/* * Copyright (C) 2017 foo86 * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/float_dsp.h" #include "libavutil/thread.h" #include "libavutil/mem.h" #include "libavutil/mem_internal.h" #include "internal.h" #include "get_bits.h" #include "put_bits.h" #include "parser.h" #include "dolby_e.h" #include "dolby_edec.h" #include "dolby_e_parser_internal.h" #include "fft.h" static int skip_input(DBEContext *s, int nb_words) { if (nb_words > s->input_size) { av_log(s->avctx, AV_LOG_ERROR, "Packet too short\n"); return AVERROR_INVALIDDATA; } s->input += nb_words * s->word_bytes; s->input_size -= nb_words; return 0; } static int parse_key(DBEContext *s) { if (s->key_present) { const uint8_t *key = s->input; int ret = skip_input(s, 1); if (ret < 0) return ret; return AV_RB24(key) >> 24 - s->word_bits; } return 0; } static int convert_input(DBEContext *s, int nb_words, int key) { const uint8_t *src = s->input; uint8_t *dst = s->buffer; PutBitContext pb; int i; av_assert0(nb_words <= 1024u); if (nb_words > s->input_size) { av_log(s->avctx, AV_LOG_ERROR, "Packet too short\n"); return AVERROR_INVALIDDATA; } switch (s->word_bits) { case 16: for (i = 0; i < nb_words; i++, src += 2, dst += 2) AV_WB16(dst, AV_RB16(src) ^ key); break; case 20: init_put_bits(&pb, s->buffer, sizeof(s->buffer)); for (i = 0; i < nb_words; i++, src += 3) put_bits(&pb, 20, AV_RB24(src) >> 4 ^ key); flush_put_bits(&pb); break; case 24: for (i = 0; i < nb_words; i++, src += 3, dst += 3) AV_WB24(dst, AV_RB24(src) ^ key); break; default: av_assert0(0); } return init_get_bits(&s->gb, s->buffer, nb_words * s->word_bits); } static int parse_metadata_ext(DBEDecodeContext *s1) { DBEContext *s = &s1->dectx; if (s1->metadata.mtd_ext_size) return skip_input(s, s->key_present + s1->metadata.mtd_ext_size + 1); return 0; } static void unbias_exponents(DBEContext *s, DBEChannel *c, DBEGroup *g) { int mstr_exp[MAX_MSTR_EXP]; int bias_exp[MAX_BIAS_EXP]; int i, j, k; for (i = 0; i < c->nb_mstr_exp; i++) mstr_exp[i] = get_bits(&s->gb, 2) * 6; for (i = 0; i < g->nb_exponent; i++) bias_exp[i] = get_bits(&s->gb, 5); for (i = k = 0; i < c->nb_mstr_exp; i++) for (j = 0; j < g->nb_bias_exp[i]; j++, k++) c->exponents[g->exp_ofs + k] = mstr_exp[i] + bias_exp[k]; } static int parse_exponents(DBEContext *s, DBEChannel *c) { DBEGroup *p, *g; int i; for (i = 0, p = NULL, g = c->groups; i < c->nb_groups; i++, p = g, g++) { c->exp_strategy[i] = !i || g->nb_exponent != p->nb_exponent || get_bits1(&s->gb); if (c->exp_strategy[i]) { unbias_exponents(s, c, g); } else { memcpy(c->exponents + g->exp_ofs, c->exponents + p->exp_ofs, g->nb_exponent * sizeof(c->exponents[0])); } } return 0; } static inline int log_add(int a, int b) { int c = FFABS(a - b) >> 1; return FFMAX(a, b) + log_add_tab[FFMIN(c, 211)]; } static void calc_lowcomp(int *msk_val) { int lwc_val[17] = { 0 }; int i, j, k; for (i = 0; i < 11; i++) { int max_j = 0; int max_v = INT_MIN; int thr = 0; for (j = FFMAX(i - 3, 0), k = 0; j <= i + 3; j++, k++) { int v = msk_val[j] + lwc_gain_tab[i][k]; if (v > max_v) { max_j = j; max_v = v; } thr = log_add(thr, v); } if (msk_val[i] < thr) { for (j = FFMAX(max_j - 3, 0), k = FFMAX(3 - max_j, 0); j <= max_j + 3; j++, k++) lwc_val[j] += lwc_adj_tab[k]; } } for (i = 0; i < 16; i++) { int v = FFMAX(lwc_val[i], -512); msk_val[i] = FFMAX(msk_val[i] + v, 0); } } static void bit_allocate(int nb_exponent, int nb_code, int fr_code, int *exp, int *bap, int fg_spc, int fg_ofs, int msk_mod, int snr_ofs) { int msk_val[MAX_BIAS_EXP]; int psd_val[MAX_BIAS_EXP]; int fast_leak = 0; int slow_leak = 0; int dc_code = dc_code_tab[fr_code - 1]; int ht_code = ht_code_tab[fr_code - 1]; int fast_gain = fast_gain_tab[fg_ofs]; int slow_decay = slow_decay_tab[dc_code][msk_mod]; int misc_decay = misc_decay_tab[nb_code][dc_code][msk_mod]; const uint16_t *slow_gain = slow_gain_tab[nb_code][msk_mod]; const uint16_t *fast_decay = fast_decay_tab[nb_code][dc_code][msk_mod]; const uint16_t *fast_gain_adj = fast_gain_adj_tab[nb_code][dc_code]; const uint16_t *hearing_thresh = hearing_thresh_tab[nb_code][ht_code]; int i; for (i = 0; i < nb_exponent; i++) psd_val[i] = (48 - exp[i]) * 64; fast_gain_adj += band_ofs_tab[nb_code][fg_spc]; for (i = 0; i < nb_exponent; i++) { fast_leak = log_add(fast_leak - fast_decay[i], psd_val[i] - fast_gain + fast_gain_adj[i]); slow_leak = log_add(slow_leak - slow_decay, psd_val[i] - slow_gain[i]); msk_val[i] = FFMAX(fast_leak, slow_leak); } fast_leak = 0; for (i = nb_exponent - 1; i > band_low_tab[nb_code]; i--) { fast_leak = log_add(fast_leak - misc_decay, psd_val[i] - fast_gain); msk_val[i] = FFMAX(msk_val[i], fast_leak); } for (i = 0; i < nb_exponent; i++) msk_val[i] = FFMAX(msk_val[i], hearing_thresh[i]); if (!nb_code) calc_lowcomp(msk_val); for (i = 0; i < nb_exponent; i++) { int v = 16 * (snr_ofs - 64) + psd_val[i] - msk_val[i] >> 5; bap[i] = bap_tab[av_clip_uintp2(v, 6)]; } } static int parse_bit_alloc(DBEDecodeContext *s1, DBEChannel *c) { DBEContext *s = &s1->dectx; DBEGroup *p, *g; int bap_strategy[MAX_GROUPS], fg_spc[MAX_GROUPS]; int fg_ofs[MAX_GROUPS], msk_mod[MAX_GROUPS]; int i, snr_ofs; for (i = 0; i < c->nb_groups; i++) { bap_strategy[i] = !i || get_bits1(&s->gb); if (bap_strategy[i]) { fg_spc[i] = get_bits(&s->gb, 2); fg_ofs[i] = get_bits(&s->gb, 3); msk_mod[i] = get_bits1(&s->gb); } else { fg_spc[i] = fg_spc[i - 1]; fg_ofs[i] = fg_ofs[i - 1]; msk_mod[i] = msk_mod[i - 1]; } } if (get_bits1(&s->gb)) { avpriv_report_missing_feature(s->avctx, "Delta bit allocation"); return AVERROR_PATCHWELCOME; } snr_ofs = get_bits(&s->gb, 8); if (!snr_ofs) { memset(c->bap, 0, sizeof(c->bap)); return 0; } for (i = 0, p = NULL, g = c->groups; i < c->nb_groups; i++, p = g, g++) { if (c->exp_strategy[i] || bap_strategy[i]) { bit_allocate(g->nb_exponent, g->imdct_idx, s1->metadata.fr_code, c->exponents + g->exp_ofs, c->bap + g->exp_ofs, fg_spc[i], fg_ofs[i], msk_mod[i], snr_ofs); } else { memcpy(c->bap + g->exp_ofs, c->bap + p->exp_ofs, g->nb_exponent * sizeof(c->bap[0])); } } return 0; } static int parse_indices(DBEContext *s, DBEChannel *c) { DBEGroup *p, *g; int i, j; for (i = 0, p = NULL, g = c->groups; i < c->nb_groups; i++, p = g, g++) { if (get_bits1(&s->gb)) { int start = get_bits(&s->gb, 6); if (start > g->nb_exponent) { av_log(s->avctx, AV_LOG_ERROR, "Invalid start index\n"); return AVERROR_INVALIDDATA; } for (j = 0; j < start; j++) c->idx[g->exp_ofs + j] = 0; for (; j < g->nb_exponent; j++) c->idx[g->exp_ofs + j] = get_bits(&s->gb, 2); } else if (i && g->nb_exponent == p->nb_exponent) { memcpy(c->idx + g->exp_ofs, c->idx + p->exp_ofs, g->nb_exponent * sizeof(c->idx[0])); } else { memset(c->idx + g->exp_ofs, 0, g->nb_exponent * sizeof(c->idx[0])); } } return 0; } static int parse_mantissas(DBEContext *s, DBEChannel *c) { DBEGroup *g; int i, j, k; for (i = 0, g = c->groups; i < c->nb_groups; i++, g++) { float *mnt = c->mantissas + g->mnt_ofs; for (j = 0; j < g->nb_exponent; j++) { int bap = c->bap[g->exp_ofs + j]; int idx = c->idx[g->exp_ofs + j]; int size1 = mantissa_size1[bap][idx]; int count = g->nb_mantissa[j]; float exp = exponent_tab[c->exponents[g->exp_ofs + j]]; float scale = mantissa_tab1[size1][idx] * exp; if (!size1) { memset(mnt, 0, count * sizeof(*mnt)); } else if (idx) { int values[100]; int escape = -(1 << size1 - 1); for (k = 0; k < count; k++) values[k] = get_sbits(&s->gb, size1); for (k = 0; k < count; k++) { if (values[k] != escape) { mnt[k] = values[k] * scale; } else { int size2 = mantissa_size2[bap][idx]; int value = get_sbits(&s->gb, size2); float a = mantissa_tab2[size2][idx]; float b = mantissa_tab3[size2][idx]; if (value < 0) mnt[k] = ((value + 1) * a - b) * exp; else mnt[k] = (value * a + b) * exp; } } } else { for (k = 0; k < count; k++) mnt[k] = get_sbits(&s->gb, size1) * scale; } mnt += count; } for (; j < g->nb_exponent + c->bw_code; j++) { memset(mnt, 0, g->nb_mantissa[j] * sizeof(*mnt)); mnt += g->nb_mantissa[j]; } } return 0; } static int parse_channel(DBEDecodeContext *s1, int ch, int seg_id) { DBEContext *s = &s1->dectx; DBEChannel *c = &s1->channels[seg_id][ch]; int i, ret; if (s1->metadata.rev_id[ch] > 1) { avpriv_report_missing_feature(s->avctx, "Encoder revision %d", s1->metadata.rev_id[ch]); return AVERROR_PATCHWELCOME; } if (ch == lfe_channel_tab[s1->metadata.prog_conf]) { c->gr_code = 3; c->bw_code = 29; } else { c->gr_code = get_bits(&s->gb, 2); c->bw_code = get_bits(&s->gb, 3); if (c->gr_code == 3) { av_log(s->avctx, AV_LOG_ERROR, "Invalid group type code\n"); return AVERROR_INVALIDDATA; } } c->nb_groups = nb_groups_tab[c->gr_code]; c->nb_mstr_exp = nb_mstr_exp_tab[c->gr_code]; for (i = 0; i < c->nb_groups; i++) { c->groups[i] = frm_ofs_tab[seg_id][c->gr_code][i]; if (c->nb_mstr_exp == 2) { c->groups[i].nb_exponent -= c->bw_code; c->groups[i].nb_bias_exp[1] -= c->bw_code; } } if ((ret = parse_exponents(s, c)) < 0) return ret; if ((ret = parse_bit_alloc(s1, c)) < 0) return ret; if ((ret = parse_indices(s, c)) < 0) return ret; if ((ret = parse_mantissas(s, c)) < 0) return ret; if (get_bits_left(&s->gb) < 0) { av_log(s->avctx, AV_LOG_ERROR, "Read past end of channel %d\n", ch); return AVERROR_INVALIDDATA; } return 0; } static int parse_audio(DBEDecodeContext *s1, int start, int end, int seg_id) { DBEContext *s = &s1->dectx; int ch, ret, key; if ((key = parse_key(s)) < 0) return key; for (ch = start; ch < end; ch++) { if (!s1->metadata.ch_size[ch]) { s1->channels[seg_id][ch].nb_groups = 0; continue; } if ((ret = convert_input(s, s1->metadata.ch_size[ch], key)) < 0) return ret; if ((ret = parse_channel(s1, ch, seg_id)) < 0) { if (s1->avctx->err_recognition & AV_EF_EXPLODE) return ret; s1->channels[seg_id][ch].nb_groups = 0; } if ((ret = skip_input(s, s1->metadata.ch_size[ch])) < 0) return ret; } return skip_input(s, 1); } static int parse_meter(DBEDecodeContext *s1) { DBEContext *s = &s1->dectx; if (s1->metadata.meter_size) return skip_input(s, s->key_present + s1->metadata.meter_size + 1); return 0; } static void imdct_calc(DBEDecodeContext *s1, DBEGroup *g, float *result, float *values) { FFTContext *imdct = &s1->imdct[g->imdct_idx]; int n = 1 << imdct_bits_tab[g->imdct_idx]; int n2 = n >> 1; int i; switch (g->imdct_phs) { case 0: imdct->imdct_half(imdct, result, values); for (i = 0; i < n2; i++) result[n2 + i] = result[n2 - i - 1]; break; case 1: imdct->imdct_calc(imdct, result, values); break; case 2: imdct->imdct_half(imdct, result + n2, values); for (i = 0; i < n2; i++) result[i] = -result[n - i - 1]; break; default: av_assert0(0); } } static void transform(DBEDecodeContext *s1, DBEChannel *c, float *history, float *output) { LOCAL_ALIGNED_32(float, buffer, [2048]); LOCAL_ALIGNED_32(float, result, [1152]); DBEGroup *g; int i; memset(result, 0, 1152 * sizeof(float)); for (i = 0, g = c->groups; i < c->nb_groups; i++, g++) { float *src = buffer + g->src_ofs; float *dst = result + g->dst_ofs; float *win = window + g->win_ofs; imdct_calc(s1, g, buffer, c->mantissas + g->mnt_ofs); s1->fdsp->vector_fmul_add(dst, src, win, dst, g->win_len); } for (i = 0; i < 256; i++) output[i] = history[i] + result[i]; for (i = 256; i < 896; i++) output[i] = result[i]; for (i = 0; i < 256; i++) history[i] = result[896 + i]; } static void apply_gain(DBEDecodeContext *s, int begin, int end, float *output) { if (begin == 960 && end == 960) return; if (begin == end) { s->fdsp->vector_fmul_scalar(output, output, gain_tab[end], FRAME_SAMPLES); } else { float a = gain_tab[begin] * (1.0f / (FRAME_SAMPLES - 1)); float b = gain_tab[end ] * (1.0f / (FRAME_SAMPLES - 1)); int i; for (i = 0; i < FRAME_SAMPLES; i++) output[i] *= a * (FRAME_SAMPLES - i - 1) + b * i; } } static int filter_frame(DBEDecodeContext *s, AVFrame *frame) { const uint8_t *reorder; int ch, ret; if (s->metadata.nb_channels == 4) reorder = ch_reorder_4; else if (s->metadata.nb_channels == 6) reorder = ch_reorder_6; else if (s->metadata.nb_programs == 1 && !(s->avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE)) reorder = ch_reorder_8; else reorder = ch_reorder_n; frame->nb_samples = FRAME_SAMPLES; if ((ret = ff_get_buffer(s->avctx, frame, 0)) < 0) return ret; for (ch = 0; ch < s->metadata.nb_channels; ch++) { float *output = (float *)frame->extended_data[reorder[ch]]; transform(s, &s->channels[0][ch], s->history[ch], output); transform(s, &s->channels[1][ch], s->history[ch], output + FRAME_SAMPLES / 2); apply_gain(s, s->metadata.begin_gain[ch], s->metadata.end_gain[ch], output); } return 0; } static int dolby_e_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt) { DBEDecodeContext *s1 = avctx->priv_data; DBEContext *s = &s1->dectx; int i, j, ret; if ((ret = ff_dolby_e_parse_init(s, avpkt->data, avpkt->size)) < 0) return ret; if ((ret = ff_dolby_e_parse_header(s, &s1->metadata)) < 0) return ret; if (s1->metadata.nb_programs > 1 && !s1->metadata.multi_prog_warned) { av_log(avctx, AV_LOG_WARNING, "Stream has %d programs (configuration %d), " "channels will be output in native order.\n", s1->metadata.nb_programs, s1->metadata.prog_conf); s1->metadata.multi_prog_warned = 1; } switch (s1->metadata.nb_channels) { case 4: avctx->channel_layout = AV_CH_LAYOUT_4POINT0; break; case 6: avctx->channel_layout = AV_CH_LAYOUT_5POINT1; break; case 8: avctx->channel_layout = AV_CH_LAYOUT_7POINT1; break; } avctx->channels = s1->metadata.nb_channels; avctx->sample_rate = sample_rate_tab[s1->metadata.fr_code]; avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; i = s1->metadata.nb_channels / 2; j = s1->metadata.nb_channels; if ((ret = parse_audio(s1, 0, i, 0)) < 0) return ret; if ((ret = parse_audio(s1, i, j, 0)) < 0) return ret; if ((ret = parse_metadata_ext(s1)) < 0) return ret; if ((ret = parse_audio(s1, 0, i, 1)) < 0) return ret; if ((ret = parse_audio(s1, i, j, 1)) < 0) return ret; if ((ret = parse_meter(s1)) < 0) return ret; if ((ret = filter_frame(s1, data)) < 0) return ret; *got_frame_ptr = 1; return avpkt->size; } static av_cold void dolby_e_flush(AVCodecContext *avctx) { DBEDecodeContext *s = avctx->priv_data; memset(s->history, 0, sizeof(s->history)); } static av_cold int dolby_e_close(AVCodecContext *avctx) { DBEDecodeContext *s = avctx->priv_data; int i; for (i = 0; i < 3; i++) ff_mdct_end(&s->imdct[i]); av_freep(&s->fdsp); return 0; } static av_cold void init_tables(void) { int i, j; for (i = 1; i < 17; i++) mantissa_tab1[i][0] = 1.0f / (1 << i - 1); for (i = 2; i < 16; i++) { mantissa_tab1[i][1] = 1.0f / ((1 << i) - 1); mantissa_tab1[i][2] = 0.5f / ((1 << i) - 1); mantissa_tab1[i][3] = 0.25f / ((1 << i) - 1); } mantissa_tab1[i][1] = 0.5f / (1 << 15); mantissa_tab1[i][2] = 0.75f / (1 << 15); mantissa_tab1[i][3] = 0.875f / (1 << 15); for (i = 1; i < 17; i++) { mantissa_tab2[i][1] = mantissa_tab1[i][0] * 0.5f; mantissa_tab2[i][2] = mantissa_tab1[i][0] * 0.75f; mantissa_tab2[i][3] = mantissa_tab1[i][0] * 0.875f; for (j = 1; j < 4; j++) mantissa_tab3[i][j] = 1.0f / (1 << i) + 1.0f / (1 << j) - 1.0f / (1 << i + j); } mantissa_tab3[1][3] = 0.6875f; for (i = 0; i < 25; i++) { exponent_tab[i * 2 ] = 1.0f / (1 << i); exponent_tab[i * 2 + 1] = M_SQRT1_2 / (1 << i); } for (i = 1; i < 1024; i++) gain_tab[i] = exp2f((i - 960) / 64.0f); // short 1 ff_kbd_window_init(window, 3.0f, 128); for (i = 0; i < 128; i++) window[128 + i] = window[127 - i]; // start for (i = 0; i < 192; i++) window[256 + i] = start_window[i]; // short 2 for (i = 0; i < 192; i++) window[448 + i] = short_window2[i]; for (i = 0; i < 64; i++) window[640 + i] = window[63 - i]; // short 3 for (i = 0; i < 64; i++) window[704 + i] = short_window3[i]; for (i = 0; i < 192; i++) window[768 + i] = window[64 + i]; // bridge for (i = 0; i < 128; i++) window[960 + i] = window[i]; for (i = 0; i < 64; i++) window[1088 + i] = 1.0f; // long ff_kbd_window_init(window + 1408, 3.0f, 256); for (i = 0; i < 640; i++) window[1664 + i] = 1.0f; for (i = 0; i < 256; i++) window[2304 + i] = window[1152 + i] = window[1663 - i]; // reverse start for (i = 0; i < 192; i++) window[2560 + i] = window[447 - i]; // reverse short 2 for (i = 0; i < 256; i++) window[2752 + i] = window[703 - i]; // reverse short 3 for (i = 0; i < 256; i++) window[3008 + i] = window[959 - i]; // reverse bridge for (i = 0; i < 448; i++) window[3264 + i] = window[1407 - i]; } static av_cold int dolby_e_init(AVCodecContext *avctx) { static AVOnce init_once = AV_ONCE_INIT; DBEDecodeContext *s = avctx->priv_data; int i; if (ff_thread_once(&init_once, init_tables)) return AVERROR_UNKNOWN; for (i = 0; i < 3; i++) if (ff_mdct_init(&s->imdct[i], imdct_bits_tab[i], 1, 2.0) < 0) return AVERROR(ENOMEM); if (!(s->fdsp = avpriv_float_dsp_alloc(0))) return AVERROR(ENOMEM); s->metadata.multi_prog_warned = !!(avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE); s->dectx.avctx = s->avctx = avctx; return 0; } AVCodec ff_dolby_e_decoder = { .name = "dolby_e", .long_name = NULL_IF_CONFIG_SMALL("Dolby E"), .type = AVMEDIA_TYPE_AUDIO, .id = AV_CODEC_ID_DOLBY_E, .priv_data_size = sizeof(DBEDecodeContext), .init = dolby_e_init, .decode = dolby_e_decode_frame, .close = dolby_e_close, .flush = dolby_e_flush, .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF, .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }, .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, };