] = { 1 , 1 }, [PIX_FMT_YUV420P16BE] = { 1 , 1 }, [PIX_FMT_YUV422P16LE] = { 1 , 1 }, [PIX_FMT_YUV422P16BE] = { 1 , 1 }, [PIX_FMT_YUV444P16LE] = { 1 , 1 }, [PIX_FMT_YUV444P16BE] = { 1 , 1 }, [PIX_FMT_RGB444LE] = { 0 , 1 }, [PIX_FMT_RGB444BE] = { 0 , 1 }, [PIX_FMT_BGR444LE] = { 0 , 1 }, [PIX_FMT_BGR444BE] = { 0 , 1 }, [PIX_FMT_Y400A] = { 1 , 0 }, [PIX_FMT_BGR48BE] = { 1 , 1 }, [PIX_FMT_BGR48LE] = { 1 , 1 }, [PIX_FMT_YUV420P9BE] = { 1 , 1 }, [PIX_FMT_YUV420P9LE] = { 1 , 1 }, [PIX_FMT_YUV420P10BE] = { 1 , 1 }, [PIX_FMT_YUV420P10LE] = { 1 , 1 }, [PIX_FMT_YUV422P9BE] = { 1 , 1 }, [PIX_FMT_YUV422P9LE] = { 1 , 1 }, [PIX_FMT_YUV422P10BE] = { 1 , 1 }, [PIX_FMT_YUV422P10LE] = { 1 , 1 }, [PIX_FMT_YUV444P9BE] = { 1 , 1 }, [PIX_FMT_YUV444P9LE] = { 1 , 1 }, [PIX_FMT_YUV444P10BE] = { 1 , 1 }, [PIX_FMT_YUV444P10LE] = { 1 , 1 }, [PIX_FMT_GBRP] = { 1 , 0 }, [PIX_FMT_GBRP9LE] = { 1 , 0 }, [PIX_FMT_GBRP9BE] = { 1 , 0 }, [PIX_FMT_GBRP10LE] = { 1 , 0 }, [PIX_FMT_GBRP10BE] = { 1 , 0 }, [PIX_FMT_GBRP16LE] = { 1 , 0 }, [PIX_FMT_GBRP16BE] = { 1 , 0 }, }; int sws_isSupportedInput(enum PixelFormat pix_fmt) { return (unsigned)pix_fmt < PIX_FMT_NB ? format_entries[pix_fmt].is_supported_in : 0; } int sws_isSupportedOutput(enum PixelFormat pix_fmt) { return (unsigned)pix_fmt < PIX_FMT_NB ? format_entries[pix_fmt].is_supported_out : 0; } extern const int32_t ff_yuv2rgb_coeffs[8][4]; const char *sws_format_name(enum PixelFormat format) { if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name) return av_pix_fmt_descriptors[format].name; else return "Unknown format"; } static double getSplineCoeff(double a, double b, double c, double d, double dist) { if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a; else return getSplineCoeff( 0.0, b+ 2.0*c + 3.0*d, c + 3.0*d, -b- 3.0*c - 6.0*d, dist-1.0); } static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2]) { int i; int filterSize; int filter2Size; int minFilterSize; int64_t *filter=NULL; int64_t *filter2=NULL; const int64_t fone= 1LL<<54; int ret= -1; emms_c(); //FIXME this should not be required but it IS (even for non-MMX versions) // NOTE: the +3 is for the MMX(+1)/SSE(+3) scaler which reads over the end FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+3)*sizeof(int16_t), fail); if (FFABS(xInc - 0x10000) <10) { // unscaled int i; filterSize= 1; FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail); for (i=0; i>16; (*filterPos)[i]= xx; filter[i]= fone; xDstInSrc+= xInc; } } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale int i; int xDstInSrc; filterSize= 2; FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail); xDstInSrc= xInc/2 - 0x8000; for (i=0; i>16; int j; (*filterPos)[i]= xx; //bilinear upscale / linear interpolate / area averaging for (j=0; j>16); if (coeff<0) coeff=0; filter[i*filterSize + j]= coeff; xx++; } xDstInSrc+= xInc; } } else { int xDstInSrc; int sizeFactor; if (flags&SWS_BICUBIC) sizeFactor= 4; else if (flags&SWS_X) sizeFactor= 8; else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;) else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6; else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;) else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;) else if (flags&SWS_BILINEAR) sizeFactor= 2; else { sizeFactor= 0; //GCC warning killer assert(0); } if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW; if (filterSize > srcW-2) filterSize=srcW-2; FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail); xDstInSrc= xInc - 0x10000; for (i=0; i 1<<16) d= d*dstW/srcW; floatd= d * (1.0/(1<<30)); if (flags & SWS_BICUBIC) { int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24); int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24); if (d >= 1LL<<31) { coeff = 0.0; } else { int64_t dd = (d * d) >> 30; int64_t ddd = (dd * d) >> 30; if (d < 1LL<<30) coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30); else coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30); } coeff *= fone>>(30+24); } /* else if (flags & SWS_X) { double p= param ? param*0.01 : 0.3; coeff = d ? sin(d*M_PI)/(d*M_PI) : 1.0; coeff*= pow(2.0, - p*d*d); }*/ else if (flags & SWS_X) { double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0; double c; if (floatd<1.0) c = cos(floatd*M_PI); else c=-1.0; if (c<0.0) c= -pow(-c, A); else c= pow( c, A); coeff= (c*0.5 + 0.5)*fone; } else if (flags & SWS_AREA) { int64_t d2= d - (1<<29); if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16)); else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16)); else coeff=0.0; coeff *= fone>>(30+16); } else if (flags & SWS_GAUSS) { double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; coeff = (pow(2.0, - p*floatd*floatd))*fone; } else if (flags & SWS_SINC) { coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone; } else if (flags & SWS_LANCZOS) { double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone; if (floatd>p) coeff=0; } else if (flags & SWS_BILINEAR) { coeff= (1<<30) - d; if (coeff<0) coeff=0; coeff *= fone >> 30; } else if (flags & SWS_SPLINE) { double p=-2.196152422706632; coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone; } else { coeff= 0.0; //GCC warning killer assert(0); } filter[i*filterSize + j]= coeff; xx++; } xDstInSrc+= 2*xInc; } } /* apply src & dst Filter to filter -> filter2 av_free(filter); */ assert(filterSize>0); filter2Size= filterSize; if (srcFilter) filter2Size+= srcFilter->length - 1; if (dstFilter) filter2Size+= dstFilter->length - 1; assert(filter2Size>0); FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail); for (i=0; ilength; k++) { for (j=0; jcoeff[k]*filter[i*filterSize + j]; } } else { for (j=0; j=0; i--) { int min= filter2Size; int j; int64_t cutOff=0.0; /* get rid of near zero elements on the left by shifting left */ for (j=0; j SWS_MAX_REDUCE_CUTOFF*fone) break; /* preserve monotonicity because the core can't handle the filter otherwise */ if (i= (*filterPos)[i+1]) break; // move filter coefficients left for (k=1; k0; j--) { cutOff += FFABS(filter2[i*filter2Size + j]); if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break; min--; } if (min>minFilterSize) minFilterSize= min; } if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) { // we can handle the special case 4, // so we don't want to go to the full 8 if (minFilterSize < 5) filterAlign = 4; // We really don't want to waste our time // doing useless computation, so fall back on // the scalar C code for very small filters. // Vectorizing is worth it only if you have a // decent-sized vector. if (minFilterSize < 3) filterAlign = 1; } if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) { // special case for unscaled vertical filtering if (minFilterSize == 1 && filterAlign == 2) filterAlign= 1; } assert(minFilterSize > 0); filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1)); assert(filterSize > 0); filter= av_malloc(filterSize*dstW*sizeof(*filter)); if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter) goto fail; *outFilterSize= filterSize; if (flags&SWS_PRINT_INFO) av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize); /* try to reduce the filter-size (step2 reduce it) */ for (i=0; i=filter2Size) filter[i*filterSize + j]= 0; else filter[i*filterSize + j]= filter2[i*filter2Size + j]; if((flags & SWS_BITEXACT) && j>=minFilterSize) filter[i*filterSize + j]= 0; } } //FIXME try to align filterPos if possible //fix borders for (i=0; i srcW) { int shift= (*filterPos)[i] + filterSize - srcW; // move filter coefficients right to compensate for filterPos for (j=filterSize-2; j>=0; j--) { int right= FFMIN(j + shift, filterSize-1); filter[i*filterSize +right] += filter[i*filterSize +j]; filter[i*filterSize +j]=0; } (*filterPos)[i]= srcW - filterSize; } } // Note the +1 is for the MMX scaler which reads over the end /* align at 16 for AltiVec (needed by hScale_altivec_real) */ FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+3)*sizeof(int16_t), fail); /* normalize & store in outFilter */ for (i=0; i>16; if ((i&3) == 0) { int a=0; int b=((xpos+xInc)>>16) - xx; int c=((xpos+xInc*2)>>16) - xx; int d=((xpos+xInc*3)>>16) - xx; int inc = (d+1<4); uint8_t *fragment = (d+1<4) ? fragmentB : fragmentA; x86_reg imm8OfPShufW1 = (d+1<4) ? imm8OfPShufW1B : imm8OfPShufW1A; x86_reg imm8OfPShufW2 = (d+1<4) ? imm8OfPShufW2B : imm8OfPShufW2A; x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA; int maxShift= 3-(d+inc); int shift=0; if (filterCode) { filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9; filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9; filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9; filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9; filterPos[i/2]= xx; memcpy(filterCode + fragmentPos, fragment, fragmentLength); filterCode[fragmentPos + imm8OfPShufW1]= (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6); filterCode[fragmentPos + imm8OfPShufW2]= a | (b<<2) | (c<<4) | (d<<6); if (i+4-inc>=dstW) shift=maxShift; //avoid overread else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align if (shift && i>=shift) { filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift; filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift; filterPos[i/2]-=shift; } } fragmentPos+= fragmentLength; if (filterCode) filterCode[fragmentPos]= RET; } xpos+=xInc; } if (filterCode) filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part return fragmentPos + 1; } #endif /* HAVE_MMX2 */ static void getSubSampleFactors(int *h, int *v, enum PixelFormat format) { *h = av_pix_fmt_descriptors[format].log2_chroma_w; *v = av_pix_fmt_descriptors[format].log2_chroma_h; } int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation) { memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4); memcpy(c->dstColorspaceTable, table, sizeof(int)*4); c->brightness= brightness; c->contrast = contrast; c->saturation= saturation; c->srcRange = srcRange; c->dstRange = dstRange; if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1; c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->dstFormat]); c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->srcFormat]); ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation); //FIXME factorize if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC) ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation); return 0; } int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation) { if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1; *inv_table = c->srcColorspaceTable; *table = c->dstColorspaceTable; *srcRange = c->srcRange; *dstRange = c->dstRange; *brightness= c->brightness; *contrast = c->contrast; *saturation= c->saturation; return 0; } static int handle_jpeg(enum PixelFormat *format) { switch (*format) { case PIX_FMT_YUVJ420P: *format = PIX_FMT_YUV420P; return 1; case PIX_FMT_YUVJ422P: *format = PIX_FMT_YUV422P; return 1; case PIX_FMT_YUVJ444P: *format = PIX_FMT_YUV444P; return 1; case PIX_FMT_YUVJ440P: *format = PIX_FMT_YUV440P; return 1; default: return 0; } } SwsContext *sws_alloc_context(void) { SwsContext *c= av_mallocz(sizeof(SwsContext)); c->av_class = &sws_context_class; av_opt_set_defaults(c); return c; } int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter) { int i; int usesVFilter, usesHFilter; int unscaled; SwsFilter dummyFilter= {NULL, NULL, NULL, NULL}; int srcW= c->srcW; int srcH= c->srcH; int dstW= c->dstW; int dstH= c->dstH; int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16), dst_stride_px = dst_stride >> 1; int flags, cpu_flags; enum PixelFormat srcFormat= c->srcFormat; enum PixelFormat dstFormat= c->dstFormat; cpu_flags = av_get_cpu_flags(); flags = c->flags; emms_c(); if (!rgb15to16) sws_rgb2rgb_init(); unscaled = (srcW == dstW && srcH == dstH); if (!sws_isSupportedInput(srcFormat)) { av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n", sws_format_name(srcFormat)); return AVERROR(EINVAL); } if (!sws_isSupportedOutput(dstFormat)) { av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n", sws_format_name(dstFormat)); return AVERROR(EINVAL); } i= flags & ( SWS_POINT |SWS_AREA |SWS_BILINEAR |SWS_FAST_BILINEAR |SWS_BICUBIC |SWS_X |SWS_GAUSS |SWS_LANCZOS |SWS_SINC |SWS_SPLINE |SWS_BICUBLIN); if(!i || (i & (i-1))) { av_log(c, AV_LOG_ERROR, "Exactly one scaler algorithm must be chosen\n"); return AVERROR(EINVAL); } /* sanity check */ if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n", srcW, srcH, dstW, dstH); return AVERROR(EINVAL); } if (!dstFilter) dstFilter= &dummyFilter; if (!srcFilter) srcFilter= &dummyFilter; c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW; c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH; c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]); c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]); c->vRounder= 4* 0x0001000100010001ULL; usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) || (srcFilter->chrV && srcFilter->chrV->length>1) || (dstFilter->lumV && dstFilter->lumV->length>1) || (dstFilter->chrV && dstFilter->chrV->length>1); usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) || (srcFilter->chrH && srcFilter->chrH->length>1) || (dstFilter->lumH && dstFilter->lumH->length>1) || (dstFilter->chrH && dstFilter->chrH->length>1); getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat); getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat); // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation if (flags & SWS_FULL_CHR_H_INT && dstFormat != PIX_FMT_RGBA && dstFormat != PIX_FMT_ARGB && dstFormat != PIX_FMT_BGRA && dstFormat != PIX_FMT_ABGR && dstFormat != PIX_FMT_RGB24 && dstFormat != PIX_FMT_BGR24) { av_log(c, AV_LOG_ERROR, "full chroma interpolation for destination format '%s' not yet implemented\n", sws_format_name(dstFormat)); flags &= ~SWS_FULL_CHR_H_INT; c->flags = flags; } if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1; // drop some chroma lines if the user wants it c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT; c->chrSrcVSubSample+= c->vChrDrop; // drop every other pixel for chroma calculation unless user wants full chroma if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP) && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8 && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4 && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&SWS_FAST_BILINEAR))) c->chrSrcHSubSample=1; // Note the -((-x)>>y) is so that we always round toward +inf. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample); c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample); c->chrDstW= -((-dstW) >> c->chrDstHSubSample); c->chrDstH= -((-dstH) >> c->chrDstVSubSample); /* unscaled special cases */ if (unscaled && !usesHFilter && !usesVFilter && (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) { ff_get_unscaled_swscale(c); if (c->swScale) { if (flags&SWS_PRINT_INFO) av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n", sws_format_name(srcFormat), sws_format_name(dstFormat)); return 0; } } c->srcBpc = 1 + av_pix_fmt_descriptors[srcFormat].comp[0].depth_minus1; if (c->srcBpc < 8) c->srcBpc = 8; c->dstBpc = 1 + av_pix_fmt_descriptors[dstFormat].comp[0].depth_minus1; if (c->dstBpc < 8) c->dstBpc = 8; if (c->dstBpc == 16) dst_stride <<= 1; FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16, fail); if (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2 && c->srcBpc == 8 && c->dstBpc <= 10) { c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0; if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) { if (flags&SWS_PRINT_INFO) av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n"); } if (usesHFilter) c->canMMX2BeUsed=0; } else c->canMMX2BeUsed=0; c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW; c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH; // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst // but only for the FAST_BILINEAR mode otherwise do correct scaling // n-2 is the last chrominance sample available // this is not perfect, but no one should notice the difference, the more correct variant // would be like the vertical one, but that would require some special code for the // first and last pixel if (flags&SWS_FAST_BILINEAR) { if (c->canMMX2BeUsed) { c->lumXInc+= 20; c->chrXInc+= 20; } //we don't use the x86 asm scaler if MMX is available else if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) { c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20; c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20; } } /* precalculate horizontal scaler filter coefficients */ { #if HAVE_MMX2 // can't downscale !!! if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) { c->lumMmx2FilterCodeSize = initMMX2HScaler( dstW, c->lumXInc, NULL, NULL, NULL, 8); c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4); #ifdef MAP_ANONYMOUS c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); #elif HAVE_VIRTUALALLOC c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE); c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE); #else c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize); c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize); #endif if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode) return AVERROR(ENOMEM); FF_ALLOCZ_OR_GOTO(c, c->hLumFilter , (dstW /8+8)*sizeof(int16_t), fail); FF_ALLOCZ_OR_GOTO(c, c->hChrFilter , (c->chrDstW /4+8)*sizeof(int16_t), fail); FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW /2/8+8)*sizeof(int32_t), fail); FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail); initMMX2HScaler( dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8); initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4); #ifdef MAP_ANONYMOUS mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ); mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ); #endif } else #endif /* HAVE_MMX2 */ { const int filterAlign= (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 : (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 : 1; if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc, srcW , dstW, filterAlign, 1<<14, (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, cpu_flags, srcFilter->lumH, dstFilter->lumH, c->param) < 0) goto fail; if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc, c->chrSrcW, c->chrDstW, filterAlign, 1<<14, (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, cpu_flags, srcFilter->chrH, dstFilter->chrH, c->param) < 0) goto fail; } } // initialize horizontal stuff /* precalculate vertical scaler filter coefficients */ { const int filterAlign= (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 : (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 : 1; if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc, srcH , dstH, filterAlign, (1<<12), (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags, cpu_flags, srcFilter->lumV, dstFilter->lumV, c->param) < 0) goto fail; if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc, c->chrSrcH, c->chrDstH, filterAlign, (1<<12), (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, cpu_flags, srcFilter->chrV, dstFilter->chrV, c->param) < 0) goto fail; #if HAVE_ALTIVEC FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail); FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail); for (i=0;ivLumFilterSize*c->dstH;i++) { int j; short *p = (short *)&c->vYCoeffsBank[i]; for (j=0;j<8;j++) p[j] = c->vLumFilter[i]; } for (i=0;ivChrFilterSize*c->chrDstH;i++) { int j; short *p = (short *)&c->vCCoeffsBank[i]; for (j=0;j<8;j++) p[j] = c->vChrFilter[i]; } #endif } // calculate buffer sizes so that they won't run out while handling these damn slices c->vLumBufSize= c->vLumFilterSize; c->vChrBufSize= c->vChrFilterSize; for (i=0; ichrDstH / dstH; int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1, ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<chrSrcVSubSample)); nextSlice>>= c->chrSrcVSubSample; nextSlice<<= c->chrSrcVSubSample; if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice) c->vLumBufSize= nextSlice - c->vLumFilterPos[i]; if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample)) c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI]; } // allocate pixbufs (we use dynamic allocation because otherwise we would need to // allocate several megabytes to handle all possible cases) FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail); FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail); FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail); if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail); //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000) /* align at 16 bytes for AltiVec */ for (i=0; ivLumBufSize; i++) { FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], dst_stride+16, fail); c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize]; } // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate) c->uv_off_px = dst_stride_px + 64 / (c->dstBpc &~ 7); c->uv_off_byte = dst_stride + 16; for (i=0; ivChrBufSize; i++) { FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i+c->vChrBufSize], dst_stride*2+32, fail); c->chrUPixBuf[i] = c->chrUPixBuf[i+c->vChrBufSize]; c->chrVPixBuf[i] = c->chrVPixBuf[i+c->vChrBufSize] = c->chrUPixBuf[i] + (dst_stride >> 1) + 8; } if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) for (i=0; ivLumBufSize; i++) { FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], dst_stride+16, fail); c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize]; } //try to avoid drawing green stuff between the right end and the stride end for (i=0; ivChrBufSize; i++) memset(c->chrUPixBuf[i], 64, dst_stride*2+1); assert(c->chrDstH <= dstH); if (flags&SWS_PRINT_INFO) { if (flags&SWS_FAST_BILINEAR) av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, "); else if (flags&SWS_BILINEAR) av_log(c, AV_LOG_INFO, "BILINEAR scaler, "); else if (flags&SWS_BICUBIC) av_log(c, AV_LOG_INFO, "BICUBIC scaler, "); else if (flags&SWS_X) av_log(c, AV_LOG_INFO, "Experimental scaler, "); else if (flags&SWS_POINT) av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, "); else if (flags&SWS_AREA) av_log(c, AV_LOG_INFO, "Area Averaging scaler, "); else if (flags&SWS_BICUBLIN) av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, "); else if (flags&SWS_GAUSS) av_log(c, AV_LOG_INFO, "Gaussian scaler, "); else if (flags&SWS_SINC) av_log(c, AV_LOG_INFO, "Sinc scaler, "); else if (flags&SWS_LANCZOS) av_log(c, AV_LOG_INFO, "Lanczos scaler, "); else if (flags&SWS_SPLINE) av_log(c, AV_LOG_INFO, "Bicubic spline scaler, "); else av_log(c, AV_LOG_INFO, "ehh flags invalid?! "); av_log(c, AV_LOG_INFO, "from %s to %s%s ", sws_format_name(srcFormat), #ifdef DITHER1XBPP dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 || dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE || dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE ? "dithered " : "", #else "", #endif sws_format_name(dstFormat)); if (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2) av_log(c, AV_LOG_INFO, "using MMX2\n"); else if (HAVE_AMD3DNOW && cpu_flags & AV_CPU_FLAG_3DNOW) av_log(c, AV_LOG_INFO, "using 3DNOW\n"); else if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) av_log(c, AV_LOG_INFO, "using MMX\n"); else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) av_log(c, AV_LOG_INFO, "using AltiVec\n"); else av_log(c, AV_LOG_INFO, "using C\n"); av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH); av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n", c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc); av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n", c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc); } c->swScale= ff_getSwsFunc(c); return 0; fail: //FIXME replace things by appropriate error codes return -1; } #if FF_API_SWS_GETCONTEXT SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param) { SwsContext *c; if(!(c=sws_alloc_context())) return NULL; c->flags= flags; c->srcW= srcW; c->srcH= srcH; c->dstW= dstW; c->dstH= dstH; c->srcRange = handle_jpeg(&srcFormat); c->dstRange = handle_jpeg(&dstFormat); c->srcFormat= srcFormat; c->dstFormat= dstFormat; if (param) { c->param[0] = param[0]; c->param[1] = param[1]; } sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, c->dstRange, 0, 1<<16, 1<<16); if(sws_init_context(c, srcFilter, dstFilter) < 0){ sws_freeContext(c); return NULL; } return c; } #endif SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose) { SwsFilter *filter= av_malloc(sizeof(SwsFilter)); if (!filter) return NULL; if (lumaGBlur!=0.0) { filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0); filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0); } else { filter->lumH= sws_getIdentityVec(); filter->lumV= sws_getIdentityVec(); } if (chromaGBlur!=0.0) { filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0); filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0); } else { filter->chrH= sws_getIdentityVec(); filter->chrV= sws_getIdentityVec(); } if (chromaSharpen!=0.0) { SwsVector *id= sws_getIdentityVec(); sws_scaleVec(filter->chrH, -chromaSharpen); sws_scaleVec(filter->chrV, -chromaSharpen); sws_addVec(filter->chrH, id); sws_addVec(filter->chrV, id); sws_freeVec(id); } if (lumaSharpen!=0.0) { SwsVector *id= sws_getIdentityVec(); sws_scaleVec(filter->lumH, -lumaSharpen); sws_scaleVec(filter->lumV, -lumaSharpen); sws_addVec(filter->lumH, id); sws_addVec(filter->lumV, id); sws_freeVec(id); } if (chromaHShift != 0.0) sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5)); if (chromaVShift != 0.0) sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5)); sws_normalizeVec(filter->chrH, 1.0); sws_normalizeVec(filter->chrV, 1.0); sws_normalizeVec(filter->lumH, 1.0); sws_normalizeVec(filter->lumV, 1.0); if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG); if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG); return filter; } SwsVector *sws_allocVec(int length) { SwsVector *vec = av_malloc(sizeof(SwsVector)); if (!vec) return NULL; vec->length = length; vec->coeff = av_malloc(sizeof(double) * length); if (!vec->coeff) av_freep(&vec); return vec; } SwsVector *sws_getGaussianVec(double variance, double quality) { const int length= (int)(variance*quality + 0.5) | 1; int i; double middle= (length-1)*0.5; SwsVector *vec= sws_allocVec(length); if (!vec) return NULL; for (i=0; icoeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI); } sws_normalizeVec(vec, 1.0); return vec; } SwsVector *sws_getConstVec(double c, int length) { int i; SwsVector *vec= sws_allocVec(length); if (!vec) return NULL; for (i=0; icoeff[i]= c; return vec; } SwsVector *sws_getIdentityVec(void) { return sws_getConstVec(1.0, 1); } static double sws_dcVec(SwsVector *a) { int i; double sum=0; for (i=0; ilength; i++) sum+= a->coeff[i]; return sum; } void sws_scaleVec(SwsVector *a, double scalar) { int i; for (i=0; ilength; i++) a->coeff[i]*= scalar; } void sws_normalizeVec(SwsVector *a, double height) { sws_scaleVec(a, height/sws_dcVec(a)); } static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b) { int length= a->length + b->length - 1; int i, j; SwsVector *vec= sws_getConstVec(0.0, length); if (!vec) return NULL; for (i=0; ilength; i++) { for (j=0; jlength; j++) { vec->coeff[i+j]+= a->coeff[i]*b->coeff[j]; } } return vec; } static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b) { int length= FFMAX(a->length, b->length); int i; SwsVector *vec= sws_getConstVec(0.0, length); if (!vec) return NULL; for (i=0; ilength; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i]; for (i=0; ilength; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i]; return vec; } static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b) { int length= FFMAX(a->length, b->length); int i; SwsVector *vec= sws_getConstVec(0.0, length); if (!vec) return NULL; for (i=0; ilength; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i]; for (i=0; ilength; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i]; return vec; } /* shift left / or right if "shift" is negative */ static SwsVector *sws_getShiftedVec(SwsVector *a, int shift) { int length= a->length + FFABS(shift)*2; int i; SwsVector *vec= sws_getConstVec(0.0, length); if (!vec) return NULL; for (i=0; ilength; i++) { vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i]; } return vec; } void sws_shiftVec(SwsVector *a, int shift) { SwsVector *shifted= sws_getShiftedVec(a, shift); av_free(a->coeff); a->coeff= shifted->coeff; a->length= shifted->length; av_free(shifted); } void sws_addVec(SwsVector *a, SwsVector *b) { SwsVector *sum= sws_sumVec(a, b); av_free(a->coeff); a->coeff= sum->coeff; a->length= sum->length; av_free(sum); } void sws_subVec(SwsVector *a, SwsVector *b) { SwsVector *diff= sws_diffVec(a, b); av_free(a->coeff); a->coeff= diff->coeff; a->length= diff->length; av_free(diff); } void sws_convVec(SwsVector *a, SwsVector *b) { SwsVector *conv= sws_getConvVec(a, b); av_free(a->coeff); a->coeff= conv->coeff; a->length= conv->length; av_free(conv); } SwsVector *sws_cloneVec(SwsVector *a) { int i; SwsVector *vec= sws_allocVec(a->length); if (!vec) return NULL; for (i=0; ilength; i++) vec->coeff[i]= a->coeff[i]; return vec; } void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level) { int i; double max=0; double min=0; double range; for (i=0; ilength; i++) if (a->coeff[i]>max) max= a->coeff[i]; for (i=0; ilength; i++) if (a->coeff[i]coeff[i]; range= max - min; for (i=0; ilength; i++) { int x= (int)((a->coeff[i]-min)*60.0/range +0.5); av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]); for (;x>0; x--) av_log(log_ctx, log_level, " "); av_log(log_ctx, log_level, "|\n"); } } void sws_freeVec(SwsVector *a) { if (!a) return; av_freep(&a->coeff); a->length=0; av_free(a); } void sws_freeFilter(SwsFilter *filter) { if (!filter) return; if (filter->lumH) sws_freeVec(filter->lumH); if (filter->lumV) sws_freeVec(filter->lumV); if (filter->chrH) sws_freeVec(filter->chrH); if (filter->chrV) sws_freeVec(filter->chrV); av_free(filter); } void sws_freeContext(SwsContext *c) { int i; if (!c) return; if (c->lumPixBuf) { for (i=0; ivLumBufSize; i++) av_freep(&c->lumPixBuf[i]); av_freep(&c->lumPixBuf); } if (c->chrUPixBuf) { for (i=0; ivChrBufSize; i++) av_freep(&c->chrUPixBuf[i]); av_freep(&c->chrUPixBuf); av_freep(&c->chrVPixBuf); } if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) { for (i=0; ivLumBufSize; i++) av_freep(&c->alpPixBuf[i]); av_freep(&c->alpPixBuf); } av_freep(&c->vLumFilter); av_freep(&c->vChrFilter); av_freep(&c->hLumFilter); av_freep(&c->hChrFilter); #if HAVE_ALTIVEC av_freep(&c->vYCoeffsBank); av_freep(&c->vCCoeffsBank); #endif av_freep(&c->vLumFilterPos); av_freep(&c->vChrFilterPos); av_freep(&c->hLumFilterPos); av_freep(&c->hChrFilterPos); #if HAVE_MMX #ifdef MAP_ANONYMOUS if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize); if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize); #elif HAVE_VIRTUALALLOC if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE); if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE); #else av_free(c->lumMmx2FilterCode); av_free(c->chrMmx2FilterCode); #endif c->lumMmx2FilterCode=NULL; c->chrMmx2FilterCode=NULL; #endif /* HAVE_MMX */ av_freep(&c->yuvTable); av_free(c->formatConvBuffer); av_free(c); } struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param) { static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT}; if (!param) param = default_param; if (context && (context->srcW != srcW || context->srcH != srcH || context->srcFormat != srcFormat || context->dstW != dstW || context->dstH != dstH || context->dstFormat != dstFormat || context->flags != flags || context->param[0] != param[0] || context->param[1] != param[1])) { sws_freeContext(context); context = NULL; } if (!context) { if (!(context = sws_alloc_context())) return NULL; context->srcW = srcW; context->srcH = srcH; context->srcRange = handle_jpeg(&srcFormat); context->srcFormat = srcFormat; context->dstW = dstW; context->dstH = dstH; context->dstRange = handle_jpeg(&dstFormat); context->dstFormat = dstFormat; context->flags = flags; context->param[0] = param[0]; context->param[1] = param[1]; sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], context->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, context->dstRange, 0, 1<<16, 1<<16); if (sws_init_context(context, srcFilter, dstFilter) < 0) { sws_freeContext(context); return NULL; } } return context; }