/* * HEVC video Decoder * * Copyright (C) 2012 - 2013 Guillaume Martres * Copyright (C) 2012 - 2013 Mickael Raulet * Copyright (C) 2012 - 2013 Gildas Cocherel * Copyright (C) 2012 - 2013 Wassim Hamidouche * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config_components.h" #include "libavutil/attributes.h" #include "libavutil/avstring.h" #include "libavutil/common.h" #include "libavutil/film_grain_params.h" #include "libavutil/internal.h" #include "libavutil/md5.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/timecode.h" #include "aom_film_grain.h" #include "bswapdsp.h" #include "cabac_functions.h" #include "codec_internal.h" #include "decode.h" #include "golomb.h" #include "hevc.h" #include "parse.h" #include "hevcdec.h" #include "hwaccel_internal.h" #include "hwconfig.h" #include "internal.h" #include "profiles.h" #include "progressframe.h" #include "refstruct.h" #include "thread.h" static const uint8_t hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 }; /** * NOTE: Each function hls_foo correspond to the function foo in the * specification (HLS stands for High Level Syntax). */ /** * Section 5.7 */ /* free everything allocated by pic_arrays_init() */ static void pic_arrays_free(HEVCContext *s) { av_freep(&s->sao); av_freep(&s->deblock); av_freep(&s->skip_flag); av_freep(&s->tab_ct_depth); av_freep(&s->tab_ipm); av_freep(&s->cbf_luma); av_freep(&s->is_pcm); av_freep(&s->qp_y_tab); av_freep(&s->tab_slice_address); av_freep(&s->filter_slice_edges); av_freep(&s->horizontal_bs); av_freep(&s->vertical_bs); ff_refstruct_pool_uninit(&s->tab_mvf_pool); ff_refstruct_pool_uninit(&s->rpl_tab_pool); } /* allocate arrays that depend on frame dimensions */ static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps) { int log2_min_cb_size = sps->log2_min_cb_size; int width = sps->width; int height = sps->height; int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) * ((height >> log2_min_cb_size) + 1); int ctb_count = sps->ctb_width * sps->ctb_height; int min_pu_size = sps->min_pu_width * sps->min_pu_height; s->bs_width = (width >> 2) + 1; s->bs_height = (height >> 2) + 1; s->sao = av_calloc(ctb_count, sizeof(*s->sao)); s->deblock = av_calloc(ctb_count, sizeof(*s->deblock)); if (!s->sao || !s->deblock) goto fail; s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width); s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width); if (!s->skip_flag || !s->tab_ct_depth) goto fail; s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height); s->tab_ipm = av_mallocz(min_pu_size); s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1); if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm) goto fail; s->filter_slice_edges = av_mallocz(ctb_count); s->tab_slice_address = av_malloc_array(pic_size_in_ctb, sizeof(*s->tab_slice_address)); s->qp_y_tab = av_malloc_array(pic_size_in_ctb, sizeof(*s->qp_y_tab)); if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address) goto fail; s->horizontal_bs = av_calloc(s->bs_width, s->bs_height); s->vertical_bs = av_calloc(s->bs_width, s->bs_height); if (!s->horizontal_bs || !s->vertical_bs) goto fail; s->tab_mvf_pool = ff_refstruct_pool_alloc(min_pu_size * sizeof(MvField), 0); s->rpl_tab_pool = ff_refstruct_pool_alloc(ctb_count * sizeof(RefPicListTab), 0); if (!s->tab_mvf_pool || !s->rpl_tab_pool) goto fail; return 0; fail: pic_arrays_free(s); return AVERROR(ENOMEM); } static int pred_weight_table(SliceHeader *sh, void *logctx, const HEVCSPS *sps, GetBitContext *gb) { int i = 0; int j = 0; uint8_t luma_weight_l0_flag[16]; uint8_t chroma_weight_l0_flag[16]; uint8_t luma_weight_l1_flag[16]; uint8_t chroma_weight_l1_flag[16]; int luma_log2_weight_denom; luma_log2_weight_denom = get_ue_golomb_long(gb); if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7) { av_log(logctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom); return AVERROR_INVALIDDATA; } sh->luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3); if (sps->chroma_format_idc != 0) { int64_t chroma_log2_weight_denom = luma_log2_weight_denom + (int64_t)get_se_golomb(gb); if (chroma_log2_weight_denom < 0 || chroma_log2_weight_denom > 7) { av_log(logctx, AV_LOG_ERROR, "chroma_log2_weight_denom %"PRId64" is invalid\n", chroma_log2_weight_denom); return AVERROR_INVALIDDATA; } sh->chroma_log2_weight_denom = chroma_log2_weight_denom; } for (i = 0; i < sh->nb_refs[L0]; i++) { luma_weight_l0_flag[i] = get_bits1(gb); if (!luma_weight_l0_flag[i]) { sh->luma_weight_l0[i] = 1 << sh->luma_log2_weight_denom; sh->luma_offset_l0[i] = 0; } } if (sps->chroma_format_idc != 0) { for (i = 0; i < sh->nb_refs[L0]; i++) chroma_weight_l0_flag[i] = get_bits1(gb); } else { for (i = 0; i < sh->nb_refs[L0]; i++) chroma_weight_l0_flag[i] = 0; } for (i = 0; i < sh->nb_refs[L0]; i++) { if (luma_weight_l0_flag[i]) { int delta_luma_weight_l0 = get_se_golomb(gb); if ((int8_t)delta_luma_weight_l0 != delta_luma_weight_l0) return AVERROR_INVALIDDATA; sh->luma_weight_l0[i] = (1 << sh->luma_log2_weight_denom) + delta_luma_weight_l0; sh->luma_offset_l0[i] = get_se_golomb(gb); } if (chroma_weight_l0_flag[i]) { for (j = 0; j < 2; j++) { int delta_chroma_weight_l0 = get_se_golomb(gb); int delta_chroma_offset_l0 = get_se_golomb(gb); if ( (int8_t)delta_chroma_weight_l0 != delta_chroma_weight_l0 || delta_chroma_offset_l0 < -(1<<17) || delta_chroma_offset_l0 > (1<<17)) { return AVERROR_INVALIDDATA; } sh->chroma_weight_l0[i][j] = (1 << sh->chroma_log2_weight_denom) + delta_chroma_weight_l0; sh->chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * sh->chroma_weight_l0[i][j]) >> sh->chroma_log2_weight_denom) + 128), -128, 127); } } else { sh->chroma_weight_l0[i][0] = 1 << sh->chroma_log2_weight_denom; sh->chroma_offset_l0[i][0] = 0; sh->chroma_weight_l0[i][1] = 1 << sh->chroma_log2_weight_denom; sh->chroma_offset_l0[i][1] = 0; } } if (sh->slice_type == HEVC_SLICE_B) { for (i = 0; i < sh->nb_refs[L1]; i++) { luma_weight_l1_flag[i] = get_bits1(gb); if (!luma_weight_l1_flag[i]) { sh->luma_weight_l1[i] = 1 << sh->luma_log2_weight_denom; sh->luma_offset_l1[i] = 0; } } if (sps->chroma_format_idc != 0) { for (i = 0; i < sh->nb_refs[L1]; i++) chroma_weight_l1_flag[i] = get_bits1(gb); } else { for (i = 0; i < sh->nb_refs[L1]; i++) chroma_weight_l1_flag[i] = 0; } for (i = 0; i < sh->nb_refs[L1]; i++) { if (luma_weight_l1_flag[i]) { int delta_luma_weight_l1 = get_se_golomb(gb); if ((int8_t)delta_luma_weight_l1 != delta_luma_weight_l1) return AVERROR_INVALIDDATA; sh->luma_weight_l1[i] = (1 << sh->luma_log2_weight_denom) + delta_luma_weight_l1; sh->luma_offset_l1[i] = get_se_golomb(gb); } if (chroma_weight_l1_flag[i]) { for (j = 0; j < 2; j++) { int delta_chroma_weight_l1 = get_se_golomb(gb); int delta_chroma_offset_l1 = get_se_golomb(gb); if ( (int8_t)delta_chroma_weight_l1 != delta_chroma_weight_l1 || delta_chroma_offset_l1 < -(1<<17) || delta_chroma_offset_l1 > (1<<17)) { return AVERROR_INVALIDDATA; } sh->chroma_weight_l1[i][j] = (1 << sh->chroma_log2_weight_denom) + delta_chroma_weight_l1; sh->chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * sh->chroma_weight_l1[i][j]) >> sh->chroma_log2_weight_denom) + 128), -128, 127); } } else { sh->chroma_weight_l1[i][0] = 1 << sh->chroma_log2_weight_denom; sh->chroma_offset_l1[i][0] = 0; sh->chroma_weight_l1[i][1] = 1 << sh->chroma_log2_weight_denom; sh->chroma_offset_l1[i][1] = 0; } } } return 0; } static int decode_lt_rps(const HEVCSPS *sps, LongTermRPS *rps, GetBitContext *gb, int cur_poc, int poc_lsb) { int max_poc_lsb = 1 << sps->log2_max_poc_lsb; int prev_delta_msb = 0; unsigned int nb_sps = 0, nb_sh; int i; rps->nb_refs = 0; if (!sps->long_term_ref_pics_present) return 0; if (sps->num_long_term_ref_pics_sps > 0) nb_sps = get_ue_golomb_long(gb); nb_sh = get_ue_golomb_long(gb); if (nb_sps > sps->num_long_term_ref_pics_sps) return AVERROR_INVALIDDATA; if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc)) return AVERROR_INVALIDDATA; rps->nb_refs = nb_sh + nb_sps; for (i = 0; i < rps->nb_refs; i++) { if (i < nb_sps) { uint8_t lt_idx_sps = 0; if (sps->num_long_term_ref_pics_sps > 1) lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps)); rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps]; rps->used[i] = !!(sps->used_by_curr_pic_lt & (1 << lt_idx_sps)); } else { rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb); rps->used[i] = get_bits1(gb); } rps->poc_msb_present[i] = get_bits1(gb); if (rps->poc_msb_present[i]) { int64_t delta = get_ue_golomb_long(gb); int64_t poc; if (i && i != nb_sps) delta += prev_delta_msb; poc = rps->poc[i] + cur_poc - delta * max_poc_lsb - poc_lsb; if (poc != (int32_t)poc) return AVERROR_INVALIDDATA; rps->poc[i] = poc; prev_delta_msb = delta; } } return 0; } static void export_stream_params(HEVCContext *s, const HEVCSPS *sps) { AVCodecContext *avctx = s->avctx; const HEVCVPS *vps = sps->vps; const HEVCWindow *ow = &sps->output_window; unsigned int num = 0, den = 0; avctx->pix_fmt = sps->pix_fmt; avctx->coded_width = sps->width; avctx->coded_height = sps->height; avctx->width = sps->width - ow->left_offset - ow->right_offset; avctx->height = sps->height - ow->top_offset - ow->bottom_offset; avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics; avctx->profile = sps->ptl.general_ptl.profile_idc; avctx->level = sps->ptl.general_ptl.level_idc; ff_set_sar(avctx, sps->vui.common.sar); if (sps->vui.common.video_signal_type_present_flag) avctx->color_range = sps->vui.common.video_full_range_flag ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG; else avctx->color_range = AVCOL_RANGE_MPEG; if (sps->vui.common.colour_description_present_flag) { avctx->color_primaries = sps->vui.common.colour_primaries; avctx->color_trc = sps->vui.common.transfer_characteristics; avctx->colorspace = sps->vui.common.matrix_coeffs; } else { avctx->color_primaries = AVCOL_PRI_UNSPECIFIED; avctx->color_trc = AVCOL_TRC_UNSPECIFIED; avctx->colorspace = AVCOL_SPC_UNSPECIFIED; } avctx->chroma_sample_location = AVCHROMA_LOC_UNSPECIFIED; if (sps->chroma_format_idc == 1) { if (sps->vui.common.chroma_loc_info_present_flag) { if (sps->vui.common.chroma_sample_loc_type_top_field <= 5) avctx->chroma_sample_location = sps->vui.common.chroma_sample_loc_type_top_field + 1; } else avctx->chroma_sample_location = AVCHROMA_LOC_LEFT; } if (vps->vps_timing_info_present_flag) { num = vps->vps_num_units_in_tick; den = vps->vps_time_scale; } else if (sps->vui.vui_timing_info_present_flag) { num = sps->vui.vui_num_units_in_tick; den = sps->vui.vui_time_scale; } if (num != 0 && den != 0) av_reduce(&avctx->framerate.den, &avctx->framerate.num, num, den, 1 << 30); } static int export_stream_params_from_sei(HEVCContext *s) { AVCodecContext *avctx = s->avctx; if (s->sei.common.a53_caption.buf_ref) s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS; if (s->sei.common.alternative_transfer.present && av_color_transfer_name(s->sei.common.alternative_transfer.preferred_transfer_characteristics) && s->sei.common.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) { avctx->color_trc = s->sei.common.alternative_transfer.preferred_transfer_characteristics; } if (s->sei.common.film_grain_characteristics.present || s->sei.common.aom_film_grain.enable) avctx->properties |= FF_CODEC_PROPERTY_FILM_GRAIN; return 0; } static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps) { #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + \ CONFIG_HEVC_D3D11VA_HWACCEL * 2 + \ CONFIG_HEVC_D3D12VA_HWACCEL + \ CONFIG_HEVC_NVDEC_HWACCEL + \ CONFIG_HEVC_VAAPI_HWACCEL + \ CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL + \ CONFIG_HEVC_VDPAU_HWACCEL + \ CONFIG_HEVC_VULKAN_HWACCEL) enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts; switch (sps->pix_fmt) { case AV_PIX_FMT_YUV420P: case AV_PIX_FMT_YUVJ420P: #if CONFIG_HEVC_DXVA2_HWACCEL *fmt++ = AV_PIX_FMT_DXVA2_VLD; #endif #if CONFIG_HEVC_D3D11VA_HWACCEL *fmt++ = AV_PIX_FMT_D3D11VA_VLD; *fmt++ = AV_PIX_FMT_D3D11; #endif #if CONFIG_HEVC_D3D12VA_HWACCEL *fmt++ = AV_PIX_FMT_D3D12; #endif #if CONFIG_HEVC_VAAPI_HWACCEL *fmt++ = AV_PIX_FMT_VAAPI; #endif #if CONFIG_HEVC_VDPAU_HWACCEL *fmt++ = AV_PIX_FMT_VDPAU; #endif #if CONFIG_HEVC_NVDEC_HWACCEL *fmt++ = AV_PIX_FMT_CUDA; #endif #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX; #endif #if CONFIG_HEVC_VULKAN_HWACCEL *fmt++ = AV_PIX_FMT_VULKAN; #endif break; case AV_PIX_FMT_YUV420P10: #if CONFIG_HEVC_DXVA2_HWACCEL *fmt++ = AV_PIX_FMT_DXVA2_VLD; #endif #if CONFIG_HEVC_D3D11VA_HWACCEL *fmt++ = AV_PIX_FMT_D3D11VA_VLD; *fmt++ = AV_PIX_FMT_D3D11; #endif #if CONFIG_HEVC_D3D12VA_HWACCEL *fmt++ = AV_PIX_FMT_D3D12; #endif #if CONFIG_HEVC_VAAPI_HWACCEL *fmt++ = AV_PIX_FMT_VAAPI; #endif #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX; #endif #if CONFIG_HEVC_VULKAN_HWACCEL *fmt++ = AV_PIX_FMT_VULKAN; #endif #if CONFIG_HEVC_VDPAU_HWACCEL *fmt++ = AV_PIX_FMT_VDPAU; #endif #if CONFIG_HEVC_NVDEC_HWACCEL *fmt++ = AV_PIX_FMT_CUDA; #endif break; case AV_PIX_FMT_YUV444P: #if CONFIG_HEVC_VAAPI_HWACCEL *fmt++ = AV_PIX_FMT_VAAPI; #endif #if CONFIG_HEVC_VDPAU_HWACCEL *fmt++ = AV_PIX_FMT_VDPAU; #endif #if CONFIG_HEVC_NVDEC_HWACCEL *fmt++ = AV_PIX_FMT_CUDA; #endif #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX; #endif #if CONFIG_HEVC_VULKAN_HWACCEL *fmt++ = AV_PIX_FMT_VULKAN; #endif break; case AV_PIX_FMT_YUV422P: case AV_PIX_FMT_YUV422P10LE: #if CONFIG_HEVC_VAAPI_HWACCEL *fmt++ = AV_PIX_FMT_VAAPI; #endif #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX; #endif #if CONFIG_HEVC_VULKAN_HWACCEL *fmt++ = AV_PIX_FMT_VULKAN; #endif break; case AV_PIX_FMT_YUV444P10: #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX; #endif /* NOTE: fallthrough */ case AV_PIX_FMT_YUV420P12: case AV_PIX_FMT_YUV444P12: #if CONFIG_HEVC_VAAPI_HWACCEL *fmt++ = AV_PIX_FMT_VAAPI; #endif #if CONFIG_HEVC_VDPAU_HWACCEL *fmt++ = AV_PIX_FMT_VDPAU; #endif #if CONFIG_HEVC_VULKAN_HWACCEL *fmt++ = AV_PIX_FMT_VULKAN; #endif #if CONFIG_HEVC_NVDEC_HWACCEL *fmt++ = AV_PIX_FMT_CUDA; #endif break; case AV_PIX_FMT_YUV422P12: #if CONFIG_HEVC_VAAPI_HWACCEL *fmt++ = AV_PIX_FMT_VAAPI; #endif #if CONFIG_HEVC_VULKAN_HWACCEL *fmt++ = AV_PIX_FMT_VULKAN; #endif break; } *fmt++ = sps->pix_fmt; *fmt = AV_PIX_FMT_NONE; return ff_get_format(s->avctx, pix_fmts); } static int set_sps(HEVCContext *s, const HEVCSPS *sps, enum AVPixelFormat pix_fmt) { int ret, i; pic_arrays_free(s); s->ps.sps = NULL; s->ps.vps = NULL; if (!sps) return 0; ret = pic_arrays_init(s, sps); if (ret < 0) goto fail; export_stream_params(s, sps); s->avctx->pix_fmt = pix_fmt; ff_hevc_pred_init(&s->hpc, sps->bit_depth); ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth); ff_videodsp_init (&s->vdsp, sps->bit_depth); for (i = 0; i < 3; i++) { av_freep(&s->sao_pixel_buffer_h[i]); av_freep(&s->sao_pixel_buffer_v[i]); } if (sps->sao_enabled && !s->avctx->hwaccel) { int c_count = (sps->chroma_format_idc != 0) ? 3 : 1; int c_idx; for(c_idx = 0; c_idx < c_count; c_idx++) { int w = sps->width >> sps->hshift[c_idx]; int h = sps->height >> sps->vshift[c_idx]; s->sao_pixel_buffer_h[c_idx] = av_malloc((w * 2 * sps->ctb_height) << sps->pixel_shift); s->sao_pixel_buffer_v[c_idx] = av_malloc((h * 2 * sps->ctb_width) << sps->pixel_shift); if (!s->sao_pixel_buffer_h[c_idx] || !s->sao_pixel_buffer_v[c_idx]) goto fail; } } s->ps.sps = sps; s->ps.vps = sps->vps; return 0; fail: pic_arrays_free(s); for (i = 0; i < 3; i++) { av_freep(&s->sao_pixel_buffer_h[i]); av_freep(&s->sao_pixel_buffer_v[i]); } s->ps.sps = NULL; return ret; } static int hls_slice_header(SliceHeader *sh, const HEVCContext *s, GetBitContext *gb) { const HEVCPPS *pps; const HEVCSPS *sps; unsigned pps_id; int i, ret; // Coded parameters sh->first_slice_in_pic_flag = get_bits1(gb); sh->no_output_of_prior_pics_flag = 0; if (IS_IRAP(s)) sh->no_output_of_prior_pics_flag = get_bits1(gb); pps_id = get_ue_golomb_long(gb); if (pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[pps_id]) { av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", pps_id); return AVERROR_INVALIDDATA; } if (!sh->first_slice_in_pic_flag && pps_id != sh->pps_id) { av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n"); return AVERROR_INVALIDDATA; } sh->pps_id = pps_id; pps = s->ps.pps_list[pps_id]; sps = pps->sps; if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1) sh->no_output_of_prior_pics_flag = 1; sh->dependent_slice_segment_flag = 0; if (!sh->first_slice_in_pic_flag) { int slice_address_length; if (pps->dependent_slice_segments_enabled_flag) sh->dependent_slice_segment_flag = get_bits1(gb); slice_address_length = av_ceil_log2(sps->ctb_width * sps->ctb_height); sh->slice_segment_addr = get_bitsz(gb, slice_address_length); if (sh->slice_segment_addr >= sps->ctb_width * sps->ctb_height) { av_log(s->avctx, AV_LOG_ERROR, "Invalid slice segment address: %u.\n", sh->slice_segment_addr); return AVERROR_INVALIDDATA; } if (!sh->dependent_slice_segment_flag) { sh->slice_addr = sh->slice_segment_addr; } } else { sh->slice_segment_addr = sh->slice_addr = 0; } if (!sh->dependent_slice_segment_flag) { for (i = 0; i < pps->num_extra_slice_header_bits; i++) skip_bits(gb, 1); // slice_reserved_undetermined_flag[] sh->slice_type = get_ue_golomb_long(gb); if (!(sh->slice_type == HEVC_SLICE_I || sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B)) { av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n", sh->slice_type); return AVERROR_INVALIDDATA; } if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I && !pps->pps_curr_pic_ref_enabled_flag) { av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n"); return AVERROR_INVALIDDATA; } // when flag is not present, picture is inferred to be output sh->pic_output_flag = 1; if (pps->output_flag_present_flag) sh->pic_output_flag = get_bits1(gb); if (sps->separate_colour_plane) sh->colour_plane_id = get_bits(gb, 2); if (!IS_IDR(s)) { int poc, pos; sh->pic_order_cnt_lsb = get_bits(gb, sps->log2_max_poc_lsb); poc = ff_hevc_compute_poc(sps, s->poc_tid0, sh->pic_order_cnt_lsb, s->nal_unit_type); if (!sh->first_slice_in_pic_flag && poc != sh->poc) { av_log(s->avctx, AV_LOG_WARNING, "Ignoring POC change between slices: %d -> %d\n", poc, sh->poc); if (s->avctx->err_recognition & AV_EF_EXPLODE) return AVERROR_INVALIDDATA; poc = sh->poc; } sh->poc = poc; sh->short_term_ref_pic_set_sps_flag = get_bits1(gb); pos = get_bits_left(gb); if (!sh->short_term_ref_pic_set_sps_flag) { ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, sps, 1); if (ret < 0) return ret; sh->short_term_rps = &sh->slice_rps; } else { int numbits, rps_idx; if (!sps->nb_st_rps) { av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n"); return AVERROR_INVALIDDATA; } numbits = av_ceil_log2(sps->nb_st_rps); rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0; sh->short_term_rps = &sps->st_rps[rps_idx]; } sh->short_term_ref_pic_set_size = pos - get_bits_left(gb); pos = get_bits_left(gb); ret = decode_lt_rps(sps, &sh->long_term_rps, gb, sh->poc, sh->pic_order_cnt_lsb); if (ret < 0) { av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n"); if (s->avctx->err_recognition & AV_EF_EXPLODE) return AVERROR_INVALIDDATA; } sh->long_term_ref_pic_set_size = pos - get_bits_left(gb); if (sps->temporal_mvp_enabled) sh->slice_temporal_mvp_enabled_flag = get_bits1(gb); else sh->slice_temporal_mvp_enabled_flag = 0; } else { sh->poc = 0; sh->pic_order_cnt_lsb = 0; sh->short_term_ref_pic_set_sps_flag = 0; sh->short_term_ref_pic_set_size = 0; sh->short_term_rps = NULL; sh->long_term_ref_pic_set_size = 0; sh->slice_temporal_mvp_enabled_flag = 0; } if (sps->sao_enabled) { sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb); if (sps->chroma_format_idc) { sh->slice_sample_adaptive_offset_flag[1] = sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb); } } else { sh->slice_sample_adaptive_offset_flag[0] = 0; sh->slice_sample_adaptive_offset_flag[1] = 0; sh->slice_sample_adaptive_offset_flag[2] = 0; } sh->nb_refs[L0] = sh->nb_refs[L1] = 0; if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) { int nb_refs; sh->nb_refs[L0] = pps->num_ref_idx_l0_default_active; if (sh->slice_type == HEVC_SLICE_B) sh->nb_refs[L1] = pps->num_ref_idx_l1_default_active; if (get_bits1(gb)) { // num_ref_idx_active_override_flag sh->nb_refs[L0] = get_ue_golomb_31(gb) + 1; if (sh->slice_type == HEVC_SLICE_B) sh->nb_refs[L1] = get_ue_golomb_31(gb) + 1; } if (sh->nb_refs[L0] >= HEVC_MAX_REFS || sh->nb_refs[L1] >= HEVC_MAX_REFS) { av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n", sh->nb_refs[L0], sh->nb_refs[L1]); return AVERROR_INVALIDDATA; } sh->rpl_modification_flag[0] = 0; sh->rpl_modification_flag[1] = 0; nb_refs = ff_hevc_frame_nb_refs(sh, pps); if (!nb_refs) { av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n"); return AVERROR_INVALIDDATA; } if (pps->lists_modification_present_flag && nb_refs > 1) { sh->rpl_modification_flag[0] = get_bits1(gb); if (sh->rpl_modification_flag[0]) { for (i = 0; i < sh->nb_refs[L0]; i++) sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs)); } if (sh->slice_type == HEVC_SLICE_B) { sh->rpl_modification_flag[1] = get_bits1(gb); if (sh->rpl_modification_flag[1] == 1) for (i = 0; i < sh->nb_refs[L1]; i++) sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs)); } } if (sh->slice_type == HEVC_SLICE_B) sh->mvd_l1_zero_flag = get_bits1(gb); if (pps->cabac_init_present_flag) sh->cabac_init_flag = get_bits1(gb); else sh->cabac_init_flag = 0; sh->collocated_ref_idx = 0; if (sh->slice_temporal_mvp_enabled_flag) { sh->collocated_list = L0; if (sh->slice_type == HEVC_SLICE_B) sh->collocated_list = !get_bits1(gb); if (sh->nb_refs[sh->collocated_list] > 1) { sh->collocated_ref_idx = get_ue_golomb_long(gb); if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) { av_log(s->avctx, AV_LOG_ERROR, "Invalid collocated_ref_idx: %d.\n", sh->collocated_ref_idx); return AVERROR_INVALIDDATA; } } } if ((pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) || (pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) { int ret = pred_weight_table(sh, s->avctx, sps, gb); if (ret < 0) return ret; } sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb); if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) { av_log(s->avctx, AV_LOG_ERROR, "Invalid number of merging MVP candidates: %d.\n", sh->max_num_merge_cand); return AVERROR_INVALIDDATA; } // Syntax in 7.3.6.1 if (sps->motion_vector_resolution_control_idc == 2) sh->use_integer_mv_flag = get_bits1(gb); else // Inferred to be equal to motion_vector_resolution_control_idc if not present sh->use_integer_mv_flag = sps->motion_vector_resolution_control_idc; } sh->slice_qp_delta = get_se_golomb(gb); if (pps->pic_slice_level_chroma_qp_offsets_present_flag) { sh->slice_cb_qp_offset = get_se_golomb(gb); sh->slice_cr_qp_offset = get_se_golomb(gb); if (sh->slice_cb_qp_offset < -12 || sh->slice_cb_qp_offset > 12 || sh->slice_cr_qp_offset < -12 || sh->slice_cr_qp_offset > 12) { av_log(s->avctx, AV_LOG_ERROR, "Invalid slice cx qp offset.\n"); return AVERROR_INVALIDDATA; } } else { sh->slice_cb_qp_offset = 0; sh->slice_cr_qp_offset = 0; } if (pps->pps_slice_act_qp_offsets_present_flag) { sh->slice_act_y_qp_offset = get_se_golomb(gb); sh->slice_act_cb_qp_offset = get_se_golomb(gb); sh->slice_act_cr_qp_offset = get_se_golomb(gb); } if (pps->chroma_qp_offset_list_enabled_flag) sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb); else sh->cu_chroma_qp_offset_enabled_flag = 0; if (pps->deblocking_filter_control_present_flag) { int deblocking_filter_override_flag = 0; if (pps->deblocking_filter_override_enabled_flag) deblocking_filter_override_flag = get_bits1(gb); if (deblocking_filter_override_flag) { sh->disable_deblocking_filter_flag = get_bits1(gb); if (!sh->disable_deblocking_filter_flag) { int beta_offset_div2 = get_se_golomb(gb); int tc_offset_div2 = get_se_golomb(gb) ; if (beta_offset_div2 < -6 || beta_offset_div2 > 6 || tc_offset_div2 < -6 || tc_offset_div2 > 6) { av_log(s->avctx, AV_LOG_ERROR, "Invalid deblock filter offsets: %d, %d\n", beta_offset_div2, tc_offset_div2); return AVERROR_INVALIDDATA; } sh->beta_offset = beta_offset_div2 * 2; sh->tc_offset = tc_offset_div2 * 2; } } else { sh->disable_deblocking_filter_flag = pps->disable_dbf; sh->beta_offset = pps->beta_offset; sh->tc_offset = pps->tc_offset; } } else { sh->disable_deblocking_filter_flag = 0; sh->beta_offset = 0; sh->tc_offset = 0; } if (pps->seq_loop_filter_across_slices_enabled_flag && (sh->slice_sample_adaptive_offset_flag[0] || sh->slice_sample_adaptive_offset_flag[1] || !sh->disable_deblocking_filter_flag)) { sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb); } else { sh->slice_loop_filter_across_slices_enabled_flag = pps->seq_loop_filter_across_slices_enabled_flag; } } else if (!s->slice_initialized) { av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n"); return AVERROR_INVALIDDATA; } sh->num_entry_point_offsets = 0; if (pps->tiles_enabled_flag || pps->entropy_coding_sync_enabled_flag) { unsigned num_entry_point_offsets = get_ue_golomb_long(gb); // It would be possible to bound this tighter but this here is simpler if (num_entry_point_offsets > get_bits_left(gb)) { av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets); return AVERROR_INVALIDDATA; } sh->num_entry_point_offsets = num_entry_point_offsets; if (sh->num_entry_point_offsets > 0) { int offset_len = get_ue_golomb_long(gb) + 1; if (offset_len < 1 || offset_len > 32) { sh->num_entry_point_offsets = 0; av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len); return AVERROR_INVALIDDATA; } av_freep(&sh->entry_point_offset); av_freep(&sh->offset); av_freep(&sh->size); sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned)); sh->offset = av_malloc_array(sh->num_entry_point_offsets + 1, sizeof(int)); sh->size = av_malloc_array(sh->num_entry_point_offsets + 1, sizeof(int)); if (!sh->entry_point_offset || !sh->offset || !sh->size) { sh->num_entry_point_offsets = 0; av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n"); return AVERROR(ENOMEM); } for (i = 0; i < sh->num_entry_point_offsets; i++) { unsigned val = get_bits_long(gb, offset_len); sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size } } } if (pps->slice_header_extension_present_flag) { unsigned int length = get_ue_golomb_long(gb); if (length*8LL > get_bits_left(gb)) { av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n"); return AVERROR_INVALIDDATA; } for (i = 0; i < length; i++) skip_bits(gb, 8); // slice_header_extension_data_byte } ret = get_bits1(gb); if (!ret) { av_log(s->avctx, AV_LOG_ERROR, "alignment_bit_equal_to_one=0\n"); return AVERROR_INVALIDDATA; } sh->data_offset = align_get_bits(gb) - gb->buffer; // Inferred parameters sh->slice_qp = 26U + pps->pic_init_qp_minus26 + sh->slice_qp_delta; if (sh->slice_qp > 51 || sh->slice_qp < -sps->qp_bd_offset) { av_log(s->avctx, AV_LOG_ERROR, "The slice_qp %d is outside the valid range " "[%d, 51].\n", sh->slice_qp, -sps->qp_bd_offset); return AVERROR_INVALIDDATA; } sh->slice_ctb_addr_rs = sh->slice_segment_addr; if (sh->dependent_slice_segment_flag && (!sh->slice_ctb_addr_rs || !pps->ctb_addr_rs_to_ts[sh->slice_ctb_addr_rs])) { av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n"); return AVERROR_INVALIDDATA; } if (get_bits_left(gb) < 0) { av_log(s->avctx, AV_LOG_ERROR, "Overread slice header by %d bits\n", -get_bits_left(gb)); return AVERROR_INVALIDDATA; } return 0; } #define CTB(tab, x, y) ((tab)[(y) * sps->ctb_width + (x)]) #define SET_SAO(elem, value) \ do { \ if (!sao_merge_up_flag && !sao_merge_left_flag) \ sao->elem = value; \ else if (sao_merge_left_flag) \ sao->elem = CTB(s->sao, rx-1, ry).elem; \ else if (sao_merge_up_flag) \ sao->elem = CTB(s->sao, rx, ry-1).elem; \ else \ sao->elem = 0; \ } while (0) static void hls_sao_param(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, int rx, int ry) { const HEVCContext *const s = lc->parent; int sao_merge_left_flag = 0; int sao_merge_up_flag = 0; SAOParams *sao = &CTB(s->sao, rx, ry); int c_idx, i; if (s->sh.slice_sample_adaptive_offset_flag[0] || s->sh.slice_sample_adaptive_offset_flag[1]) { if (rx > 0) { if (lc->ctb_left_flag) sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(lc); } if (ry > 0 && !sao_merge_left_flag) { if (lc->ctb_up_flag) sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(lc); } } for (c_idx = 0; c_idx < (sps->chroma_format_idc ? 3 : 1); c_idx++) { int log2_sao_offset_scale = c_idx == 0 ? pps->log2_sao_offset_scale_luma : pps->log2_sao_offset_scale_chroma; if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) { sao->type_idx[c_idx] = SAO_NOT_APPLIED; continue; } if (c_idx == 2) { sao->type_idx[2] = sao->type_idx[1]; sao->eo_class[2] = sao->eo_class[1]; } else { SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(lc)); } if (sao->type_idx[c_idx] == SAO_NOT_APPLIED) continue; for (i = 0; i < 4; i++) SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(lc, sps->bit_depth)); if (sao->type_idx[c_idx] == SAO_BAND) { for (i = 0; i < 4; i++) { if (sao->offset_abs[c_idx][i]) { SET_SAO(offset_sign[c_idx][i], ff_hevc_sao_offset_sign_decode(lc)); } else { sao->offset_sign[c_idx][i] = 0; } } SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(lc)); } else if (c_idx != 2) { SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(lc)); } // Inferred parameters sao->offset_val[c_idx][0] = 0; for (i = 0; i < 4; i++) { sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i]; if (sao->type_idx[c_idx] == SAO_EDGE) { if (i > 1) sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1]; } else if (sao->offset_sign[c_idx][i]) { sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1]; } sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale; } } } #undef SET_SAO #undef CTB static int hls_cross_component_pred(HEVCLocalContext *lc, int idx) { int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(lc, idx); if (log2_res_scale_abs_plus1 != 0) { int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(lc, idx); lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) * (1 - 2 * res_scale_sign_flag); } else { lc->tu.res_scale_val = 0; } return 0; } static int hls_transform_unit(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, int x0, int y0, int xBase, int yBase, int cb_xBase, int cb_yBase, int log2_cb_size, int log2_trafo_size, int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr) { const HEVCContext *const s = lc->parent; const int log2_trafo_size_c = log2_trafo_size - sps->hshift[1]; int i; if (lc->cu.pred_mode == MODE_INTRA) { int trafo_size = 1 << log2_trafo_size; ff_hevc_set_neighbour_available(lc, x0, y0, trafo_size, trafo_size, sps->log2_ctb_size); s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, x0, y0, 0); } if (cbf_luma || cbf_cb[0] || cbf_cr[0] || (sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) { int scan_idx = SCAN_DIAG; int scan_idx_c = SCAN_DIAG; int cbf_chroma = cbf_cb[0] || cbf_cr[0] || (sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1])); if (pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) { lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(lc); if (lc->tu.cu_qp_delta != 0) if (ff_hevc_cu_qp_delta_sign_flag(lc) == 1) lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta; lc->tu.is_cu_qp_delta_coded = 1; if (lc->tu.cu_qp_delta < -(26 + sps->qp_bd_offset / 2) || lc->tu.cu_qp_delta > (25 + sps->qp_bd_offset / 2)) { av_log(s->avctx, AV_LOG_ERROR, "The cu_qp_delta %d is outside the valid range " "[%d, %d].\n", lc->tu.cu_qp_delta, -(26 + sps->qp_bd_offset / 2), (25 + sps->qp_bd_offset / 2)); return AVERROR_INVALIDDATA; } ff_hevc_set_qPy(lc, pps, cb_xBase, cb_yBase, log2_cb_size); } if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma && !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) { int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(lc); if (cu_chroma_qp_offset_flag) { int cu_chroma_qp_offset_idx = 0; if (pps->chroma_qp_offset_list_len_minus1 > 0) { cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(lc, pps->chroma_qp_offset_list_len_minus1); av_log(s->avctx, AV_LOG_ERROR, "cu_chroma_qp_offset_idx not yet tested.\n"); } lc->tu.cu_qp_offset_cb = pps->cb_qp_offset_list[cu_chroma_qp_offset_idx]; lc->tu.cu_qp_offset_cr = pps->cr_qp_offset_list[cu_chroma_qp_offset_idx]; } else { lc->tu.cu_qp_offset_cb = 0; lc->tu.cu_qp_offset_cr = 0; } lc->tu.is_cu_chroma_qp_offset_coded = 1; } if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) { if (lc->tu.intra_pred_mode >= 6 && lc->tu.intra_pred_mode <= 14) { scan_idx = SCAN_VERT; } else if (lc->tu.intra_pred_mode >= 22 && lc->tu.intra_pred_mode <= 30) { scan_idx = SCAN_HORIZ; } if (lc->tu.intra_pred_mode_c >= 6 && lc->tu.intra_pred_mode_c <= 14) { scan_idx_c = SCAN_VERT; } else if (lc->tu.intra_pred_mode_c >= 22 && lc->tu.intra_pred_mode_c <= 30) { scan_idx_c = SCAN_HORIZ; } } lc->tu.cross_pf = 0; if (cbf_luma) ff_hevc_hls_residual_coding(lc, pps, x0, y0, log2_trafo_size, scan_idx, 0); if (sps->chroma_format_idc && (log2_trafo_size > 2 || sps->chroma_format_idc == 3)) { int trafo_size_h = 1 << (log2_trafo_size_c + sps->hshift[1]); int trafo_size_v = 1 << (log2_trafo_size_c + sps->vshift[1]); lc->tu.cross_pf = (pps->cross_component_prediction_enabled_flag && cbf_luma && (lc->cu.pred_mode == MODE_INTER || (lc->tu.chroma_mode_c == 4))); if (lc->tu.cross_pf) { hls_cross_component_pred(lc, 0); } for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) { if (lc->cu.pred_mode == MODE_INTRA) { ff_hevc_set_neighbour_available(lc, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v, sps->log2_ctb_size); s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (i << log2_trafo_size_c), 1); } if (cbf_cb[i]) ff_hevc_hls_residual_coding(lc, pps, x0, y0 + (i << log2_trafo_size_c), log2_trafo_size_c, scan_idx_c, 1); else if (lc->tu.cross_pf) { ptrdiff_t stride = s->cur_frame->f->linesize[1]; int hshift = sps->hshift[1]; int vshift = sps->vshift[1]; const int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer; int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2; int size = 1 << log2_trafo_size_c; uint8_t *dst = &s->cur_frame->f->data[1][(y0 >> vshift) * stride + ((x0 >> hshift) << sps->pixel_shift)]; for (i = 0; i < (size * size); i++) { coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3); } s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride); } } if (lc->tu.cross_pf) { hls_cross_component_pred(lc, 1); } for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) { if (lc->cu.pred_mode == MODE_INTRA) { ff_hevc_set_neighbour_available(lc, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v, sps->log2_ctb_size); s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (i << log2_trafo_size_c), 2); } if (cbf_cr[i]) ff_hevc_hls_residual_coding(lc, pps, x0, y0 + (i << log2_trafo_size_c), log2_trafo_size_c, scan_idx_c, 2); else if (lc->tu.cross_pf) { ptrdiff_t stride = s->cur_frame->f->linesize[2]; int hshift = sps->hshift[2]; int vshift = sps->vshift[2]; const int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer; int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2; int size = 1 << log2_trafo_size_c; uint8_t *dst = &s->cur_frame->f->data[2][(y0 >> vshift) * stride + ((x0 >> hshift) << sps->pixel_shift)]; for (i = 0; i < (size * size); i++) { coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3); } s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride); } } } else if (sps->chroma_format_idc && blk_idx == 3) { int trafo_size_h = 1 << (log2_trafo_size + 1); int trafo_size_v = 1 << (log2_trafo_size + sps->vshift[1]); for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) { if (lc->cu.pred_mode == MODE_INTRA) { ff_hevc_set_neighbour_available(lc, xBase, yBase + (i << log2_trafo_size), trafo_size_h, trafo_size_v, sps->log2_ctb_size); s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (i << log2_trafo_size), 1); } if (cbf_cb[i]) ff_hevc_hls_residual_coding(lc, pps, xBase, yBase + (i << log2_trafo_size), log2_trafo_size, scan_idx_c, 1); } for (i = 0; i < (sps->chroma_format_idc == 2 ? 2 : 1); i++) { if (lc->cu.pred_mode == MODE_INTRA) { ff_hevc_set_neighbour_available(lc, xBase, yBase + (i << log2_trafo_size), trafo_size_h, trafo_size_v, sps->log2_ctb_size); s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (i << log2_trafo_size), 2); } if (cbf_cr[i]) ff_hevc_hls_residual_coding(lc, pps, xBase, yBase + (i << log2_trafo_size), log2_trafo_size, scan_idx_c, 2); } } } else if (sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) { if (log2_trafo_size > 2 || sps->chroma_format_idc == 3) { int trafo_size_h = 1 << (log2_trafo_size_c + sps->hshift[1]); int trafo_size_v = 1 << (log2_trafo_size_c + sps->vshift[1]); ff_hevc_set_neighbour_available(lc, x0, y0, trafo_size_h, trafo_size_v, sps->log2_ctb_size); s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0, 1); s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0, 2); if (sps->chroma_format_idc == 2) { ff_hevc_set_neighbour_available(lc, x0, y0 + (1 << log2_trafo_size_c), trafo_size_h, trafo_size_v, sps->log2_ctb_size); s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (1 << log2_trafo_size_c), 1); s->hpc.intra_pred[log2_trafo_size_c - 2](lc, pps, x0, y0 + (1 << log2_trafo_size_c), 2); } } else if (blk_idx == 3) { int trafo_size_h = 1 << (log2_trafo_size + 1); int trafo_size_v = 1 << (log2_trafo_size + sps->vshift[1]); ff_hevc_set_neighbour_available(lc, xBase, yBase, trafo_size_h, trafo_size_v, sps->log2_ctb_size); s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase, 1); s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase, 2); if (sps->chroma_format_idc == 2) { ff_hevc_set_neighbour_available(lc, xBase, yBase + (1 << log2_trafo_size), trafo_size_h, trafo_size_v, sps->log2_ctb_size); s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (1 << log2_trafo_size), 1); s->hpc.intra_pred[log2_trafo_size - 2](lc, pps, xBase, yBase + (1 << log2_trafo_size), 2); } } } return 0; } static void set_deblocking_bypass(const HEVCContext *s, const HEVCSPS *sps, int x0, int y0, int log2_cb_size) { int cb_size = 1 << log2_cb_size; int log2_min_pu_size = sps->log2_min_pu_size; int min_pu_width = sps->min_pu_width; int x_end = FFMIN(x0 + cb_size, sps->width); int y_end = FFMIN(y0 + cb_size, sps->height); int i, j; for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++) for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++) s->is_pcm[i + j * min_pu_width] = 2; } static int hls_transform_tree(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, int x0, int y0, int xBase, int yBase, int cb_xBase, int cb_yBase, int log2_cb_size, int log2_trafo_size, int trafo_depth, int blk_idx, const int *base_cbf_cb, const int *base_cbf_cr) { const HEVCContext *const s = lc->parent; uint8_t split_transform_flag; int cbf_cb[2]; int cbf_cr[2]; int ret; cbf_cb[0] = base_cbf_cb[0]; cbf_cb[1] = base_cbf_cb[1]; cbf_cr[0] = base_cbf_cr[0]; cbf_cr[1] = base_cbf_cr[1]; if (lc->cu.intra_split_flag) { if (trafo_depth == 1) { lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx]; if (sps->chroma_format_idc == 3) { lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx]; lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx]; } else { lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0]; lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0]; } } } else { lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0]; lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0]; lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0]; } if (log2_trafo_size <= sps->log2_max_trafo_size && log2_trafo_size > sps->log2_min_tb_size && trafo_depth < lc->cu.max_trafo_depth && !(lc->cu.intra_split_flag && trafo_depth == 0)) { split_transform_flag = ff_hevc_split_transform_flag_decode(lc, log2_trafo_size); } else { int inter_split = sps->max_transform_hierarchy_depth_inter == 0 && lc->cu.pred_mode == MODE_INTER && lc->cu.part_mode != PART_2Nx2N && trafo_depth == 0; split_transform_flag = log2_trafo_size > sps->log2_max_trafo_size || (lc->cu.intra_split_flag && trafo_depth == 0) || inter_split; } if (sps->chroma_format_idc && (log2_trafo_size > 2 || sps->chroma_format_idc == 3)) { if (trafo_depth == 0 || cbf_cb[0]) { cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth); if (sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) { cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth); } } if (trafo_depth == 0 || cbf_cr[0]) { cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth); if (sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) { cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(lc, trafo_depth); } } } if (split_transform_flag) { const int trafo_size_split = 1 << (log2_trafo_size - 1); const int x1 = x0 + trafo_size_split; const int y1 = y0 + trafo_size_split; #define SUBDIVIDE(x, y, idx) \ do { \ ret = hls_transform_tree(lc, pps, sps, \ x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \ log2_trafo_size - 1, trafo_depth + 1, idx, \ cbf_cb, cbf_cr); \ if (ret < 0) \ return ret; \ } while (0) SUBDIVIDE(x0, y0, 0); SUBDIVIDE(x1, y0, 1); SUBDIVIDE(x0, y1, 2); SUBDIVIDE(x1, y1, 3); #undef SUBDIVIDE } else { int min_tu_size = 1 << sps->log2_min_tb_size; int log2_min_tu_size = sps->log2_min_tb_size; int min_tu_width = sps->min_tb_width; int cbf_luma = 1; if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 || cbf_cb[0] || cbf_cr[0] || (sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) { cbf_luma = ff_hevc_cbf_luma_decode(lc, trafo_depth); } ret = hls_transform_unit(lc, pps, sps, x0, y0, xBase, yBase, cb_xBase, cb_yBase, log2_cb_size, log2_trafo_size, blk_idx, cbf_luma, cbf_cb, cbf_cr); if (ret < 0) return ret; // TODO: store cbf_luma somewhere else if (cbf_luma) { int i, j; for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size) for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) { int x_tu = (x0 + j) >> log2_min_tu_size; int y_tu = (y0 + i) >> log2_min_tu_size; s->cbf_luma[y_tu * min_tu_width + x_tu] = 1; } } if (!s->sh.disable_deblocking_filter_flag) { ff_hevc_deblocking_boundary_strengths(lc, pps, x0, y0, log2_trafo_size); if (pps->transquant_bypass_enable_flag && lc->cu.cu_transquant_bypass_flag) set_deblocking_bypass(s, sps, x0, y0, log2_trafo_size); } } return 0; } static int hls_pcm_sample(HEVCLocalContext *lc, const HEVCPPS *pps, int x0, int y0, int log2_cb_size) { const HEVCContext *const s = lc->parent; const HEVCSPS *const sps = pps->sps; GetBitContext gb; int cb_size = 1 << log2_cb_size; ptrdiff_t stride0 = s->cur_frame->f->linesize[0]; ptrdiff_t stride1 = s->cur_frame->f->linesize[1]; ptrdiff_t stride2 = s->cur_frame->f->linesize[2]; uint8_t *dst0 = &s->cur_frame->f->data[0][y0 * stride0 + (x0 << sps->pixel_shift)]; uint8_t *dst1 = &s->cur_frame->f->data[1][(y0 >> sps->vshift[1]) * stride1 + ((x0 >> sps->hshift[1]) << sps->pixel_shift)]; uint8_t *dst2 = &s->cur_frame->f->data[2][(y0 >> sps->vshift[2]) * stride2 + ((x0 >> sps->hshift[2]) << sps->pixel_shift)]; int length = cb_size * cb_size * sps->pcm.bit_depth + (((cb_size >> sps->hshift[1]) * (cb_size >> sps->vshift[1])) + ((cb_size >> sps->hshift[2]) * (cb_size >> sps->vshift[2]))) * sps->pcm.bit_depth_chroma; const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3); int ret; if (!s->sh.disable_deblocking_filter_flag) ff_hevc_deblocking_boundary_strengths(lc, pps, x0, y0, log2_cb_size); ret = init_get_bits(&gb, pcm, length); if (ret < 0) return ret; s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, sps->pcm.bit_depth); if (sps->chroma_format_idc) { s->hevcdsp.put_pcm(dst1, stride1, cb_size >> sps->hshift[1], cb_size >> sps->vshift[1], &gb, sps->pcm.bit_depth_chroma); s->hevcdsp.put_pcm(dst2, stride2, cb_size >> sps->hshift[2], cb_size >> sps->vshift[2], &gb, sps->pcm.bit_depth_chroma); } return 0; } /** * 8.5.3.2.2.1 Luma sample unidirectional interpolation process * * @param s HEVC decoding context * @param dst target buffer for block data at block position * @param dststride stride of the dst buffer * @param ref reference picture buffer at origin (0, 0) * @param mv motion vector (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block * @param block_h height of block * @param luma_weight weighting factor applied to the luma prediction * @param luma_offset additive offset applied to the luma prediction value */ static void luma_mc_uni(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, uint8_t *dst, ptrdiff_t dststride, const AVFrame *ref, const Mv *mv, int x_off, int y_off, int block_w, int block_h, int luma_weight, int luma_offset) { const HEVCContext *const s = lc->parent; const uint8_t *src = ref->data[0]; ptrdiff_t srcstride = ref->linesize[0]; int pic_width = sps->width; int pic_height = sps->height; int mx = mv->x & 3; int my = mv->y & 3; int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) || (s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag); int idx = hevc_pel_weight[block_w]; x_off += mv->x >> 2; y_off += mv->y >> 2; src += y_off * srcstride + (x_off * (1 << sps->pixel_shift)); if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER || x_off >= pic_width - block_w - QPEL_EXTRA_AFTER || y_off >= pic_height - block_h - QPEL_EXTRA_AFTER || ref == s->cur_frame->f) { const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift; int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << sps->pixel_shift); int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset, edge_emu_stride, srcstride, block_w + QPEL_EXTRA, block_h + QPEL_EXTRA, x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE, pic_width, pic_height); src = lc->edge_emu_buffer + buf_offset; srcstride = edge_emu_stride; } if (!weight_flag) s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride, block_h, mx, my, block_w); else s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride, block_h, s->sh.luma_log2_weight_denom, luma_weight, luma_offset, mx, my, block_w); } /** * 8.5.3.2.2.1 Luma sample bidirectional interpolation process * * @param s HEVC decoding context * @param dst target buffer for block data at block position * @param dststride stride of the dst buffer * @param ref0 reference picture0 buffer at origin (0, 0) * @param mv0 motion vector0 (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block * @param block_h height of block * @param ref1 reference picture1 buffer at origin (0, 0) * @param mv1 motion vector1 (relative to block position) to get pixel data from * @param current_mv current motion vector structure */ static void luma_mc_bi(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, uint8_t *dst, ptrdiff_t dststride, const AVFrame *ref0, const Mv *mv0, int x_off, int y_off, int block_w, int block_h, const AVFrame *ref1, const Mv *mv1, struct MvField *current_mv) { const HEVCContext *const s = lc->parent; ptrdiff_t src0stride = ref0->linesize[0]; ptrdiff_t src1stride = ref1->linesize[0]; int pic_width = sps->width; int pic_height = sps->height; int mx0 = mv0->x & 3; int my0 = mv0->y & 3; int mx1 = mv1->x & 3; int my1 = mv1->y & 3; int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) || (s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag); int x_off0 = x_off + (mv0->x >> 2); int y_off0 = y_off + (mv0->y >> 2); int x_off1 = x_off + (mv1->x >> 2); int y_off1 = y_off + (mv1->y >> 2); int idx = hevc_pel_weight[block_w]; const uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << sps->pixel_shift); const uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << sps->pixel_shift); if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER || x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER || y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) { const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift; int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift); int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset, edge_emu_stride, src0stride, block_w + QPEL_EXTRA, block_h + QPEL_EXTRA, x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE, pic_width, pic_height); src0 = lc->edge_emu_buffer + buf_offset; src0stride = edge_emu_stride; } if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER || x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER || y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) { const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift; int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift); int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << sps->pixel_shift); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset, edge_emu_stride, src1stride, block_w + QPEL_EXTRA, block_h + QPEL_EXTRA, x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE, pic_width, pic_height); src1 = lc->edge_emu_buffer2 + buf_offset; src1stride = edge_emu_stride; } s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride, block_h, mx0, my0, block_w); if (!weight_flag) s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp, block_h, mx1, my1, block_w); else s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp, block_h, s->sh.luma_log2_weight_denom, s->sh.luma_weight_l0[current_mv->ref_idx[0]], s->sh.luma_weight_l1[current_mv->ref_idx[1]], s->sh.luma_offset_l0[current_mv->ref_idx[0]], s->sh.luma_offset_l1[current_mv->ref_idx[1]], mx1, my1, block_w); } /** * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process * * @param s HEVC decoding context * @param dst1 target buffer for block data at block position (U plane) * @param dst2 target buffer for block data at block position (V plane) * @param dststride stride of the dst1 and dst2 buffers * @param ref reference picture buffer at origin (0, 0) * @param mv motion vector (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block * @param block_h height of block * @param chroma_weight weighting factor applied to the chroma prediction * @param chroma_offset additive offset applied to the chroma prediction value */ static void chroma_mc_uni(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, uint8_t *dst0, ptrdiff_t dststride, const uint8_t *src0, ptrdiff_t srcstride, int reflist, int x_off, int y_off, int block_w, int block_h, const struct MvField *current_mv, int chroma_weight, int chroma_offset) { const HEVCContext *const s = lc->parent; int pic_width = sps->width >> sps->hshift[1]; int pic_height = sps->height >> sps->vshift[1]; const Mv *mv = ¤t_mv->mv[reflist]; int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) || (s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag); int idx = hevc_pel_weight[block_w]; int hshift = sps->hshift[1]; int vshift = sps->vshift[1]; intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift); intptr_t my = av_mod_uintp2(mv->y, 2 + vshift); intptr_t _mx = mx << (1 - hshift); intptr_t _my = my << (1 - vshift); int emu = src0 == s->cur_frame->f->data[1] || src0 == s->cur_frame->f->data[2]; x_off += mv->x >> (2 + hshift); y_off += mv->y >> (2 + vshift); src0 += y_off * srcstride + (x_off * (1 << sps->pixel_shift)); if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER || x_off >= pic_width - block_w - EPEL_EXTRA_AFTER || y_off >= pic_height - block_h - EPEL_EXTRA_AFTER || emu) { const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift; int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << sps->pixel_shift)); int buf_offset0 = EPEL_EXTRA_BEFORE * (edge_emu_stride + (1 << sps->pixel_shift)); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0, edge_emu_stride, srcstride, block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, x_off - EPEL_EXTRA_BEFORE, y_off - EPEL_EXTRA_BEFORE, pic_width, pic_height); src0 = lc->edge_emu_buffer + buf_offset0; srcstride = edge_emu_stride; } if (!weight_flag) s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride, block_h, _mx, _my, block_w); else s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride, block_h, s->sh.chroma_log2_weight_denom, chroma_weight, chroma_offset, _mx, _my, block_w); } /** * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process * * @param s HEVC decoding context * @param dst target buffer for block data at block position * @param dststride stride of the dst buffer * @param ref0 reference picture0 buffer at origin (0, 0) * @param mv0 motion vector0 (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block * @param block_h height of block * @param ref1 reference picture1 buffer at origin (0, 0) * @param mv1 motion vector1 (relative to block position) to get pixel data from * @param current_mv current motion vector structure * @param cidx chroma component(cb, cr) */ static void chroma_mc_bi(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, uint8_t *dst0, ptrdiff_t dststride, const AVFrame *ref0, const AVFrame *ref1, int x_off, int y_off, int block_w, int block_h, const MvField *current_mv, int cidx) { const HEVCContext *const s = lc->parent; const uint8_t *src1 = ref0->data[cidx+1]; const uint8_t *src2 = ref1->data[cidx+1]; ptrdiff_t src1stride = ref0->linesize[cidx+1]; ptrdiff_t src2stride = ref1->linesize[cidx+1]; int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && pps->weighted_pred_flag) || (s->sh.slice_type == HEVC_SLICE_B && pps->weighted_bipred_flag); int pic_width = sps->width >> sps->hshift[1]; int pic_height = sps->height >> sps->vshift[1]; const Mv *const mv0 = ¤t_mv->mv[0]; const Mv *const mv1 = ¤t_mv->mv[1]; int hshift = sps->hshift[1]; int vshift = sps->vshift[1]; intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift); intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift); intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift); intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift); intptr_t _mx0 = mx0 << (1 - hshift); intptr_t _my0 = my0 << (1 - vshift); intptr_t _mx1 = mx1 << (1 - hshift); intptr_t _my1 = my1 << (1 - vshift); int x_off0 = x_off + (mv0->x >> (2 + hshift)); int y_off0 = y_off + (mv0->y >> (2 + vshift)); int x_off1 = x_off + (mv1->x >> (2 + hshift)); int y_off1 = y_off + (mv1->y >> (2 + vshift)); int idx = hevc_pel_weight[block_w]; src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << sps->pixel_shift); src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << sps->pixel_shift); if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER || x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER || y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) { const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift; int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << sps->pixel_shift)); int buf_offset1 = EPEL_EXTRA_BEFORE * (edge_emu_stride + (1 << sps->pixel_shift)); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1, edge_emu_stride, src1stride, block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, x_off0 - EPEL_EXTRA_BEFORE, y_off0 - EPEL_EXTRA_BEFORE, pic_width, pic_height); src1 = lc->edge_emu_buffer + buf_offset1; src1stride = edge_emu_stride; } if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER || x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER || y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) { const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << sps->pixel_shift; int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << sps->pixel_shift)); int buf_offset1 = EPEL_EXTRA_BEFORE * (edge_emu_stride + (1 << sps->pixel_shift)); s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1, edge_emu_stride, src2stride, block_w + EPEL_EXTRA, block_h + EPEL_EXTRA, x_off1 - EPEL_EXTRA_BEFORE, y_off1 - EPEL_EXTRA_BEFORE, pic_width, pic_height); src2 = lc->edge_emu_buffer2 + buf_offset1; src2stride = edge_emu_stride; } s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride, block_h, _mx0, _my0, block_w); if (!weight_flag) s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->cur_frame->f->linesize[cidx+1], src2, src2stride, lc->tmp, block_h, _mx1, _my1, block_w); else s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->cur_frame->f->linesize[cidx+1], src2, src2stride, lc->tmp, block_h, s->sh.chroma_log2_weight_denom, s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx], s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx], s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx], s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx], _mx1, _my1, block_w); } static void hevc_await_progress(const HEVCContext *s, const HEVCFrame *ref, const Mv *mv, int y0, int height) { if (s->avctx->active_thread_type == FF_THREAD_FRAME ) { int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9); ff_progress_frame_await(&ref->tf, y); } } static void hevc_luma_mv_mvp_mode(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv) { const HEVCContext *const s = lc->parent; enum InterPredIdc inter_pred_idc = PRED_L0; int mvp_flag; ff_hevc_set_neighbour_available(lc, x0, y0, nPbW, nPbH, sps->log2_ctb_size); mv->pred_flag = 0; if (s->sh.slice_type == HEVC_SLICE_B) inter_pred_idc = ff_hevc_inter_pred_idc_decode(lc, nPbW, nPbH); if (inter_pred_idc != PRED_L1) { if (s->sh.nb_refs[L0]) mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(lc, s->sh.nb_refs[L0]); mv->pred_flag = PF_L0; ff_hevc_hls_mvd_coding(lc, x0, y0, 0); mvp_flag = ff_hevc_mvp_lx_flag_decode(lc); ff_hevc_luma_mv_mvp_mode(lc, pps, x0, y0, nPbW, nPbH, log2_cb_size, part_idx, merge_idx, mv, mvp_flag, 0); mv->mv[0].x += lc->pu.mvd.x; mv->mv[0].y += lc->pu.mvd.y; } if (inter_pred_idc != PRED_L0) { if (s->sh.nb_refs[L1]) mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(lc, s->sh.nb_refs[L1]); if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) { AV_ZERO32(&lc->pu.mvd); } else { ff_hevc_hls_mvd_coding(lc, x0, y0, 1); } mv->pred_flag += PF_L1; mvp_flag = ff_hevc_mvp_lx_flag_decode(lc); ff_hevc_luma_mv_mvp_mode(lc, pps, x0, y0, nPbW, nPbH, log2_cb_size, part_idx, merge_idx, mv, mvp_flag, 1); mv->mv[1].x += lc->pu.mvd.x; mv->mv[1].y += lc->pu.mvd.y; } } static void hls_prediction_unit(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int partIdx, int idx) { #define POS(c_idx, x, y) \ &s->cur_frame->f->data[c_idx][((y) >> sps->vshift[c_idx]) * linesize[c_idx] + \ (((x) >> sps->hshift[c_idx]) << sps->pixel_shift)] const HEVCContext *const s = lc->parent; int merge_idx = 0; struct MvField current_mv = {{{ 0 }}}; int min_pu_width = sps->min_pu_width; MvField *tab_mvf = s->cur_frame->tab_mvf; const RefPicList *refPicList = s->cur_frame->refPicList; const HEVCFrame *ref0 = NULL, *ref1 = NULL; const int *linesize = s->cur_frame->f->linesize; uint8_t *dst0 = POS(0, x0, y0); uint8_t *dst1 = POS(1, x0, y0); uint8_t *dst2 = POS(2, x0, y0); int log2_min_cb_size = sps->log2_min_cb_size; int min_cb_width = sps->min_cb_width; int x_cb = x0 >> log2_min_cb_size; int y_cb = y0 >> log2_min_cb_size; int x_pu, y_pu; int i, j; int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb); if (!skip_flag) lc->pu.merge_flag = ff_hevc_merge_flag_decode(lc); if (skip_flag || lc->pu.merge_flag) { if (s->sh.max_num_merge_cand > 1) merge_idx = ff_hevc_merge_idx_decode(lc); else merge_idx = 0; ff_hevc_luma_mv_merge_mode(lc, pps, x0, y0, nPbW, nPbH, log2_cb_size, partIdx, merge_idx, ¤t_mv); } else { hevc_luma_mv_mvp_mode(lc, pps, sps, x0, y0, nPbW, nPbH, log2_cb_size, partIdx, merge_idx, ¤t_mv); } x_pu = x0 >> sps->log2_min_pu_size; y_pu = y0 >> sps->log2_min_pu_size; for (j = 0; j < nPbH >> sps->log2_min_pu_size; j++) for (i = 0; i < nPbW >> sps->log2_min_pu_size; i++) tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv; if (current_mv.pred_flag & PF_L0) { ref0 = refPicList[0].ref[current_mv.ref_idx[0]]; if (!ref0 || !ref0->f) return; hevc_await_progress(s, ref0, ¤t_mv.mv[0], y0, nPbH); } if (current_mv.pred_flag & PF_L1) { ref1 = refPicList[1].ref[current_mv.ref_idx[1]]; if (!ref1 || !ref1->f) return; hevc_await_progress(s, ref1, ¤t_mv.mv[1], y0, nPbH); } if (current_mv.pred_flag == PF_L0) { int x0_c = x0 >> sps->hshift[1]; int y0_c = y0 >> sps->vshift[1]; int nPbW_c = nPbW >> sps->hshift[1]; int nPbH_c = nPbH >> sps->vshift[1]; luma_mc_uni(lc, pps, sps, dst0, linesize[0], ref0->f, ¤t_mv.mv[0], x0, y0, nPbW, nPbH, s->sh.luma_weight_l0[current_mv.ref_idx[0]], s->sh.luma_offset_l0[current_mv.ref_idx[0]]); if (sps->chroma_format_idc) { chroma_mc_uni(lc, pps, sps, dst1, linesize[1], ref0->f->data[1], ref0->f->linesize[1], 0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]); chroma_mc_uni(lc, pps, sps, dst2, linesize[2], ref0->f->data[2], ref0->f->linesize[2], 0, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]); } } else if (current_mv.pred_flag == PF_L1) { int x0_c = x0 >> sps->hshift[1]; int y0_c = y0 >> sps->vshift[1]; int nPbW_c = nPbW >> sps->hshift[1]; int nPbH_c = nPbH >> sps->vshift[1]; luma_mc_uni(lc, pps, sps, dst0, linesize[0], ref1->f, ¤t_mv.mv[1], x0, y0, nPbW, nPbH, s->sh.luma_weight_l1[current_mv.ref_idx[1]], s->sh.luma_offset_l1[current_mv.ref_idx[1]]); if (sps->chroma_format_idc) { chroma_mc_uni(lc, pps, sps, dst1, linesize[1], ref1->f->data[1], ref1->f->linesize[1], 1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]); chroma_mc_uni(lc, pps, sps, dst2, linesize[2], ref1->f->data[2], ref1->f->linesize[2], 1, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]); } } else if (current_mv.pred_flag == PF_BI) { int x0_c = x0 >> sps->hshift[1]; int y0_c = y0 >> sps->vshift[1]; int nPbW_c = nPbW >> sps->hshift[1]; int nPbH_c = nPbH >> sps->vshift[1]; luma_mc_bi(lc, pps, sps, dst0, linesize[0], ref0->f, ¤t_mv.mv[0], x0, y0, nPbW, nPbH, ref1->f, ¤t_mv.mv[1], ¤t_mv); if (sps->chroma_format_idc) { chroma_mc_bi(lc, pps, sps, dst1, linesize[1], ref0->f, ref1->f, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 0); chroma_mc_bi(lc, pps, sps, dst2, linesize[2], ref0->f, ref1->f, x0_c, y0_c, nPbW_c, nPbH_c, ¤t_mv, 1); } } } /** * 8.4.1 */ static int luma_intra_pred_mode(HEVCLocalContext *lc, const HEVCSPS *sps, int x0, int y0, int pu_size, int prev_intra_luma_pred_flag) { const HEVCContext *const s = lc->parent; int x_pu = x0 >> sps->log2_min_pu_size; int y_pu = y0 >> sps->log2_min_pu_size; int min_pu_width = sps->min_pu_width; int size_in_pus = pu_size >> sps->log2_min_pu_size; int x0b = av_mod_uintp2(x0, sps->log2_ctb_size); int y0b = av_mod_uintp2(y0, sps->log2_ctb_size); int cand_up = (lc->ctb_up_flag || y0b) ? s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC; int cand_left = (lc->ctb_left_flag || x0b) ? s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC; int y_ctb = (y0 >> (sps->log2_ctb_size)) << (sps->log2_ctb_size); MvField *tab_mvf = s->cur_frame->tab_mvf; int intra_pred_mode; int candidate[3]; int i, j; // intra_pred_mode prediction does not cross vertical CTB boundaries if ((y0 - 1) < y_ctb) cand_up = INTRA_DC; if (cand_left == cand_up) { if (cand_left < 2) { candidate[0] = INTRA_PLANAR; candidate[1] = INTRA_DC; candidate[2] = INTRA_ANGULAR_26; } else { candidate[0] = cand_left; candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31); candidate[2] = 2 + ((cand_left - 2 + 1) & 31); } } else { candidate[0] = cand_left; candidate[1] = cand_up; if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) { candidate[2] = INTRA_PLANAR; } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) { candidate[2] = INTRA_DC; } else { candidate[2] = INTRA_ANGULAR_26; } } if (prev_intra_luma_pred_flag) { intra_pred_mode = candidate[lc->pu.mpm_idx]; } else { if (candidate[0] > candidate[1]) FFSWAP(uint8_t, candidate[0], candidate[1]); if (candidate[0] > candidate[2]) FFSWAP(uint8_t, candidate[0], candidate[2]); if (candidate[1] > candidate[2]) FFSWAP(uint8_t, candidate[1], candidate[2]); intra_pred_mode = lc->pu.rem_intra_luma_pred_mode; for (i = 0; i < 3; i++) if (intra_pred_mode >= candidate[i]) intra_pred_mode++; } /* write the intra prediction units into the mv array */ if (!size_in_pus) size_in_pus = 1; for (i = 0; i < size_in_pus; i++) { memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu], intra_pred_mode, size_in_pus); for (j = 0; j < size_in_pus; j++) { tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA; } } return intra_pred_mode; } static av_always_inline void set_ct_depth(const HEVCSPS *sps, uint8_t *tab_ct_depth, int x0, int y0, int log2_cb_size, int ct_depth) { int length = (1 << log2_cb_size) >> sps->log2_min_cb_size; int x_cb = x0 >> sps->log2_min_cb_size; int y_cb = y0 >> sps->log2_min_cb_size; int y; for (y = 0; y < length; y++) memset(&tab_ct_depth[(y_cb + y) * sps->min_cb_width + x_cb], ct_depth, length); } static const uint8_t tab_mode_idx[] = { 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31}; static void intra_prediction_unit(HEVCLocalContext *lc, const HEVCSPS *sps, int x0, int y0, int log2_cb_size) { static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 }; uint8_t prev_intra_luma_pred_flag[4]; int split = lc->cu.part_mode == PART_NxN; int pb_size = (1 << log2_cb_size) >> split; int side = split + 1; int chroma_mode; int i, j; for (i = 0; i < side; i++) for (j = 0; j < side; j++) prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(lc); for (i = 0; i < side; i++) { for (j = 0; j < side; j++) { if (prev_intra_luma_pred_flag[2 * i + j]) lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(lc); else lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(lc); lc->pu.intra_pred_mode[2 * i + j] = luma_intra_pred_mode(lc, sps, x0 + pb_size * j, y0 + pb_size * i, pb_size, prev_intra_luma_pred_flag[2 * i + j]); } } if (sps->chroma_format_idc == 3) { for (i = 0; i < side; i++) { for (j = 0; j < side; j++) { lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(lc); if (chroma_mode != 4) { if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode]) lc->pu.intra_pred_mode_c[2 * i + j] = 34; else lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode]; } else { lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j]; } } } } else if (sps->chroma_format_idc == 2) { int mode_idx; lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(lc); if (chroma_mode != 4) { if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode]) mode_idx = 34; else mode_idx = intra_chroma_table[chroma_mode]; } else { mode_idx = lc->pu.intra_pred_mode[0]; } lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx]; } else if (sps->chroma_format_idc != 0) { chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(lc); if (chroma_mode != 4) { if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode]) lc->pu.intra_pred_mode_c[0] = 34; else lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode]; } else { lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0]; } } } static void intra_prediction_unit_default_value(HEVCLocalContext *lc, const HEVCSPS *sps, int x0, int y0, int log2_cb_size) { const HEVCContext *const s = lc->parent; int pb_size = 1 << log2_cb_size; int size_in_pus = pb_size >> sps->log2_min_pu_size; int min_pu_width = sps->min_pu_width; MvField *tab_mvf = s->cur_frame->tab_mvf; int x_pu = x0 >> sps->log2_min_pu_size; int y_pu = y0 >> sps->log2_min_pu_size; int j, k; if (size_in_pus == 0) size_in_pus = 1; for (j = 0; j < size_in_pus; j++) memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus); if (lc->cu.pred_mode == MODE_INTRA) for (j = 0; j < size_in_pus; j++) for (k = 0; k < size_in_pus; k++) tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA; } static int hls_coding_unit(HEVCLocalContext *lc, const HEVCContext *s, const HEVCPPS *pps, const HEVCSPS *sps, int x0, int y0, int log2_cb_size) { int cb_size = 1 << log2_cb_size; int log2_min_cb_size = sps->log2_min_cb_size; int length = cb_size >> log2_min_cb_size; int min_cb_width = sps->min_cb_width; int x_cb = x0 >> log2_min_cb_size; int y_cb = y0 >> log2_min_cb_size; int idx = log2_cb_size - 2; int qp_block_mask = (1 << (sps->log2_ctb_size - pps->diff_cu_qp_delta_depth)) - 1; int x, y, ret; lc->cu.x = x0; lc->cu.y = y0; lc->cu.pred_mode = MODE_INTRA; lc->cu.part_mode = PART_2Nx2N; lc->cu.intra_split_flag = 0; SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0; for (x = 0; x < 4; x++) lc->pu.intra_pred_mode[x] = 1; if (pps->transquant_bypass_enable_flag) { lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(lc); if (lc->cu.cu_transquant_bypass_flag) set_deblocking_bypass(s, sps, x0, y0, log2_cb_size); } else lc->cu.cu_transquant_bypass_flag = 0; if (s->sh.slice_type != HEVC_SLICE_I) { const int x0b = av_mod_uintp2(x0, sps->log2_ctb_size); const int y0b = av_mod_uintp2(y0, sps->log2_ctb_size); uint8_t skip_flag = ff_hevc_skip_flag_decode(lc, x0b, y0b, x_cb, y_cb, min_cb_width); x = y_cb * min_cb_width + x_cb; for (y = 0; y < length; y++) { memset(&s->skip_flag[x], skip_flag, length); x += min_cb_width; } lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER; } else { x = y_cb * min_cb_width + x_cb; for (y = 0; y < length; y++) { memset(&s->skip_flag[x], 0, length); x += min_cb_width; } } if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) { hls_prediction_unit(lc, pps, sps, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx); intra_prediction_unit_default_value(lc, sps, x0, y0, log2_cb_size); if (!s->sh.disable_deblocking_filter_flag) ff_hevc_deblocking_boundary_strengths(lc, pps, x0, y0, log2_cb_size); } else { int pcm_flag = 0; if (s->sh.slice_type != HEVC_SLICE_I) lc->cu.pred_mode = ff_hevc_pred_mode_decode(lc); if (lc->cu.pred_mode != MODE_INTRA || log2_cb_size == sps->log2_min_cb_size) { lc->cu.part_mode = ff_hevc_part_mode_decode(lc, sps, log2_cb_size); lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN && lc->cu.pred_mode == MODE_INTRA; } if (lc->cu.pred_mode == MODE_INTRA) { if (lc->cu.part_mode == PART_2Nx2N && sps->pcm_enabled && log2_cb_size >= sps->pcm.log2_min_pcm_cb_size && log2_cb_size <= sps->pcm.log2_max_pcm_cb_size) { pcm_flag = ff_hevc_pcm_flag_decode(lc); } if (pcm_flag) { intra_prediction_unit_default_value(lc, sps, x0, y0, log2_cb_size); ret = hls_pcm_sample(lc, pps, x0, y0, log2_cb_size); if (sps->pcm_loop_filter_disabled) set_deblocking_bypass(s, sps, x0, y0, log2_cb_size); if (ret < 0) return ret; } else { intra_prediction_unit(lc, sps, x0, y0, log2_cb_size); } } else { intra_prediction_unit_default_value(lc, sps, x0, y0, log2_cb_size); switch (lc->cu.part_mode) { case PART_2Nx2N: hls_prediction_unit(lc, pps, sps, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx); break; case PART_2NxN: hls_prediction_unit(lc, pps, sps, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx); hls_prediction_unit(lc, pps, sps, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx); break; case PART_Nx2N: hls_prediction_unit(lc, pps, sps, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1); hls_prediction_unit(lc, pps, sps, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1); break; case PART_2NxnU: hls_prediction_unit(lc, pps, sps, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx); hls_prediction_unit(lc, pps, sps, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx); break; case PART_2NxnD: hls_prediction_unit(lc, pps, sps, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx); hls_prediction_unit(lc, pps, sps, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx); break; case PART_nLx2N: hls_prediction_unit(lc, pps, sps, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2); hls_prediction_unit(lc, pps, sps, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2); break; case PART_nRx2N: hls_prediction_unit(lc, pps, sps, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2); hls_prediction_unit(lc, pps, sps, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2); break; case PART_NxN: hls_prediction_unit(lc, pps, sps, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1); hls_prediction_unit(lc, pps, sps, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1); hls_prediction_unit(lc, pps, sps, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1); hls_prediction_unit(lc, pps, sps, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1); break; } } if (!pcm_flag) { int rqt_root_cbf = 1; if (lc->cu.pred_mode != MODE_INTRA && !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) { rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(lc); } if (rqt_root_cbf) { const static int cbf[2] = { 0 }; lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ? sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag : sps->max_transform_hierarchy_depth_inter; ret = hls_transform_tree(lc, pps, sps, x0, y0, x0, y0, x0, y0, log2_cb_size, log2_cb_size, 0, 0, cbf, cbf); if (ret < 0) return ret; } else { if (!s->sh.disable_deblocking_filter_flag) ff_hevc_deblocking_boundary_strengths(lc, pps, x0, y0, log2_cb_size); } } } if (pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0) ff_hevc_set_qPy(lc, pps, x0, y0, log2_cb_size); x = y_cb * min_cb_width + x_cb; for (y = 0; y < length; y++) { memset(&s->qp_y_tab[x], lc->qp_y, length); x += min_cb_width; } if(((x0 + (1<qPy_pred = lc->qp_y; } set_ct_depth(sps, s->tab_ct_depth, x0, y0, log2_cb_size, lc->ct_depth); return 0; } static int hls_coding_quadtree(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, int x0, int y0, int log2_cb_size, int cb_depth) { const HEVCContext *const s = lc->parent; const int cb_size = 1 << log2_cb_size; int ret; int split_cu; lc->ct_depth = cb_depth; if (x0 + cb_size <= sps->width && y0 + cb_size <= sps->height && log2_cb_size > sps->log2_min_cb_size) { split_cu = ff_hevc_split_coding_unit_flag_decode(lc, sps, cb_depth, x0, y0); } else { split_cu = (log2_cb_size > sps->log2_min_cb_size); } if (pps->cu_qp_delta_enabled_flag && log2_cb_size >= sps->log2_ctb_size - pps->diff_cu_qp_delta_depth) { lc->tu.is_cu_qp_delta_coded = 0; lc->tu.cu_qp_delta = 0; } if (s->sh.cu_chroma_qp_offset_enabled_flag && log2_cb_size >= sps->log2_ctb_size - pps->diff_cu_chroma_qp_offset_depth) { lc->tu.is_cu_chroma_qp_offset_coded = 0; } if (split_cu) { int qp_block_mask = (1 << (sps->log2_ctb_size - pps->diff_cu_qp_delta_depth)) - 1; const int cb_size_split = cb_size >> 1; const int x1 = x0 + cb_size_split; const int y1 = y0 + cb_size_split; int more_data = 0; more_data = hls_coding_quadtree(lc, pps, sps, x0, y0, log2_cb_size - 1, cb_depth + 1); if (more_data < 0) return more_data; if (more_data && x1 < sps->width) { more_data = hls_coding_quadtree(lc, pps, sps, x1, y0, log2_cb_size - 1, cb_depth + 1); if (more_data < 0) return more_data; } if (more_data && y1 < sps->height) { more_data = hls_coding_quadtree(lc, pps, sps, x0, y1, log2_cb_size - 1, cb_depth + 1); if (more_data < 0) return more_data; } if (more_data && x1 < sps->width && y1 < sps->height) { more_data = hls_coding_quadtree(lc, pps, sps, x1, y1, log2_cb_size - 1, cb_depth + 1); if (more_data < 0) return more_data; } if(((x0 + (1<qPy_pred = lc->qp_y; if (more_data) return ((x1 + cb_size_split) < sps->width || (y1 + cb_size_split) < sps->height); else return 0; } else { ret = hls_coding_unit(lc, s, pps, sps, x0, y0, log2_cb_size); if (ret < 0) return ret; if ((!((x0 + cb_size) % (1 << (sps->log2_ctb_size))) || (x0 + cb_size >= sps->width)) && (!((y0 + cb_size) % (1 << (sps->log2_ctb_size))) || (y0 + cb_size >= sps->height))) { int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(lc); return !end_of_slice_flag; } else { return 1; } } return 0; } static void hls_decode_neighbour(HEVCLocalContext *lc, const HEVCPPS *pps, const HEVCSPS *sps, int x_ctb, int y_ctb, int ctb_addr_ts) { const HEVCContext *const s = lc->parent; int ctb_size = 1 << sps->log2_ctb_size; int ctb_addr_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts]; int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr; s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr; if (pps->entropy_coding_sync_enabled_flag) { if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0) lc->first_qp_group = 1; lc->end_of_tiles_x = sps->width; } else if (pps->tiles_enabled_flag) { if (ctb_addr_ts && pps->tile_id[ctb_addr_ts] != pps->tile_id[ctb_addr_ts - 1]) { int idxX = pps->col_idxX[x_ctb >> sps->log2_ctb_size]; lc->end_of_tiles_x = x_ctb + (pps->column_width[idxX] << sps->log2_ctb_size); lc->first_qp_group = 1; } } else { lc->end_of_tiles_x = sps->width; } lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, sps->height); lc->boundary_flags = 0; if (pps->tiles_enabled_flag) { if (x_ctb > 0 && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]]) lc->boundary_flags |= BOUNDARY_LEFT_TILE; if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1]) lc->boundary_flags |= BOUNDARY_LEFT_SLICE; if (y_ctb > 0 && pps->tile_id[ctb_addr_ts] != pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs - sps->ctb_width]]) lc->boundary_flags |= BOUNDARY_UPPER_TILE; if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - sps->ctb_width]) lc->boundary_flags |= BOUNDARY_UPPER_SLICE; } else { if (ctb_addr_in_slice <= 0) lc->boundary_flags |= BOUNDARY_LEFT_SLICE; if (ctb_addr_in_slice < sps->ctb_width) lc->boundary_flags |= BOUNDARY_UPPER_SLICE; } lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE)); lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE)); lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= sps->ctb_width) && (pps->tile_id[ctb_addr_ts] == pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - sps->ctb_width]])); lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= sps->ctb_width) && (pps->tile_id[ctb_addr_ts] == pps->tile_id[pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - sps->ctb_width]])); } static int hls_decode_entry(HEVCContext *s, GetBitContext *gb) { HEVCLocalContext *const lc = &s->local_ctx[0]; const HEVCPPS *const pps = s->pps; const HEVCSPS *const sps = pps->sps; const uint8_t *slice_data = gb->buffer + s->sh.data_offset; const size_t slice_size = gb->buffer_end - gb->buffer - s->sh.data_offset; int ctb_size = 1 << sps->log2_ctb_size; int more_data = 1; int x_ctb = 0; int y_ctb = 0; int ctb_addr_ts = pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs]; int ret; while (more_data && ctb_addr_ts < sps->ctb_size) { int ctb_addr_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts]; x_ctb = (ctb_addr_rs % ((sps->width + ctb_size - 1) >> sps->log2_ctb_size)) << sps->log2_ctb_size; y_ctb = (ctb_addr_rs / ((sps->width + ctb_size - 1) >> sps->log2_ctb_size)) << sps->log2_ctb_size; hls_decode_neighbour(lc, pps, sps, x_ctb, y_ctb, ctb_addr_ts); ret = ff_hevc_cabac_init(lc, pps, ctb_addr_ts, slice_data, slice_size, 0); if (ret < 0) { s->tab_slice_address[ctb_addr_rs] = -1; return ret; } hls_sao_param(lc, pps, sps, x_ctb >> sps->log2_ctb_size, y_ctb >> sps->log2_ctb_size); s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset; s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset; s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag; more_data = hls_coding_quadtree(lc, pps, sps, x_ctb, y_ctb, sps->log2_ctb_size, 0); if (more_data < 0) { s->tab_slice_address[ctb_addr_rs] = -1; return more_data; } ctb_addr_ts++; ff_hevc_save_states(lc, pps, ctb_addr_ts); ff_hevc_hls_filters(lc, pps, x_ctb, y_ctb, ctb_size); } if (x_ctb + ctb_size >= sps->width && y_ctb + ctb_size >= sps->height) ff_hevc_hls_filter(lc, pps, x_ctb, y_ctb, ctb_size); return ctb_addr_ts; } static int hls_decode_entry_wpp(AVCodecContext *avctx, void *hevc_lclist, int job, int self_id) { HEVCLocalContext *lc = &((HEVCLocalContext*)hevc_lclist)[self_id]; const HEVCContext *const s = lc->parent; const HEVCPPS *const pps = s->pps; const HEVCSPS *const sps = pps->sps; int ctb_size = 1 << sps->log2_ctb_size; int more_data = 1; int ctb_row = job; int ctb_addr_rs = s->sh.slice_ctb_addr_rs + ctb_row * ((sps->width + ctb_size - 1) >> sps->log2_ctb_size); int ctb_addr_ts = pps->ctb_addr_rs_to_ts[ctb_addr_rs]; int thread = ctb_row % avctx->thread_count; const uint8_t *data = s->data + s->sh.offset[ctb_row]; const size_t data_size = s->sh.size[ctb_row]; int ret; if (ctb_row) ff_init_cabac_decoder(&lc->cc, data, data_size); while(more_data && ctb_addr_ts < sps->ctb_size) { int x_ctb = (ctb_addr_rs % sps->ctb_width) << sps->log2_ctb_size; int y_ctb = (ctb_addr_rs / sps->ctb_width) << sps->log2_ctb_size; hls_decode_neighbour(lc, pps, sps, x_ctb, y_ctb, ctb_addr_ts); ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP); /* atomic_load's prototype requires a pointer to non-const atomic variable * (due to implementations via mutexes, where reads involve writes). * Of course, casting const away here is nevertheless safe. */ if (atomic_load((atomic_int*)&s->wpp_err)) { ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP); return 0; } ret = ff_hevc_cabac_init(lc, pps, ctb_addr_ts, data, data_size, 1); if (ret < 0) goto error; hls_sao_param(lc, pps, sps, x_ctb >> sps->log2_ctb_size, y_ctb >> sps->log2_ctb_size); more_data = hls_coding_quadtree(lc, pps, sps, x_ctb, y_ctb, sps->log2_ctb_size, 0); if (more_data < 0) { ret = more_data; goto error; } ctb_addr_ts++; ff_hevc_save_states(lc, pps, ctb_addr_ts); ff_thread_report_progress2(s->avctx, ctb_row, thread, 1); ff_hevc_hls_filters(lc, pps, x_ctb, y_ctb, ctb_size); if (!more_data && (x_ctb+ctb_size) < sps->width && ctb_row != s->sh.num_entry_point_offsets) { /* Casting const away here is safe, because it is an atomic operation. */ atomic_store((atomic_int*)&s->wpp_err, 1); ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP); return 0; } if ((x_ctb+ctb_size) >= sps->width && (y_ctb+ctb_size) >= sps->height ) { ff_hevc_hls_filter(lc, pps, x_ctb, y_ctb, ctb_size); ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP); return ctb_addr_ts; } ctb_addr_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts]; x_ctb+=ctb_size; if(x_ctb >= sps->width) { break; } } ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP); return 0; error: s->tab_slice_address[ctb_addr_rs] = -1; /* Casting const away here is safe, because it is an atomic operation. */ atomic_store((atomic_int*)&s->wpp_err, 1); ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP); return ret; } static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal) { const HEVCPPS *const pps = s->pps; const HEVCSPS *const sps = pps->sps; const uint8_t *data = nal->data; int length = nal->size; int *ret; int64_t offset; int64_t startheader, cmpt = 0; int i, j, res = 0; if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * sps->ctb_width >= sps->ctb_width * sps->ctb_height) { av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n", s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets, sps->ctb_width, sps->ctb_height ); return AVERROR_INVALIDDATA; } if (s->avctx->thread_count > s->nb_local_ctx) { HEVCLocalContext *tmp = av_malloc_array(s->avctx->thread_count, sizeof(*s->local_ctx)); if (!tmp) return AVERROR(ENOMEM); memcpy(tmp, s->local_ctx, sizeof(*s->local_ctx) * s->nb_local_ctx); av_free(s->local_ctx); s->local_ctx = tmp; for (unsigned i = s->nb_local_ctx; i < s->avctx->thread_count; i++) { tmp = &s->local_ctx[i]; memset(tmp, 0, sizeof(*tmp)); tmp->logctx = s->avctx; tmp->parent = s; tmp->common_cabac_state = &s->cabac; } s->nb_local_ctx = s->avctx->thread_count; } offset = s->sh.data_offset; for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) { if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) { startheader--; cmpt++; } } for (i = 1; i < s->sh.num_entry_point_offsets; i++) { offset += (s->sh.entry_point_offset[i - 1] - cmpt); for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) { if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) { startheader--; cmpt++; } } s->sh.size[i] = s->sh.entry_point_offset[i] - cmpt; s->sh.offset[i] = offset; } offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt; if (length < offset) { av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n"); return AVERROR_INVALIDDATA; } s->sh.size [s->sh.num_entry_point_offsets] = length - offset; s->sh.offset[s->sh.num_entry_point_offsets] = offset; s->sh.offset[0] = s->sh.data_offset; s->sh.size[0] = s->sh.offset[1] - s->sh.offset[0]; s->data = data; for (i = 1; i < s->nb_local_ctx; i++) { s->local_ctx[i].first_qp_group = 1; s->local_ctx[i].qp_y = s->local_ctx[0].qp_y; } atomic_store(&s->wpp_err, 0); res = ff_slice_thread_allocz_entries(s->avctx, s->sh.num_entry_point_offsets + 1); if (res < 0) return res; ret = av_calloc(s->sh.num_entry_point_offsets + 1, sizeof(*ret)); if (!ret) return AVERROR(ENOMEM); if (pps->entropy_coding_sync_enabled_flag) s->avctx->execute2(s->avctx, hls_decode_entry_wpp, s->local_ctx, ret, s->sh.num_entry_point_offsets + 1); for (i = 0; i <= s->sh.num_entry_point_offsets; i++) res += ret[i]; av_free(ret); return res; } static int decode_slice_data(HEVCContext *s, const H2645NAL *nal, GetBitContext *gb) { const HEVCPPS *pps = s->pps; int ret; if (s->sh.dependent_slice_segment_flag) { int ctb_addr_ts = pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs]; int prev_rs = pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1]; if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) { av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n"); return AVERROR_INVALIDDATA; } } if (!s->sh.dependent_slice_segment_flag && s->sh.slice_type != HEVC_SLICE_I) { ret = ff_hevc_slice_rpl(s); if (ret < 0) { av_log(s->avctx, AV_LOG_WARNING, "Error constructing the reference lists for the current slice.\n"); return ret; } } s->slice_initialized = 1; if (s->avctx->hwaccel) return FF_HW_CALL(s->avctx, decode_slice, nal->raw_data, nal->raw_size); if (s->avctx->profile == AV_PROFILE_HEVC_SCC) { av_log(s->avctx, AV_LOG_ERROR, "SCC profile is not yet implemented in hevc native decoder.\n"); return AVERROR_PATCHWELCOME; } s->local_ctx[0].first_qp_group = !s->sh.dependent_slice_segment_flag; if (!pps->cu_qp_delta_enabled_flag) s->local_ctx[0].qp_y = s->sh.slice_qp; s->local_ctx[0].tu.cu_qp_offset_cb = 0; s->local_ctx[0].tu.cu_qp_offset_cr = 0; s->slice_idx += !s->sh.dependent_slice_segment_flag; if (s->avctx->active_thread_type == FF_THREAD_SLICE && s->sh.num_entry_point_offsets > 0 && pps->num_tile_rows == 1 && pps->num_tile_columns == 1) return hls_slice_data_wpp(s, nal); return hls_decode_entry(s, gb); } static int set_side_data(HEVCContext *s) { AVFrame *out = s->cur_frame->f; int ret; // Decrement the mastering display and content light level flag when IRAP // frame has no_rasl_output_flag=1 so the side data persists for the entire // coded video sequence. if (IS_IRAP(s) && s->no_rasl_output_flag) { if (s->sei.common.mastering_display.present > 0) s->sei.common.mastering_display.present--; if (s->sei.common.content_light.present > 0) s->sei.common.content_light.present--; } ret = ff_h2645_sei_to_frame(out, &s->sei.common, AV_CODEC_ID_HEVC, s->avctx, &s->ps.sps->vui.common, s->ps.sps->bit_depth, s->ps.sps->bit_depth_chroma, s->cur_frame->poc /* no poc_offset in HEVC */); if (ret < 0) return ret; if (s->sei.timecode.present) { uint32_t *tc_sd; char tcbuf[AV_TIMECODE_STR_SIZE]; AVFrameSideData *tcside; ret = ff_frame_new_side_data(s->avctx, out, AV_FRAME_DATA_S12M_TIMECODE, sizeof(uint32_t) * 4, &tcside); if (ret < 0) return ret; if (tcside) { tc_sd = (uint32_t*)tcside->data; tc_sd[0] = s->sei.timecode.num_clock_ts; for (int i = 0; i < tc_sd[0]; i++) { int drop = s->sei.timecode.cnt_dropped_flag[i]; int hh = s->sei.timecode.hours_value[i]; int mm = s->sei.timecode.minutes_value[i]; int ss = s->sei.timecode.seconds_value[i]; int ff = s->sei.timecode.n_frames[i]; tc_sd[i + 1] = av_timecode_get_smpte(s->avctx->framerate, drop, hh, mm, ss, ff); av_timecode_make_smpte_tc_string2(tcbuf, s->avctx->framerate, tc_sd[i + 1], 0, 0); av_dict_set(&out->metadata, "timecode", tcbuf, 0); } } s->sei.timecode.num_clock_ts = 0; } if (s->sei.common.dynamic_hdr_plus.info) { AVBufferRef *info_ref = av_buffer_ref(s->sei.common.dynamic_hdr_plus.info); if (!info_ref) return AVERROR(ENOMEM); ret = ff_frame_new_side_data_from_buf(s->avctx, out, AV_FRAME_DATA_DYNAMIC_HDR_PLUS, &info_ref, NULL); if (ret < 0) return ret; } if (s->rpu_buf) { AVFrameSideData *rpu = av_frame_new_side_data_from_buf(out, AV_FRAME_DATA_DOVI_RPU_BUFFER, s->rpu_buf); if (!rpu) return AVERROR(ENOMEM); s->rpu_buf = NULL; } if ((ret = ff_dovi_attach_side_data(&s->dovi_ctx, out)) < 0) return ret; if (s->sei.common.dynamic_hdr_vivid.info) { AVBufferRef *info_ref = av_buffer_ref(s->sei.common.dynamic_hdr_vivid.info); if (!info_ref) return AVERROR(ENOMEM); if (!av_frame_new_side_data_from_buf(out, AV_FRAME_DATA_DYNAMIC_HDR_VIVID, info_ref)) { av_buffer_unref(&info_ref); return AVERROR(ENOMEM); } } return 0; } static int hevc_frame_start(HEVCContext *s) { const HEVCPPS *const pps = s->ps.pps_list[s->sh.pps_id]; const HEVCSPS *const sps = pps->sps; int pic_size_in_ctb = ((sps->width >> sps->log2_min_cb_size) + 1) * ((sps->height >> sps->log2_min_cb_size) + 1); int ret; ff_refstruct_replace(&s->pps, pps); if (s->ps.sps != sps) { enum AVPixelFormat pix_fmt; ff_hevc_clear_refs(s); ret = set_sps(s, sps, sps->pix_fmt); if (ret < 0) return ret; pix_fmt = get_format(s, sps); if (pix_fmt < 0) return pix_fmt; s->avctx->pix_fmt = pix_fmt; s->seq_decode = (s->seq_decode + 1) & HEVC_SEQUENCE_COUNTER_MASK; } memset(s->horizontal_bs, 0, s->bs_width * s->bs_height); memset(s->vertical_bs, 0, s->bs_width * s->bs_height); memset(s->cbf_luma, 0, sps->min_tb_width * sps->min_tb_height); memset(s->is_pcm, 0, (sps->min_pu_width + 1) * (sps->min_pu_height + 1)); memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address)); if ((IS_IDR(s) || IS_BLA(s))) { s->seq_decode = (s->seq_decode + 1) & HEVC_SEQUENCE_COUNTER_MASK; if (IS_IDR(s)) ff_hevc_clear_refs(s); } s->slice_idx = 0; s->first_nal_type = s->nal_unit_type; s->poc = s->sh.poc; if (IS_IRAP(s)) s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos); /* 8.3.1 */ if (s->temporal_id == 0 && s->nal_unit_type != HEVC_NAL_TRAIL_N && s->nal_unit_type != HEVC_NAL_TSA_N && s->nal_unit_type != HEVC_NAL_STSA_N && s->nal_unit_type != HEVC_NAL_RADL_N && s->nal_unit_type != HEVC_NAL_RADL_R && s->nal_unit_type != HEVC_NAL_RASL_N && s->nal_unit_type != HEVC_NAL_RASL_R) s->poc_tid0 = s->poc; if (pps->tiles_enabled_flag) s->local_ctx[0].end_of_tiles_x = pps->column_width[0] << sps->log2_ctb_size; ret = ff_hevc_set_new_ref(s, s->poc); if (ret < 0) goto fail; ret = ff_hevc_frame_rps(s); if (ret < 0) { av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n"); goto fail; } if (IS_IRAP(s)) s->cur_frame->f->flags |= AV_FRAME_FLAG_KEY; else s->cur_frame->f->flags &= ~AV_FRAME_FLAG_KEY; s->cur_frame->needs_fg = (s->sei.common.film_grain_characteristics.present || s->sei.common.aom_film_grain.enable) && !(s->avctx->export_side_data & AV_CODEC_EXPORT_DATA_FILM_GRAIN) && !s->avctx->hwaccel; ret = export_stream_params_from_sei(s); if (ret < 0) return ret; ret = set_side_data(s); if (ret < 0) goto fail; if (s->cur_frame->needs_fg && (s->sei.common.film_grain_characteristics.present && !ff_h274_film_grain_params_supported(s->sei.common.film_grain_characteristics.model_id, s->cur_frame->f->format) || !av_film_grain_params_select(s->cur_frame->f))) { av_log_once(s->avctx, AV_LOG_WARNING, AV_LOG_DEBUG, &s->film_grain_warning_shown, "Unsupported film grain parameters. Ignoring film grain.\n"); s->cur_frame->needs_fg = 0; } if (s->cur_frame->needs_fg) { s->cur_frame->frame_grain->format = s->cur_frame->f->format; s->cur_frame->frame_grain->width = s->cur_frame->f->width; s->cur_frame->frame_grain->height = s->cur_frame->f->height; if ((ret = ff_thread_get_buffer(s->avctx, s->cur_frame->frame_grain, 0)) < 0) goto fail; } s->cur_frame->f->pict_type = 3 - s->sh.slice_type; if (!IS_IRAP(s)) ff_hevc_bump_frame(s); av_frame_unref(s->output_frame); ret = ff_hevc_output_frame(s, s->output_frame, 0); if (ret < 0) goto fail; if (s->avctx->hwaccel) { ret = FF_HW_CALL(s->avctx, start_frame, NULL, 0); if (ret < 0) goto fail; } else ff_thread_finish_setup(s->avctx); return 0; fail: if (s->cur_frame) ff_hevc_unref_frame(s->cur_frame, ~0); s->cur_frame = s->collocated_ref = NULL; s->slice_initialized = 0; return ret; } static int verify_md5(HEVCContext *s, AVFrame *frame) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format); char msg_buf[4 * (50 + 2 * 2 * 16 /* MD5-size */)]; int pixel_shift; int err = 0; int i, j; if (!desc) return AVERROR(EINVAL); pixel_shift = desc->comp[0].depth > 8; /* the checksums are LE, so we have to byteswap for >8bpp formats * on BE arches */ #if HAVE_BIGENDIAN if (pixel_shift && !s->checksum_buf) { av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size, FFMAX3(frame->linesize[0], frame->linesize[1], frame->linesize[2])); if (!s->checksum_buf) return AVERROR(ENOMEM); } #endif msg_buf[0] = '\0'; for (i = 0; frame->data[i]; i++) { int width = s->avctx->coded_width; int height = s->avctx->coded_height; int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width; int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height; uint8_t md5[16]; av_md5_init(s->md5_ctx); for (j = 0; j < h; j++) { const uint8_t *src = frame->data[i] + j * frame->linesize[i]; #if HAVE_BIGENDIAN if (pixel_shift) { s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf, (const uint16_t *) src, w); src = s->checksum_buf; } #endif av_md5_update(s->md5_ctx, src, w << pixel_shift); } av_md5_final(s->md5_ctx, md5); #define MD5_PRI "%016" PRIx64 "%016" PRIx64 #define MD5_PRI_ARG(buf) AV_RB64(buf), AV_RB64((const uint8_t*)(buf) + 8) if (!memcmp(md5, s->sei.picture_hash.md5[i], 16)) { av_strlcatf(msg_buf, sizeof(msg_buf), "plane %d - correct " MD5_PRI "; ", i, MD5_PRI_ARG(md5)); } else { av_strlcatf(msg_buf, sizeof(msg_buf), "mismatching checksum of plane %d - " MD5_PRI " != " MD5_PRI "; ", i, MD5_PRI_ARG(md5), MD5_PRI_ARG(s->sei.picture_hash.md5[i])); err = AVERROR_INVALIDDATA; } } av_log(s->avctx, err < 0 ? AV_LOG_ERROR : AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: %s\n", s->poc, msg_buf); return err; } static int hevc_frame_end(HEVCContext *s) { HEVCFrame *out = s->cur_frame; const AVFilmGrainParams *fgp; av_unused int ret; if (out->needs_fg) { av_assert0(out->frame_grain->buf[0]); fgp = av_film_grain_params_select(out->f); switch (fgp->type) { case AV_FILM_GRAIN_PARAMS_NONE: av_assert0(0); return AVERROR_BUG; case AV_FILM_GRAIN_PARAMS_H274: ret = ff_h274_apply_film_grain(out->frame_grain, out->f, &s->h274db, fgp); break; case AV_FILM_GRAIN_PARAMS_AV1: ret = ff_aom_apply_film_grain(out->frame_grain, out->f, fgp); break; } av_assert1(ret >= 0); } if (s->avctx->hwaccel) { ret = FF_HW_SIMPLE_CALL(s->avctx, end_frame); if (ret < 0) { av_log(s->avctx, AV_LOG_ERROR, "hardware accelerator failed to decode picture\n"); return ret; } } else { if (s->avctx->err_recognition & AV_EF_CRCCHECK && s->sei.picture_hash.is_md5) { ret = verify_md5(s, s->cur_frame->f); if (ret < 0 && s->avctx->err_recognition & AV_EF_EXPLODE) return ret; } } s->sei.picture_hash.is_md5 = 0; av_log(s->avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc); return 0; } static int decode_slice(HEVCContext *s, const H2645NAL *nal, GetBitContext *gb) { int ret; ret = hls_slice_header(&s->sh, s, gb); if (ret < 0) return ret; if ((s->avctx->skip_frame >= AVDISCARD_BIDIR && s->sh.slice_type == HEVC_SLICE_B) || (s->avctx->skip_frame >= AVDISCARD_NONINTRA && s->sh.slice_type != HEVC_SLICE_I) || (s->avctx->skip_frame >= AVDISCARD_NONKEY && !IS_IRAP(s)) || ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) && s->no_rasl_output_flag)) { return 0; } if (s->sh.first_slice_in_pic_flag) { if (s->cur_frame) { av_log(s->avctx, AV_LOG_ERROR, "Two slices reporting being the first in the same frame.\n"); return AVERROR_INVALIDDATA; } ret = hevc_frame_start(s); if (ret < 0) return ret; } else if (!s->cur_frame) { av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n"); return AVERROR_INVALIDDATA; } if (s->nal_unit_type != s->first_nal_type) { av_log(s->avctx, AV_LOG_ERROR, "Non-matching NAL types of the VCL NALUs: %d %d\n", s->first_nal_type, s->nal_unit_type); return AVERROR_INVALIDDATA; } ret = decode_slice_data(s, nal, gb); if (ret < 0) return ret; if (ret >= s->cur_frame->ctb_count) { ret = hevc_frame_end(s); if (ret < 0) return ret; } return 0; } static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal) { GetBitContext gb = nal->gb; int ret; s->nal_unit_type = nal->type; s->temporal_id = nal->temporal_id; if (FF_HW_HAS_CB(s->avctx, decode_params) && (s->nal_unit_type == HEVC_NAL_VPS || s->nal_unit_type == HEVC_NAL_SPS || s->nal_unit_type == HEVC_NAL_PPS || s->nal_unit_type == HEVC_NAL_SEI_PREFIX || s->nal_unit_type == HEVC_NAL_SEI_SUFFIX)) { ret = FF_HW_CALL(s->avctx, decode_params, nal->type, nal->raw_data, nal->raw_size); if (ret < 0) goto fail; } switch (s->nal_unit_type) { case HEVC_NAL_VPS: ret = ff_hevc_decode_nal_vps(&gb, s->avctx, &s->ps); if (ret < 0) goto fail; break; case HEVC_NAL_SPS: ret = ff_hevc_decode_nal_sps(&gb, s->avctx, &s->ps, s->apply_defdispwin); if (ret < 0) goto fail; break; case HEVC_NAL_PPS: ret = ff_hevc_decode_nal_pps(&gb, s->avctx, &s->ps); if (ret < 0) goto fail; break; case HEVC_NAL_SEI_PREFIX: case HEVC_NAL_SEI_SUFFIX: ret = ff_hevc_decode_nal_sei(&gb, s->avctx, &s->sei, &s->ps, s->nal_unit_type); if (ret < 0) goto fail; break; case HEVC_NAL_TRAIL_R: case HEVC_NAL_TRAIL_N: case HEVC_NAL_TSA_N: case HEVC_NAL_TSA_R: case HEVC_NAL_STSA_N: case HEVC_NAL_STSA_R: case HEVC_NAL_BLA_W_LP: case HEVC_NAL_BLA_W_RADL: case HEVC_NAL_BLA_N_LP: case HEVC_NAL_IDR_W_RADL: case HEVC_NAL_IDR_N_LP: case HEVC_NAL_CRA_NUT: case HEVC_NAL_RADL_N: case HEVC_NAL_RADL_R: case HEVC_NAL_RASL_N: case HEVC_NAL_RASL_R: ret = decode_slice(s, nal, &gb); if (ret < 0) goto fail; break; case HEVC_NAL_EOS_NUT: case HEVC_NAL_EOB_NUT: s->seq_decode = (s->seq_decode + 1) & HEVC_SEQUENCE_COUNTER_MASK; break; case HEVC_NAL_AUD: case HEVC_NAL_FD_NUT: case HEVC_NAL_UNSPEC62: break; default: av_log(s->avctx, AV_LOG_INFO, "Skipping NAL unit %d\n", s->nal_unit_type); } return 0; fail: if (ret == AVERROR_INVALIDDATA && !(s->avctx->err_recognition & AV_EF_EXPLODE)) { av_log(s->avctx, AV_LOG_WARNING, "Skipping invalid undecodable NALU: %d\n", s->nal_unit_type); return 0; } return ret; } static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length) { int i, ret = 0; int eos_at_start = 1; s->cur_frame = s->collocated_ref = NULL; s->last_eos = s->eos; s->eos = 0; s->slice_initialized = 0; /* split the input packet into NAL units, so we know the upper bound on the * number of slices in the frame */ ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff, s->nal_length_size, s->avctx->codec_id, 1, 0); if (ret < 0) { av_log(s->avctx, AV_LOG_ERROR, "Error splitting the input into NAL units.\n"); return ret; } for (i = 0; i < s->pkt.nb_nals; i++) { if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT || s->pkt.nals[i].type == HEVC_NAL_EOS_NUT) { if (eos_at_start) { s->last_eos = 1; } else { s->eos = 1; } } else { eos_at_start = 0; } } /* * Check for RPU delimiter. * * Dolby Vision RPUs masquerade as unregistered NALs of type 62. * * We have to do this check here an create the rpu buffer, since RPUs are appended * to the end of an AU; they are the last non-EOB/EOS NAL in the AU. */ if (s->pkt.nb_nals > 1 && s->pkt.nals[s->pkt.nb_nals - 1].type == HEVC_NAL_UNSPEC62 && s->pkt.nals[s->pkt.nb_nals - 1].size > 2 && !s->pkt.nals[s->pkt.nb_nals - 1].nuh_layer_id && !s->pkt.nals[s->pkt.nb_nals - 1].temporal_id) { H2645NAL *nal = &s->pkt.nals[s->pkt.nb_nals - 1]; if (s->rpu_buf) { av_buffer_unref(&s->rpu_buf); av_log(s->avctx, AV_LOG_WARNING, "Multiple Dolby Vision RPUs found in one AU. Skipping previous.\n"); } s->rpu_buf = av_buffer_alloc(nal->raw_size - 2); if (!s->rpu_buf) return AVERROR(ENOMEM); memcpy(s->rpu_buf->data, nal->raw_data + 2, nal->raw_size - 2); ret = ff_dovi_rpu_parse(&s->dovi_ctx, nal->data + 2, nal->size - 2, s->avctx->err_recognition); if (ret < 0) { av_buffer_unref(&s->rpu_buf); av_log(s->avctx, AV_LOG_WARNING, "Error parsing DOVI NAL unit.\n"); /* ignore */ } } /* decode the NAL units */ for (i = 0; i < s->pkt.nb_nals; i++) { H2645NAL *nal = &s->pkt.nals[i]; if (s->avctx->skip_frame >= AVDISCARD_ALL || (s->avctx->skip_frame >= AVDISCARD_NONREF && ff_hevc_nal_is_nonref(nal->type)) || nal->nuh_layer_id > 0) continue; ret = decode_nal_unit(s, nal); if (ret < 0) { av_log(s->avctx, AV_LOG_WARNING, "Error parsing NAL unit #%d.\n", i); goto fail; } } fail: if (s->cur_frame && s->avctx->active_thread_type == FF_THREAD_FRAME) ff_progress_frame_report(&s->cur_frame->tf, INT_MAX); return ret; } static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length, int first) { int ret, i; ret = ff_hevc_decode_extradata(buf, length, &s->ps, &s->sei, &s->is_nalff, &s->nal_length_size, s->avctx->err_recognition, s->apply_defdispwin, s->avctx); if (ret < 0) return ret; /* export stream parameters from the first SPS */ for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) { if (first && s->ps.sps_list[i]) { const HEVCSPS *sps = s->ps.sps_list[i]; export_stream_params(s, sps); break; } } /* export stream parameters from SEI */ ret = export_stream_params_from_sei(s); if (ret < 0) return ret; return 0; } static int hevc_decode_frame(AVCodecContext *avctx, AVFrame *rframe, int *got_output, AVPacket *avpkt) { int ret; uint8_t *sd; size_t sd_size; HEVCContext *s = avctx->priv_data; if (!avpkt->size) { ret = ff_hevc_output_frame(s, rframe, 1); if (ret < 0) return ret; *got_output = ret; return 0; } sd = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, &sd_size); if (sd && sd_size > 0) { ret = hevc_decode_extradata(s, sd, sd_size, 0); if (ret < 0) return ret; } sd = av_packet_get_side_data(avpkt, AV_PKT_DATA_DOVI_CONF, &sd_size); if (sd && sd_size >= sizeof(s->dovi_ctx.cfg)) { int old = s->dovi_ctx.cfg.dv_profile; s->dovi_ctx.cfg = *(AVDOVIDecoderConfigurationRecord *) sd; if (old) av_log(avctx, AV_LOG_DEBUG, "New DOVI configuration record from input packet (profile %d -> %u).\n", old, s->dovi_ctx.cfg.dv_profile); } ret = decode_nal_units(s, avpkt->data, avpkt->size); if (ret < 0) return ret; if (s->output_frame->buf[0]) { av_frame_move_ref(rframe, s->output_frame); *got_output = 1; } return avpkt->size; } static int hevc_ref_frame(HEVCFrame *dst, const HEVCFrame *src) { int ret; ff_progress_frame_ref(&dst->tf, &src->tf); if (src->needs_fg) { ret = av_frame_ref(dst->frame_grain, src->frame_grain); if (ret < 0) { ff_hevc_unref_frame(dst, ~0); return ret; } dst->needs_fg = 1; } dst->tab_mvf = ff_refstruct_ref(src->tab_mvf); dst->rpl_tab = ff_refstruct_ref(src->rpl_tab); dst->rpl = ff_refstruct_ref(src->rpl); dst->nb_rpl_elems = src->nb_rpl_elems; dst->poc = src->poc; dst->ctb_count = src->ctb_count; dst->flags = src->flags; dst->sequence = src->sequence; ff_refstruct_replace(&dst->hwaccel_picture_private, src->hwaccel_picture_private); return 0; } static av_cold int hevc_decode_free(AVCodecContext *avctx) { HEVCContext *s = avctx->priv_data; int i; pic_arrays_free(s); ff_refstruct_unref(&s->pps); ff_dovi_ctx_unref(&s->dovi_ctx); av_buffer_unref(&s->rpu_buf); av_freep(&s->md5_ctx); for (i = 0; i < 3; i++) { av_freep(&s->sao_pixel_buffer_h[i]); av_freep(&s->sao_pixel_buffer_v[i]); } av_frame_free(&s->output_frame); for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) { ff_hevc_unref_frame(&s->DPB[i], ~0); av_frame_free(&s->DPB[i].frame_grain); } ff_hevc_ps_uninit(&s->ps); av_freep(&s->sh.entry_point_offset); av_freep(&s->sh.offset); av_freep(&s->sh.size); av_freep(&s->local_ctx); ff_h2645_packet_uninit(&s->pkt); ff_hevc_reset_sei(&s->sei); return 0; } static av_cold int hevc_init_context(AVCodecContext *avctx) { HEVCContext *s = avctx->priv_data; int i; s->avctx = avctx; s->local_ctx = av_mallocz(sizeof(*s->local_ctx)); if (!s->local_ctx) return AVERROR(ENOMEM); s->nb_local_ctx = 1; s->local_ctx[0].parent = s; s->local_ctx[0].logctx = avctx; s->local_ctx[0].common_cabac_state = &s->cabac; s->output_frame = av_frame_alloc(); if (!s->output_frame) return AVERROR(ENOMEM); for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) { s->DPB[i].frame_grain = av_frame_alloc(); if (!s->DPB[i].frame_grain) return AVERROR(ENOMEM); } s->md5_ctx = av_md5_alloc(); if (!s->md5_ctx) return AVERROR(ENOMEM); ff_bswapdsp_init(&s->bdsp); s->dovi_ctx.logctx = avctx; s->eos = 0; ff_hevc_reset_sei(&s->sei); return 0; } #if HAVE_THREADS static int hevc_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { HEVCContext *s = dst->priv_data; HEVCContext *s0 = src->priv_data; int i, ret; for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) { ff_hevc_unref_frame(&s->DPB[i], ~0); if (s0->DPB[i].f) { ret = hevc_ref_frame(&s->DPB[i], &s0->DPB[i]); if (ret < 0) return ret; } } if (s->ps.sps != s0->ps.sps) s->ps.sps = NULL; for (int i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) ff_refstruct_replace(&s->ps.vps_list[i], s0->ps.vps_list[i]); for (int i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) ff_refstruct_replace(&s->ps.sps_list[i], s0->ps.sps_list[i]); for (int i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) ff_refstruct_replace(&s->ps.pps_list[i], s0->ps.pps_list[i]); // PPS do not persist between frames ff_refstruct_unref(&s->pps); if (s->ps.sps != s0->ps.sps) if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0) return ret; s->seq_decode = s0->seq_decode; s->seq_output = s0->seq_output; s->poc_tid0 = s0->poc_tid0; s->eos = s0->eos; s->no_rasl_output_flag = s0->no_rasl_output_flag; s->is_nalff = s0->is_nalff; s->nal_length_size = s0->nal_length_size; s->film_grain_warning_shown = s0->film_grain_warning_shown; if (s0->eos) { s->seq_decode = (s->seq_decode + 1) & HEVC_SEQUENCE_COUNTER_MASK; } ret = ff_h2645_sei_ctx_replace(&s->sei.common, &s0->sei.common); if (ret < 0) return ret; ret = av_buffer_replace(&s->sei.common.dynamic_hdr_plus.info, s0->sei.common.dynamic_hdr_plus.info); if (ret < 0) return ret; ret = av_buffer_replace(&s->rpu_buf, s0->rpu_buf); if (ret < 0) return ret; ff_dovi_ctx_replace(&s->dovi_ctx, &s0->dovi_ctx); ret = av_buffer_replace(&s->sei.common.dynamic_hdr_vivid.info, s0->sei.common.dynamic_hdr_vivid.info); if (ret < 0) return ret; s->sei.common.frame_packing = s0->sei.common.frame_packing; s->sei.common.display_orientation = s0->sei.common.display_orientation; s->sei.common.alternative_transfer = s0->sei.common.alternative_transfer; s->sei.common.mastering_display = s0->sei.common.mastering_display; s->sei.common.content_light = s0->sei.common.content_light; s->sei.common.aom_film_grain = s0->sei.common.aom_film_grain; ret = export_stream_params_from_sei(s); if (ret < 0) return ret; return 0; } #endif static av_cold int hevc_decode_init(AVCodecContext *avctx) { HEVCContext *s = avctx->priv_data; int ret; if (avctx->active_thread_type & FF_THREAD_SLICE) { ret = ff_slice_thread_init_progress(avctx); if (ret < 0) return ret; } ret = hevc_init_context(avctx); if (ret < 0) return ret; s->sei.picture_timing.picture_struct = 0; s->eos = 1; atomic_init(&s->wpp_err, 0); if (!avctx->internal->is_copy) { const AVPacketSideData *sd; if (avctx->extradata_size > 0 && avctx->extradata) { ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size, 1); if (ret < 0) { return ret; } ret = ff_h2645_sei_to_context(avctx, &s->sei.common); if (ret < 0) return ret; } sd = ff_get_coded_side_data(avctx, AV_PKT_DATA_DOVI_CONF); if (sd && sd->size >= sizeof(s->dovi_ctx.cfg)) s->dovi_ctx.cfg = *(AVDOVIDecoderConfigurationRecord *) sd->data; } return 0; } static void hevc_decode_flush(AVCodecContext *avctx) { HEVCContext *s = avctx->priv_data; ff_hevc_flush_dpb(s); ff_hevc_reset_sei(&s->sei); ff_dovi_ctx_flush(&s->dovi_ctx); av_buffer_unref(&s->rpu_buf); s->eos = 1; if (FF_HW_HAS_CB(avctx, flush)) FF_HW_SIMPLE_CALL(avctx, flush); } #define OFFSET(x) offsetof(HEVCContext, x) #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM) static const AVOption options[] = { { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR }, { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR }, { NULL }, }; static const AVClass hevc_decoder_class = { .class_name = "HEVC decoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; const FFCodec ff_hevc_decoder = { .p.name = "hevc", CODEC_LONG_NAME("HEVC (High Efficiency Video Coding)"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_HEVC, .priv_data_size = sizeof(HEVCContext), .p.priv_class = &hevc_decoder_class, .init = hevc_decode_init, .close = hevc_decode_free, FF_CODEC_DECODE_CB(hevc_decode_frame), .flush = hevc_decode_flush, UPDATE_THREAD_CONTEXT(hevc_update_thread_context), .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS, .caps_internal = FF_CODEC_CAP_EXPORTS_CROPPING | FF_CODEC_CAP_USES_PROGRESSFRAMES | FF_CODEC_CAP_INIT_CLEANUP, .p.profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles), .hw_configs = (const AVCodecHWConfigInternal *const []) { #if CONFIG_HEVC_DXVA2_HWACCEL HWACCEL_DXVA2(hevc), #endif #if CONFIG_HEVC_D3D11VA_HWACCEL HWACCEL_D3D11VA(hevc), #endif #if CONFIG_HEVC_D3D11VA2_HWACCEL HWACCEL_D3D11VA2(hevc), #endif #if CONFIG_HEVC_D3D12VA_HWACCEL HWACCEL_D3D12VA(hevc), #endif #if CONFIG_HEVC_NVDEC_HWACCEL HWACCEL_NVDEC(hevc), #endif #if CONFIG_HEVC_VAAPI_HWACCEL HWACCEL_VAAPI(hevc), #endif #if CONFIG_HEVC_VDPAU_HWACCEL HWACCEL_VDPAU(hevc), #endif #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL HWACCEL_VIDEOTOOLBOX(hevc), #endif #if CONFIG_HEVC_VULKAN_HWACCEL HWACCEL_VULKAN(hevc), #endif NULL }, };