/* * audio resampling * Copyright (c) 2004-2012 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * audio resampling * @author Michael Niedermayer */ #include "libavutil/avassert.h" #include "resample.h" /** * 0th order modified bessel function of the first kind. */ static double bessel(double x){ double v=1; double lastv=0; double t=1; int i; static const double inv[100]={ 1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10), 1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20), 1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30), 1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40), 1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50), 1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60), 1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70), 1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80), 1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90), 1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000) }; x= x*x/4; for(i=0; v != lastv; i++){ lastv=v; t *= x*inv[i]; v += t; av_assert2(i<99); } return v; } /** * builds a polyphase filterbank. * @param factor resampling factor * @param scale wanted sum of coefficients for each filter * @param filter_type filter type * @param kaiser_beta kaiser window beta * @return 0 on success, negative on error */ static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale, int filter_type, int kaiser_beta){ int ph, i; double x, y, w; double *tab = av_malloc_array(tap_count, sizeof(*tab)); const int center= (tap_count-1)/2; if (!tab) return AVERROR(ENOMEM); /* if upsampling, only need to interpolate, no filter */ if (factor > 1.0) factor = 1.0; for(ph=0;phformat){ case AV_SAMPLE_FMT_S16P: for(i=0;ifilter_bank); av_freep(cc); } static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, int kaiser_beta, double precision, int cheby) { double cutoff = cutoff0? cutoff0 : 0.97; double factor= FFMIN(out_rate * cutoff / in_rate, 1.0); int phase_count= 1<phase_shift != phase_shift || c->linear!=linear || c->factor != factor || c->filter_length != FFMAX((int)ceil(filter_size/factor), 1) || c->format != format || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) { resample_free(&c); c = av_mallocz(sizeof(*c)); if (!c) return NULL; c->format= format; c->felem_size= av_get_bytes_per_sample(c->format); switch(c->format){ case AV_SAMPLE_FMT_S16P: c->filter_shift = 15; break; case AV_SAMPLE_FMT_S32P: c->filter_shift = 30; break; case AV_SAMPLE_FMT_FLTP: case AV_SAMPLE_FMT_DBLP: c->filter_shift = 0; break; default: av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n"); av_assert0(0); } if (filter_size/factor > INT32_MAX/256) { av_log(NULL, AV_LOG_ERROR, "Filter length too large\n"); goto error; } c->phase_shift = phase_shift; c->phase_mask = phase_count - 1; c->linear = linear; c->factor = factor; c->filter_length = FFMAX((int)ceil(filter_size/factor), 1); c->filter_alloc = FFALIGN(c->filter_length, 8); c->filter_bank = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size); c->filter_type = filter_type; c->kaiser_beta = kaiser_beta; if (!c->filter_bank) goto error; if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<filter_shift, filter_type, kaiser_beta)) goto error; memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size); memcpy(c->filter_bank + (c->filter_alloc*phase_count )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size); } c->compensation_distance= 0; if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2)) goto error; while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) { c->dst_incr *= 2; c->src_incr *= 2; } c->ideal_dst_incr = c->dst_incr; c->dst_incr_div = c->dst_incr / c->src_incr; c->dst_incr_mod = c->dst_incr % c->src_incr; c->index= -phase_count*((c->filter_length-1)/2); c->frac= 0; swri_resample_dsp_init(c); return c; error: av_freep(&c->filter_bank); av_free(c); return NULL; } static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){ c->compensation_distance= compensation_distance; if (compensation_distance) c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance; else c->dst_incr = c->ideal_dst_incr; c->dst_incr_div = c->dst_incr / c->src_incr; c->dst_incr_mod = c->dst_incr % c->src_incr; return 0; } static int swri_resample(ResampleContext *c, uint8_t *dst, const uint8_t *src, int *consumed, int src_size, int dst_size, int update_ctx) { if (c->filter_length == 1 && c->phase_shift == 0) { int index= c->index; int frac= c->frac; int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*index; int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr; int new_size = (src_size * (int64_t)c->src_incr - frac + c->dst_incr - 1) / c->dst_incr; dst_size= FFMIN(dst_size, new_size); c->dsp.resample_one(dst, src, dst_size, index2, incr); index += dst_size * c->dst_incr_div; index += (frac + dst_size * (int64_t)c->dst_incr_mod) / c->src_incr; av_assert2(index >= 0); *consumed= index; if (update_ctx) { c->frac = (frac + dst_size * (int64_t)c->dst_incr_mod) % c->src_incr; c->index = 0; } } else { int64_t end_index = (1LL + src_size - c->filter_length) << c->phase_shift; int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac; int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr; dst_size = FFMIN(dst_size, delta_n); if (dst_size > 0) { *consumed = c->dsp.resample(c, dst, src, dst_size, update_ctx); } else { *consumed = 0; } } return dst_size; } static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){ int i, ret= -1; int av_unused mm_flags = av_get_cpu_flags(); int need_emms = c->format == AV_SAMPLE_FMT_S16P && ARCH_X86_32 && (mm_flags & (AV_CPU_FLAG_MMX2 | AV_CPU_FLAG_SSE2)) == AV_CPU_FLAG_MMX2; int64_t max_src_size = (INT64_MAX >> (c->phase_shift+1)) / c->src_incr; if (c->compensation_distance) dst_size = FFMIN(dst_size, c->compensation_distance); src_size = FFMIN(src_size, max_src_size); for(i=0; ich_count; i++){ ret= swri_resample(c, dst->ch[i], src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count); } if(need_emms) emms_c(); if (c->compensation_distance) { c->compensation_distance -= ret; if (!c->compensation_distance) { c->dst_incr = c->ideal_dst_incr; c->dst_incr_div = c->dst_incr / c->src_incr; c->dst_incr_mod = c->dst_incr % c->src_incr; } } return ret; } static int64_t get_delay(struct SwrContext *s, int64_t base){ ResampleContext *c = s->resample; int64_t num = s->in_buffer_count - (c->filter_length-1)/2; num *= 1 << c->phase_shift; num -= c->index; num *= c->src_incr; num -= c->frac; return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr << c->phase_shift); } static int64_t get_out_samples(struct SwrContext *s, int in_samples) { ResampleContext *c = s->resample; // The + 2 are added to allow implementations to be slightly inaccurate, they should not be needed currently. // They also make it easier to proof that changes and optimizations do not // break the upper bound. int64_t num = s->in_buffer_count + 2LL + in_samples; num *= 1 << c->phase_shift; num -= c->index; num = av_rescale_rnd(num, s->out_sample_rate, ((int64_t)s->in_sample_rate) << c->phase_shift, AV_ROUND_UP) + 2; if (c->compensation_distance) { if (num > INT_MAX) return AVERROR(EINVAL); num = FFMAX(num, (num * c->ideal_dst_incr - 1) / c->dst_incr + 1); } return num; } static int resample_flush(struct SwrContext *s) { AudioData *a= &s->in_buffer; int i, j, ret; if((ret = swri_realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0) return ret; av_assert0(a->planar); for(i=0; ich_count; i++){ for(j=0; jin_buffer_count; j++){ memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j )*a->bps, a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps); } } s->in_buffer_count += (s->in_buffer_count+1)/2; return 0; } // in fact the whole handle multiple ridiculously small buffers might need more thinking... static int invert_initial_buffer(ResampleContext *c, AudioData *dst, const AudioData *src, int in_count, int *out_idx, int *out_sz) { int n, ch, num = FFMIN(in_count + *out_sz, c->filter_length + 1), res; if (c->index >= 0) return 0; if ((res = swri_realloc_audio(dst, c->filter_length * 2 + 1)) < 0) return res; // copy for (n = *out_sz; n < num; n++) { for (ch = 0; ch < src->ch_count; ch++) { memcpy(dst->ch[ch] + ((c->filter_length + n) * c->felem_size), src->ch[ch] + ((n - *out_sz) * c->felem_size), c->felem_size); } } // if not enough data is in, return and wait for more if (num < c->filter_length + 1) { *out_sz = num; *out_idx = c->filter_length; return INT_MAX; } // else invert for (n = 1; n <= c->filter_length; n++) { for (ch = 0; ch < src->ch_count; ch++) { memcpy(dst->ch[ch] + ((c->filter_length - n) * c->felem_size), dst->ch[ch] + ((c->filter_length + n) * c->felem_size), c->felem_size); } } res = num - *out_sz; *out_idx = c->filter_length + (c->index >> c->phase_shift); *out_sz = FFMAX(*out_sz + c->filter_length, 1 + c->filter_length * 2) - *out_idx; c->index &= c->phase_mask; return FFMAX(res, 0); } struct Resampler const swri_resampler={ resample_init, resample_free, multiple_resample, resample_flush, set_compensation, get_delay, invert_initial_buffer, get_out_samples, };