/* * adaptive and fixed codebook vector operations for ACELP-based codecs * * Copyright (c) 2008 Vladimir Voroshilov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include <inttypes.h> #include "libavutil/avassert.h" #include "libavutil/common.h" #include "libavutil/float_dsp.h" #include "avcodec.h" #include "acelp_vectors.h" const uint8_t ff_fc_2pulses_9bits_track1[16] = { 1, 3, 6, 8, 11, 13, 16, 18, 21, 23, 26, 28, 31, 33, 36, 38 }; const uint8_t ff_fc_2pulses_9bits_track1_gray[16] = { 1, 3, 8, 6, 18, 16, 11, 13, 38, 36, 31, 33, 21, 23, 28, 26, }; const uint8_t ff_fc_2pulses_9bits_track2_gray[32] = { 0, 2, 5, 4, 12, 10, 7, 9, 25, 24, 20, 22, 14, 15, 19, 17, 36, 31, 21, 26, 1, 6, 16, 11, 27, 29, 32, 30, 39, 37, 34, 35, }; const uint8_t ff_fc_4pulses_8bits_tracks_13[16] = { 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, }; const uint8_t ff_fc_4pulses_8bits_track_4[32] = { 3, 4, 8, 9, 13, 14, 18, 19, 23, 24, 28, 29, 33, 34, 38, 39, 43, 44, 48, 49, 53, 54, 58, 59, 63, 64, 68, 69, 73, 74, 78, 79, }; const float ff_pow_0_7[10] = { 0.700000, 0.490000, 0.343000, 0.240100, 0.168070, 0.117649, 0.082354, 0.057648, 0.040354, 0.028248 }; const float ff_pow_0_75[10] = { 0.750000, 0.562500, 0.421875, 0.316406, 0.237305, 0.177979, 0.133484, 0.100113, 0.075085, 0.056314 }; const float ff_pow_0_55[10] = { 0.550000, 0.302500, 0.166375, 0.091506, 0.050328, 0.027681, 0.015224, 0.008373, 0.004605, 0.002533 }; const float ff_b60_sinc[61] = { 0.898529 , 0.865051 , 0.769257 , 0.624054 , 0.448639 , 0.265289 , 0.0959167 , -0.0412598 , -0.134338 , -0.178986 , -0.178528 , -0.142609 , -0.0849304 , -0.0205078 , 0.0369568 , 0.0773926 , 0.0955200 , 0.0912781 , 0.0689392 , 0.0357056 , 0.0 , -0.0305481 , -0.0504150 , -0.0570068 , -0.0508423 , -0.0350037 , -0.0141602 , 0.00665283, 0.0230713 , 0.0323486 , 0.0335388 , 0.0275879 , 0.0167847 , 0.00411987, -0.00747681, -0.0156860 , -0.0193481 , -0.0183716 , -0.0137634 , -0.00704956, 0.0 , 0.00582886 , 0.00939941, 0.0103760 , 0.00903320, 0.00604248, 0.00238037, -0.00109863 , -0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834, 0.00103760, 0.00222778, 0.00277710, 0.00271606, 0.00213623, 0.00115967 , 0. }; void ff_acelp_fc_pulse_per_track( int16_t* fc_v, const uint8_t *tab1, const uint8_t *tab2, int pulse_indexes, int pulse_signs, int pulse_count, int bits) { int mask = (1 << bits) - 1; int i; for(i=0; i<pulse_count; i++) { fc_v[i + tab1[pulse_indexes & mask]] += (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13) pulse_indexes >>= bits; pulse_signs >>= 1; } fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192; } void ff_decode_10_pulses_35bits(const int16_t *fixed_index, AMRFixed *fixed_sparse, const uint8_t *gray_decode, int half_pulse_count, int bits) { int i; int mask = (1 << bits) - 1; fixed_sparse->no_repeat_mask = 0; fixed_sparse->n = 2 * half_pulse_count; for (i = 0; i < half_pulse_count; i++) { const int pos1 = gray_decode[fixed_index[2*i+1] & mask] + i; const int pos2 = gray_decode[fixed_index[2*i ] & mask] + i; const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0; fixed_sparse->x[2*i+1] = pos1; fixed_sparse->x[2*i ] = pos2; fixed_sparse->y[2*i+1] = sign; fixed_sparse->y[2*i ] = pos2 < pos1 ? -sign : sign; } } void ff_acelp_weighted_vector_sum( int16_t* out, const int16_t *in_a, const int16_t *in_b, int16_t weight_coeff_a, int16_t weight_coeff_b, int16_t rounder, int shift, int length) { int i; // Clipping required here; breaks OVERFLOW test. for(i=0; i<length; i++) out[i] = av_clip_int16(( in_a[i] * weight_coeff_a + in_b[i] * weight_coeff_b + rounder) >> shift); } void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b, float weight_coeff_a, float weight_coeff_b, int length) { int i; for(i=0; i<length; i++) out[i] = weight_coeff_a * in_a[i] + weight_coeff_b * in_b[i]; } void ff_adaptive_gain_control(float *out, const float *in, float speech_energ, int size, float alpha, float *gain_mem) { int i; float postfilter_energ = avpriv_scalarproduct_float_c(in, in, size); float gain_scale_factor = 1.0; float mem = *gain_mem; if (postfilter_energ) gain_scale_factor = sqrt(speech_energ / postfilter_energ); gain_scale_factor *= 1.0 - alpha; for (i = 0; i < size; i++) { mem = alpha * mem + gain_scale_factor; out[i] = in[i] * mem; } *gain_mem = mem; } void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in, float sum_of_squares, const int n) { int i; float scalefactor = avpriv_scalarproduct_float_c(in, in, n); if (scalefactor) scalefactor = sqrt(sum_of_squares / scalefactor); for (i = 0; i < n; i++) out[i] = in[i] * scalefactor; } void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size) { int i; for (i=0; i < in->n; i++) { int x = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1); float y = in->y[i] * scale; if (in->pitch_lag > 0) av_assert0(x < size); do { out[x] += y; y *= in->pitch_fac; x += in->pitch_lag; } while (x < size && repeats); } } void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size) { int i; for (i=0; i < in->n; i++) { int x = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1); if (in->pitch_lag > 0) do { out[x] = 0.0; x += in->pitch_lag; } while (x < size && repeats); } } void ff_acelp_vectors_init(ACELPVContext *c) { c->weighted_vector_sumf = ff_weighted_vector_sumf; if(HAVE_MIPSFPU) ff_acelp_vectors_init_mips(c); }