/* * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG-4 part10 codec. * @author Michael Niedermayer <michaelni@gmx.at> */ #ifndef AVCODEC_H264DEC_H #define AVCODEC_H264DEC_H #include "libavutil/buffer.h" #include "libavutil/intreadwrite.h" #include "libavutil/thread.h" #include "cabac.h" #include "error_resilience.h" #include "h264_parse.h" #include "h264_ps.h" #include "h264_sei.h" #include "h2645_parse.h" #include "h264chroma.h" #include "h264dsp.h" #include "h264pred.h" #include "h264qpel.h" #include "internal.h" #include "mpegutils.h" #include "parser.h" #include "qpeldsp.h" #include "rectangle.h" #include "videodsp.h" #define H264_MAX_PICTURE_COUNT 36 #define MAX_MMCO_COUNT 66 #define MAX_DELAYED_PIC_COUNT 16 /* Compiling in interlaced support reduces the speed * of progressive decoding by about 2%. */ #define ALLOW_INTERLACE #define FMO 0 /** * The maximum number of slices supported by the decoder. * must be a power of 2 */ #define MAX_SLICES 32 #ifdef ALLOW_INTERLACE #define MB_MBAFF(h) (h)->mb_mbaff #define MB_FIELD(sl) (sl)->mb_field_decoding_flag #define FRAME_MBAFF(h) (h)->mb_aff_frame #define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME) #define LEFT_MBS 2 #define LTOP 0 #define LBOT 1 #define LEFT(i) (i) #else #define MB_MBAFF(h) 0 #define MB_FIELD(sl) 0 #define FRAME_MBAFF(h) 0 #define FIELD_PICTURE(h) 0 #undef IS_INTERLACED #define IS_INTERLACED(mb_type) 0 #define LEFT_MBS 1 #define LTOP 0 #define LBOT 0 #define LEFT(i) 0 #endif #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h)) #ifndef CABAC #define CABAC(h) (h)->ps.pps->cabac #endif #define CHROMA(h) ((h)->ps.sps->chroma_format_idc) #define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2) #define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3) #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit #define MB_TYPE_8x8DCT 0x01000000 #define IS_REF0(a) ((a) & MB_TYPE_REF0) #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT) /** * Memory management control operation opcode. */ typedef enum MMCOOpcode { MMCO_END = 0, MMCO_SHORT2UNUSED, MMCO_LONG2UNUSED, MMCO_SHORT2LONG, MMCO_SET_MAX_LONG, MMCO_RESET, MMCO_LONG, } MMCOOpcode; /** * Memory management control operation. */ typedef struct MMCO { MMCOOpcode opcode; int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num) int long_arg; ///< index, pic_num, or num long refs depending on opcode } MMCO; typedef struct H264Picture { AVFrame *f; ThreadFrame tf; AVBufferRef *qscale_table_buf; int8_t *qscale_table; AVBufferRef *motion_val_buf[2]; int16_t (*motion_val[2])[2]; AVBufferRef *mb_type_buf; uint32_t *mb_type; AVBufferRef *hwaccel_priv_buf; void *hwaccel_picture_private; ///< hardware accelerator private data AVBufferRef *ref_index_buf[2]; int8_t *ref_index[2]; int field_poc[2]; ///< top/bottom POC int poc; ///< frame POC int frame_num; ///< frame_num (raw frame_num from slice header) int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must not mix pictures before and after MMCO_RESET. */ int pic_id; /**< pic_num (short -> no wrap version of pic_num, pic_num & max_pic_num; long -> long_pic_num) */ int long_ref; ///< 1->long term reference 0->short term reference int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice) int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice) int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF int field_picture; ///< whether or not picture was encoded in separate fields int reference; int recovered; ///< picture at IDR or recovery point + recovery count int invalid_gap; int sei_recovery_frame_cnt; } H264Picture; typedef struct H264Ref { uint8_t *data[3]; int linesize[3]; int reference; int poc; int pic_id; H264Picture *parent; } H264Ref; typedef struct H264SliceContext { struct H264Context *h264; GetBitContext gb; ERContext er; int slice_num; int slice_type; int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P) int slice_type_fixed; int qscale; int chroma_qp[2]; // QPc int qp_thresh; ///< QP threshold to skip loopfilter int last_qscale_diff; // deblock int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0 int slice_alpha_c0_offset; int slice_beta_offset; H264PredWeightTable pwt; int prev_mb_skipped; int next_mb_skipped; int chroma_pred_mode; int intra16x16_pred_mode; int8_t intra4x4_pred_mode_cache[5 * 8]; int8_t(*intra4x4_pred_mode); int topleft_mb_xy; int top_mb_xy; int topright_mb_xy; int left_mb_xy[LEFT_MBS]; int topleft_type; int top_type; int topright_type; int left_type[LEFT_MBS]; const uint8_t *left_block; int topleft_partition; unsigned int topleft_samples_available; unsigned int top_samples_available; unsigned int topright_samples_available; unsigned int left_samples_available; ptrdiff_t linesize, uvlinesize; ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff ptrdiff_t mb_uvlinesize; int mb_x, mb_y; int mb_xy; int resync_mb_x; int resync_mb_y; unsigned int first_mb_addr; // index of the first MB of the next slice int next_slice_idx; int mb_skip_run; int is_complex; int picture_structure; int mb_field_decoding_flag; int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag int redundant_pic_count; /** * number of neighbors (top and/or left) that used 8x8 dct */ int neighbor_transform_size; int direct_spatial_mv_pred; int col_parity; int col_fieldoff; int cbp; int top_cbp; int left_cbp; int dist_scale_factor[32]; int dist_scale_factor_field[2][32]; int map_col_to_list0[2][16 + 32]; int map_col_to_list0_field[2][2][16 + 32]; /** * num_ref_idx_l0/1_active_minus1 + 1 */ unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode unsigned int list_count; H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs. * Reordered version of default_ref_list * according to picture reordering in slice header */ struct { uint8_t op; uint32_t val; } ref_modifications[2][32]; int nb_ref_modifications[2]; unsigned int pps_id; const uint8_t *intra_pcm_ptr; int16_t *dc_val_base; uint8_t *bipred_scratchpad; uint8_t *edge_emu_buffer; uint8_t (*top_borders[2])[(16 * 3) * 2]; int bipred_scratchpad_allocated; int edge_emu_buffer_allocated; int top_borders_allocated[2]; /** * non zero coeff count cache. * is 64 if not available. */ DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8]; /** * Motion vector cache. */ DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2]; DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8]; DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2]; uint8_t direct_cache[5 * 8]; DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4]; ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space. DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2]; DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either ///< check that i is not too large or ensure that there is some unused stuff after mb int16_t mb_padding[256 * 2]; uint8_t (*mvd_table[2])[2]; /** * Cabac */ CABACContext cabac; uint8_t cabac_state[1024]; int cabac_init_idc; MMCO mmco[MAX_MMCO_COUNT]; int nb_mmco; int explicit_ref_marking; int frame_num; int poc_lsb; int delta_poc_bottom; int delta_poc[2]; int curr_pic_num; int max_pic_num; } H264SliceContext; /** * H264Context */ typedef struct H264Context { const AVClass *class; AVCodecContext *avctx; VideoDSPContext vdsp; H264DSPContext h264dsp; H264ChromaContext h264chroma; H264QpelContext h264qpel; H264Picture DPB[H264_MAX_PICTURE_COUNT]; H264Picture *cur_pic_ptr; H264Picture cur_pic; H264Picture last_pic_for_ec; H264SliceContext *slice_ctx; int nb_slice_ctx; int nb_slice_ctx_queued; H2645Packet pkt; int pixel_shift; ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264 /* coded dimensions -- 16 * mb w/h */ int width, height; int chroma_x_shift, chroma_y_shift; int droppable; int coded_picture_number; int context_initialized; int flags; int workaround_bugs; int x264_build; /* Set when slice threading is used and at least one slice uses deblocking * mode 1 (i.e. across slice boundaries). Then we disable the loop filter * during normal MB decoding and execute it serially at the end. */ int postpone_filter; /* * Set to 1 when the current picture is IDR, 0 otherwise. */ int picture_idr; int crop_left; int crop_right; int crop_top; int crop_bottom; int8_t(*intra4x4_pred_mode); H264PredContext hpc; uint8_t (*non_zero_count)[48]; #define LIST_NOT_USED -1 // FIXME rename? #define PART_NOT_AVAILABLE -2 /** * block_offset[ 0..23] for frame macroblocks * block_offset[24..47] for field macroblocks */ int block_offset[2 * (16 * 3)]; uint32_t *mb2b_xy; // FIXME are these 4 a good idea? uint32_t *mb2br_xy; int b_stride; // FIXME use s->b4_stride uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1 // interlacing specific flags int mb_aff_frame; int picture_structure; int first_field; uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */ uint16_t *cbp_table; /* chroma_pred_mode for i4x4 or i16x16, else 0 */ uint8_t *chroma_pred_mode_table; uint8_t (*mvd_table[2])[2]; uint8_t *direct_table; uint8_t zigzag_scan[16]; uint8_t zigzag_scan8x8[64]; uint8_t zigzag_scan8x8_cavlc[64]; uint8_t field_scan[16]; uint8_t field_scan8x8[64]; uint8_t field_scan8x8_cavlc[64]; uint8_t zigzag_scan_q0[16]; uint8_t zigzag_scan8x8_q0[64]; uint8_t zigzag_scan8x8_cavlc_q0[64]; uint8_t field_scan_q0[16]; uint8_t field_scan8x8_q0[64]; uint8_t field_scan8x8_cavlc_q0[64]; int mb_y; int mb_height, mb_width; int mb_stride; int mb_num; // ============================================================= // Things below are not used in the MB or more inner code int nal_ref_idc; int nal_unit_type; int has_slice; ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame() /** * Used to parse AVC variant of H.264 */ int is_avc; ///< this flag is != 0 if codec is avc1 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4) int bit_depth_luma; ///< luma bit depth from sps to detect changes int chroma_format_idc; ///< chroma format from sps to detect changes H264ParamSets ps; uint16_t *slice_table_base; H264POCContext poc; H264Ref default_ref[2]; H264Picture *short_ref[32]; H264Picture *long_ref[32]; H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size? int last_pocs[MAX_DELAYED_PIC_COUNT]; H264Picture *next_output_pic; int next_outputed_poc; /** * memory management control operations buffer. */ MMCO mmco[MAX_MMCO_COUNT]; int nb_mmco; int mmco_reset; int explicit_ref_marking; int long_ref_count; ///< number of actual long term references int short_ref_count; ///< number of actual short term references /** * @name Members for slice based multithreading * @{ */ /** * current slice number, used to initialize slice_num of each thread/context */ int current_slice; /** @} */ /** * Complement sei_pic_struct * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames. * However, soft telecined frames may have these values. * This is used in an attempt to flag soft telecine progressive. */ int prev_interlaced_frame; /** * Are the SEI recovery points looking valid. */ int valid_recovery_point; /** * recovery_frame is the frame_num at which the next frame should * be fully constructed. * * Set to -1 when not expecting a recovery point. */ int recovery_frame; /** * We have seen an IDR, so all the following frames in coded order are correctly * decodable. */ #define FRAME_RECOVERED_IDR (1 << 0) /** * Sufficient number of frames have been decoded since a SEI recovery point, * so all the following frames in presentation order are correct. */ #define FRAME_RECOVERED_SEI (1 << 1) int frame_recovered; ///< Initial frame has been completely recovered int has_recovery_point; int missing_fields; /* for frame threading, this is set to 1 * after finish_setup() has been called, so we cannot modify * some context properties (which are supposed to stay constant between * slices) anymore */ int setup_finished; int cur_chroma_format_idc; int cur_bit_depth_luma; int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low /* original AVCodecContext dimensions, used to handle container * cropping */ int width_from_caller; int height_from_caller; int enable_er; H264SEIContext sei; AVBufferPool *qscale_table_pool; AVBufferPool *mb_type_pool; AVBufferPool *motion_val_pool; AVBufferPool *ref_index_pool; int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 } H264Context; extern const uint16_t ff_h264_mb_sizes[4]; /** * Reconstruct bitstream slice_type. */ int ff_h264_get_slice_type(const H264SliceContext *sl); /** * Allocate tables. * needs width/height */ int ff_h264_alloc_tables(H264Context *h); int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx); int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl); void ff_h264_remove_all_refs(H264Context *h); /** * Execute the reference picture marking (memory management control operations). */ int ff_h264_execute_ref_pic_marking(H264Context *h); int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb, const H2645NAL *nal, void *logctx); void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl); void ff_h264_decode_init_vlc(void); /** * Decode a macroblock * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error */ int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl); /** * Decode a CABAC coded macroblock * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error */ int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl); void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl); void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl); void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl); void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl, int *mb_type); void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); /* * o-o o-o * / / / * o-o o-o * ,---' * o-o o-o * / / / * o-o o-o */ /* Scan8 organization: * 0 1 2 3 4 5 6 7 * 0 DY y y y y y * 1 y Y Y Y Y * 2 y Y Y Y Y * 3 y Y Y Y Y * 4 y Y Y Y Y * 5 DU u u u u u * 6 u U U U U * 7 u U U U U * 8 u U U U U * 9 u U U U U * 10 DV v v v v v * 11 v V V V V * 12 v V V V V * 13 v V V V V * 14 v V V V V * DY/DU/DV are for luma/chroma DC. */ #define LUMA_DC_BLOCK_INDEX 48 #define CHROMA_DC_BLOCK_INDEX 49 // This table must be here because scan8[constant] must be known at compiletime static const uint8_t scan8[16 * 3 + 3] = { 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8, 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8, 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8, 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8, 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8, 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8, 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8, 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8, 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8, 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8, 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8, 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8, 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8 }; static av_always_inline uint32_t pack16to32(unsigned a, unsigned b) { #if HAVE_BIGENDIAN return (b & 0xFFFF) + (a << 16); #else return (a & 0xFFFF) + (b << 16); #endif } static av_always_inline uint16_t pack8to16(unsigned a, unsigned b) { #if HAVE_BIGENDIAN return (b & 0xFF) + (a << 8); #else return (a & 0xFF) + (b << 8); #endif } /** * Get the chroma qp. */ static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale) { return pps->chroma_qp_table[t][qscale]; } /** * Get the predicted intra4x4 prediction mode. */ static av_always_inline int pred_intra_mode(const H264Context *h, H264SliceContext *sl, int n) { const int index8 = scan8[n]; const int left = sl->intra4x4_pred_mode_cache[index8 - 1]; const int top = sl->intra4x4_pred_mode_cache[index8 - 8]; const int min = FFMIN(left, top); ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min); if (min < 0) return DC_PRED; else return min; } static av_always_inline void write_back_intra_pred_mode(const H264Context *h, H264SliceContext *sl) { int8_t *i4x4 = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy]; int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache; AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4); i4x4[4] = i4x4_cache[7 + 8 * 3]; i4x4[5] = i4x4_cache[7 + 8 * 2]; i4x4[6] = i4x4_cache[7 + 8 * 1]; } static av_always_inline void write_back_non_zero_count(const H264Context *h, H264SliceContext *sl) { const int mb_xy = sl->mb_xy; uint8_t *nnz = h->non_zero_count[mb_xy]; uint8_t *nnz_cache = sl->non_zero_count_cache; AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]); AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]); AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]); AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]); AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]); AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]); AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]); AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]); if (!h->chroma_y_shift) { AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]); AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]); AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]); AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]); } } static av_always_inline void write_back_motion_list(const H264Context *h, H264SliceContext *sl, int b_stride, int b_xy, int b8_xy, int mb_type, int list) { int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy]; int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]]; AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0); AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1); AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2); AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3); if (CABAC(h)) { uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy : h->mb2br_xy[sl->mb_xy]]; uint8_t(*mvd_src)[2] = &sl->mvd_cache[list][scan8[0]]; if (IS_SKIP(mb_type)) { AV_ZERO128(mvd_dst); } else { AV_COPY64(mvd_dst, mvd_src + 8 * 3); AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0); AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1); AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2); } } { int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy]; int8_t *ref_cache = sl->ref_cache[list]; ref_index[0 + 0 * 2] = ref_cache[scan8[0]]; ref_index[1 + 0 * 2] = ref_cache[scan8[4]]; ref_index[0 + 1 * 2] = ref_cache[scan8[8]]; ref_index[1 + 1 * 2] = ref_cache[scan8[12]]; } } static av_always_inline void write_back_motion(const H264Context *h, H264SliceContext *sl, int mb_type) { const int b_stride = h->b_stride; const int b_xy = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy const int b8_xy = 4 * sl->mb_xy; if (USES_LIST(mb_type, 0)) { write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0); } else { fill_rectangle(&h->cur_pic.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1); } if (USES_LIST(mb_type, 1)) write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1); if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) { if (IS_8X8(mb_type)) { uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy]; direct_table[1] = sl->sub_mb_type[1] >> 1; direct_table[2] = sl->sub_mb_type[2] >> 1; direct_table[3] = sl->sub_mb_type[3] >> 1; } } } static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl) { if (h->ps.sps->direct_8x8_inference_flag) return !(AV_RN64A(sl->sub_mb_type) & ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) * 0x0001000100010001ULL)); else return !(AV_RN64A(sl->sub_mb_type) & ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) * 0x0001000100010001ULL)); } static inline int find_start_code(const uint8_t *buf, int buf_size, int buf_index, int next_avc) { uint32_t state = -1; buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1; return FFMIN(buf_index, buf_size); } int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup); int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src); void ff_h264_unref_picture(H264Context *h, H264Picture *pic); int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl); void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height); int ff_h264_decode_slice_header(H264Context *h, H264SliceContext *sl, const H2645NAL *nal); /** * Submit a slice for decoding. * * Parse the slice header, starting a new field/frame if necessary. If any * slices are queued for the previous field, they are decoded. */ int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal); int ff_h264_execute_decode_slices(H264Context *h); int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src); void ff_h264_flush_change(H264Context *h); void ff_h264_free_tables(H264Context *h); void ff_h264_set_erpic(ERPicture *dst, H264Picture *src); #endif /* AVCODEC_H264DEC_H */