/* * Copyright (c) 2015 Arwa Arif * Copyright (c) 2017 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation; either version 2.1 of the License, * or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * FFT domain filtering. */ #include "internal.h" #include "video.h" #include "libavutil/common.h" #include "libavutil/cpu.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/tx.h" #include "libavutil/eval.h" #define MAX_THREADS 32 #define MAX_PLANES 4 enum EvalMode { EVAL_MODE_INIT, EVAL_MODE_FRAME, EVAL_MODE_NB }; typedef struct FFTFILTContext { const AVClass *class; int eval_mode; int depth; int nb_planes; int nb_threads; int planewidth[MAX_PLANES]; int planeheight[MAX_PLANES]; AVTXContext *hrdft[MAX_THREADS][MAX_PLANES]; AVTXContext *vrdft[MAX_THREADS][MAX_PLANES]; AVTXContext *ihrdft[MAX_THREADS][MAX_PLANES]; AVTXContext *ivrdft[MAX_THREADS][MAX_PLANES]; av_tx_fn htx_fn, ihtx_fn; av_tx_fn vtx_fn, ivtx_fn; int rdft_hbits[MAX_PLANES]; int rdft_vbits[MAX_PLANES]; size_t rdft_hstride[MAX_PLANES]; size_t rdft_vstride[MAX_PLANES]; size_t rdft_hlen[MAX_PLANES]; size_t rdft_vlen[MAX_PLANES]; float *rdft_hdata_in[MAX_PLANES]; float *rdft_vdata_in[MAX_PLANES]; float *rdft_hdata_out[MAX_PLANES]; float *rdft_vdata_out[MAX_PLANES]; int dc[MAX_PLANES]; char *weight_str[MAX_PLANES]; AVExpr *weight_expr[MAX_PLANES]; double *weight[MAX_PLANES]; int (*rdft_horizontal)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs); int (*irdft_horizontal)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs); } FFTFILTContext; static const char *const var_names[] = { "X", "Y", "W", "H", "N", "WS", "HS", NULL }; enum { VAR_X, VAR_Y, VAR_W, VAR_H, VAR_N, VAR_WS, VAR_HS, VAR_VARS_NB }; enum { Y = 0, U, V }; #define OFFSET(x) offsetof(FFTFILTContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption fftfilt_options[] = { { "dc_Y", "adjust gain in Y plane", OFFSET(dc[Y]), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1000, FLAGS }, { "dc_U", "adjust gain in U plane", OFFSET(dc[U]), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1000, FLAGS }, { "dc_V", "adjust gain in V plane", OFFSET(dc[V]), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1000, FLAGS }, { "weight_Y", "set luminance expression in Y plane", OFFSET(weight_str[Y]), AV_OPT_TYPE_STRING, {.str = "1"}, 0, 0, FLAGS }, { "weight_U", "set chrominance expression in U plane", OFFSET(weight_str[U]), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS }, { "weight_V", "set chrominance expression in V plane", OFFSET(weight_str[V]), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS }, { "eval", "specify when to evaluate expressions", OFFSET(eval_mode), AV_OPT_TYPE_INT, {.i64 = EVAL_MODE_INIT}, 0, EVAL_MODE_NB-1, FLAGS, .unit = "eval" }, { "init", "eval expressions once during initialization", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_INIT}, .flags = FLAGS, .unit = "eval" }, { "frame", "eval expressions per-frame", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_FRAME}, .flags = FLAGS, .unit = "eval" }, {NULL}, }; AVFILTER_DEFINE_CLASS(fftfilt); static inline double lum(void *priv, double x, double y, int plane) { FFTFILTContext *s = priv; return s->rdft_vdata_out[plane][(int)x * s->rdft_vstride[plane] + (int)y]; } static double weight_Y(void *priv, double x, double y) { return lum(priv, x, y, Y); } static double weight_U(void *priv, double x, double y) { return lum(priv, x, y, U); } static double weight_V(void *priv, double x, double y) { return lum(priv, x, y, V); } static void copy_rev(float *dest, int w, int w2) { int i; for (i = w; i < w + (w2-w)/2; i++) dest[i] = dest[2*w - i - 1]; for (; i < w2; i++) dest[i] = dest[w2 - i]; } static int rdft_horizontal8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { FFTFILTContext *s = ctx->priv; AVFrame *in = arg; for (int plane = 0; plane < s->nb_planes; plane++) { const int w = s->planewidth[plane]; const int h = s->planeheight[plane]; const int slice_start = (h * jobnr) / nb_jobs; const int slice_end = (h * (jobnr+1)) / nb_jobs; for (int i = slice_start; i < slice_end; i++) { const uint8_t *src = in->data[plane] + i * in->linesize[plane]; float *hdata_in = s->rdft_hdata_in[plane] + i * s->rdft_hstride[plane]; for (int j = 0; j < w; j++) hdata_in[j] = src[j]; copy_rev(s->rdft_hdata_in[plane] + i * s->rdft_hstride[plane], w, s->rdft_hlen[plane]); } for (int i = slice_start; i < slice_end; i++) s->htx_fn(s->hrdft[jobnr][plane], s->rdft_hdata_out[plane] + i * s->rdft_hstride[plane], s->rdft_hdata_in[plane] + i * s->rdft_hstride[plane], sizeof(float)); } return 0; } static int rdft_horizontal16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { FFTFILTContext *s = ctx->priv; AVFrame *in = arg; for (int plane = 0; plane < s->nb_planes; plane++) { const int w = s->planewidth[plane]; const int h = s->planeheight[plane]; const int slice_start = (h * jobnr) / nb_jobs; const int slice_end = (h * (jobnr+1)) / nb_jobs; for (int i = slice_start; i < slice_end; i++) { const uint16_t *src = (const uint16_t *)(in->data[plane] + i * in->linesize[plane]); float *hdata_in = s->rdft_hdata_in[plane] + i * s->rdft_hstride[plane]; for (int j = 0; j < w; j++) hdata_in[j] = src[j]; copy_rev(s->rdft_hdata_in[plane] + i * s->rdft_hstride[plane], w, s->rdft_hlen[plane]); } for (int i = slice_start; i < slice_end; i++) s->htx_fn(s->hrdft[jobnr][plane], s->rdft_hdata_out[plane] + i * s->rdft_hstride[plane], s->rdft_hdata_in[plane] + i * s->rdft_hstride[plane], sizeof(float)); } return 0; } static int irdft_horizontal8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { FFTFILTContext *s = ctx->priv; AVFrame *out = arg; for (int plane = 0; plane < s->nb_planes; plane++) { const int w = s->planewidth[plane]; const int h = s->planeheight[plane]; const int slice_start = (h * jobnr) / nb_jobs; const int slice_end = (h * (jobnr+1)) / nb_jobs; for (int i = slice_start; i < slice_end; i++) s->ihtx_fn(s->ihrdft[jobnr][plane], s->rdft_hdata_out[plane] + i * s->rdft_hstride[plane], s->rdft_hdata_in[plane] + i * s->rdft_hstride[plane], sizeof(AVComplexFloat)); for (int i = slice_start; i < slice_end; i++) { const float scale = 1.f / (s->rdft_hlen[plane] * s->rdft_vlen[plane]); const float *src = s->rdft_hdata_out[plane] + i * s->rdft_hstride[plane]; uint8_t *dst = out->data[plane] + i * out->linesize[plane]; for (int j = 0; j < w; j++) dst[j] = av_clip_uint8(lrintf(src[j] * scale)); } } return 0; } static int irdft_horizontal16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { FFTFILTContext *s = ctx->priv; AVFrame *out = arg; for (int plane = 0; plane < s->nb_planes; plane++) { int max = (1 << s->depth) - 1; const int w = s->planewidth[plane]; const int h = s->planeheight[plane]; const int slice_start = (h * jobnr) / nb_jobs; const int slice_end = (h * (jobnr+1)) / nb_jobs; for (int i = slice_start; i < slice_end; i++) s->ihtx_fn(s->ihrdft[jobnr][plane], s->rdft_hdata_out[plane] + i * s->rdft_hstride[plane], s->rdft_hdata_in[plane] + i * s->rdft_hstride[plane], sizeof(AVComplexFloat)); for (int i = slice_start; i < slice_end; i++) { const float scale = 1.f / (s->rdft_hlen[plane] * s->rdft_vlen[plane]); const float *src = s->rdft_hdata_out[plane] + i * s->rdft_hstride[plane]; uint16_t *dst = (uint16_t *)(out->data[plane] + i * out->linesize[plane]); for (int j = 0; j < w; j++) dst[j] = av_clip(lrintf(src[j] * scale), 0, max); } } return 0; } static av_cold int initialize(AVFilterContext *ctx) { FFTFILTContext *s = ctx->priv; int ret = 0, plane; if (!s->dc[U] && !s->dc[V]) { s->dc[U] = s->dc[Y]; s->dc[V] = s->dc[Y]; } else { if (!s->dc[U]) s->dc[U] = s->dc[V]; if (!s->dc[V]) s->dc[V] = s->dc[U]; } if (!s->weight_str[U] && !s->weight_str[V]) { s->weight_str[U] = av_strdup(s->weight_str[Y]); s->weight_str[V] = av_strdup(s->weight_str[Y]); } else { if (!s->weight_str[U]) s->weight_str[U] = av_strdup(s->weight_str[V]); if (!s->weight_str[V]) s->weight_str[V] = av_strdup(s->weight_str[U]); } for (plane = 0; plane < 3; plane++) { static double (*p[])(void *, double, double) = { weight_Y, weight_U, weight_V }; const char *const func2_names[] = {"weight_Y", "weight_U", "weight_V", NULL }; double (*func2[])(void *, double, double) = { weight_Y, weight_U, weight_V, p[plane], NULL }; ret = av_expr_parse(&s->weight_expr[plane], s->weight_str[plane], var_names, NULL, NULL, func2_names, func2, 0, ctx); if (ret < 0) break; } return ret; } static void do_eval(FFTFILTContext *s, AVFilterLink *inlink, int plane) { double values[VAR_VARS_NB]; int i, j; values[VAR_N] = inlink->frame_count_out; values[VAR_W] = s->planewidth[plane]; values[VAR_H] = s->planeheight[plane]; values[VAR_WS] = s->rdft_hlen[plane]; values[VAR_HS] = s->rdft_vlen[plane]; for (i = 0; i < s->rdft_hlen[plane]; i++) { values[VAR_X] = i; for (j = 0; j < s->rdft_vlen[plane]; j++) { values[VAR_Y] = j; s->weight[plane][i * s->rdft_vlen[plane] + j] = av_expr_eval(s->weight_expr[plane], values, s); } } } static int config_props(AVFilterLink *inlink) { FFTFILTContext *s = inlink->dst->priv; const AVPixFmtDescriptor *desc; int ret, i, plane; desc = av_pix_fmt_desc_get(inlink->format); s->depth = desc->comp[0].depth; s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); s->planewidth[0] = s->planewidth[3] = inlink->w; s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->planeheight[0] = s->planeheight[3] = inlink->h; s->nb_planes = av_pix_fmt_count_planes(inlink->format); s->nb_threads = FFMIN(32, ff_filter_get_nb_threads(inlink->dst)); for (i = 0; i < desc->nb_components; i++) { int w = s->planewidth[i]; int h = s->planeheight[i]; /* RDFT - Array initialization for Horizontal pass*/ s->rdft_hlen[i] = 1 << (32 - ff_clz(w)); s->rdft_hstride[i] = FFALIGN(s->rdft_hlen[i] + 2, av_cpu_max_align()); s->rdft_hbits[i] = av_log2(s->rdft_hlen[i]); if (!(s->rdft_hdata_in[i] = av_calloc(h, s->rdft_hstride[i] * sizeof(float)))) return AVERROR(ENOMEM); if (!(s->rdft_hdata_out[i] = av_calloc(h, s->rdft_hstride[i] * sizeof(float)))) return AVERROR(ENOMEM); for (int j = 0; j < s->nb_threads; j++) { float scale = 1.f, iscale = 1.f; ret = av_tx_init(&s->hrdft[j][i], &s->htx_fn, AV_TX_FLOAT_RDFT, 0, 1 << s->rdft_hbits[i], &scale, 0); if (ret < 0) return ret; ret = av_tx_init(&s->ihrdft[j][i], &s->ihtx_fn, AV_TX_FLOAT_RDFT, 1, 1 << s->rdft_hbits[i], &iscale, 0); if (ret < 0) return ret; } /* RDFT - Array initialization for Vertical pass*/ s->rdft_vlen[i] = 1 << (32 - ff_clz(h)); s->rdft_vstride[i] = FFALIGN(s->rdft_vlen[i] + 2, av_cpu_max_align()); s->rdft_vbits[i] = av_log2(s->rdft_vlen[i]); if (!(s->rdft_vdata_in[i] = av_calloc(s->rdft_hstride[i], s->rdft_vstride[i] * sizeof(float)))) return AVERROR(ENOMEM); if (!(s->rdft_vdata_out[i] = av_calloc(s->rdft_hstride[i], s->rdft_vstride[i] * sizeof(float)))) return AVERROR(ENOMEM); for (int j = 0; j < s->nb_threads; j++) { float scale = 1.f, iscale = 1.f; ret = av_tx_init(&s->vrdft[j][i], &s->vtx_fn, AV_TX_FLOAT_RDFT, 0, 1 << s->rdft_vbits[i], &scale, 0); if (ret < 0) return ret; ret = av_tx_init(&s->ivrdft[j][i], &s->ivtx_fn, AV_TX_FLOAT_RDFT, 1, 1 << s->rdft_vbits[i], &iscale, 0); if (ret < 0) return ret; } } /*Luminance value - Array initialization*/ for (plane = 0; plane < 3; plane++) { if(!(s->weight[plane] = av_calloc(s->rdft_hlen[plane], s->rdft_vlen[plane] * sizeof(double)))) return AVERROR(ENOMEM); if (s->eval_mode == EVAL_MODE_INIT) do_eval(s, inlink, plane); } if (s->depth <= 8) { s->rdft_horizontal = rdft_horizontal8; s->irdft_horizontal = irdft_horizontal8; } else { s->rdft_horizontal = rdft_horizontal16; s->irdft_horizontal = irdft_horizontal16; } return 0; } static int multiply_data(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { FFTFILTContext *s = ctx->priv; for (int plane = 0; plane < s->nb_planes; plane++) { const int height = s->rdft_hlen[plane]; const int slice_start = (height * jobnr) / nb_jobs; const int slice_end = (height * (jobnr+1)) / nb_jobs; /*Change user defined parameters*/ for (int i = slice_start; i < slice_end; i++) { const double *weight = s->weight[plane] + i * s->rdft_vlen[plane]; float *vdata = s->rdft_vdata_out[plane] + i * s->rdft_vstride[plane]; for (int j = 0; j < s->rdft_vlen[plane]; j++) vdata[j] *= weight[j]; } } return 0; } static int copy_vertical(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { FFTFILTContext *s = ctx->priv; for (int plane = 0; plane < s->nb_planes; plane++) { const int hlen = s->rdft_hlen[plane]; const int vlen = s->rdft_vlen[plane]; const int hstride = s->rdft_hstride[plane]; const int vstride = s->rdft_vstride[plane]; const int slice_start = (hlen * jobnr) / nb_jobs; const int slice_end = (hlen * (jobnr+1)) / nb_jobs; const int h = s->planeheight[plane]; float *hdata = s->rdft_hdata_out[plane]; float *vdata = s->rdft_vdata_in[plane]; for (int i = slice_start; i < slice_end; i++) { for (int j = 0; j < h; j++) vdata[i * vstride + j] = hdata[j * hstride + i]; copy_rev(vdata + i * vstride, h, vlen); } } return 0; } static int rdft_vertical(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { FFTFILTContext *s = ctx->priv; for (int plane = 0; plane < s->nb_planes; plane++) { const int height = s->rdft_hlen[plane]; const int slice_start = (height * jobnr) / nb_jobs; const int slice_end = (height * (jobnr+1)) / nb_jobs; for (int i = slice_start; i < slice_end; i++) s->vtx_fn(s->vrdft[jobnr][plane], s->rdft_vdata_out[plane] + i * s->rdft_vstride[plane], s->rdft_vdata_in[plane] + i * s->rdft_vstride[plane], sizeof(float)); } return 0; } static int irdft_vertical(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { FFTFILTContext *s = ctx->priv; for (int plane = 0; plane < s->nb_planes; plane++) { const int height = s->rdft_hlen[plane]; const int slice_start = (height * jobnr) / nb_jobs; const int slice_end = (height * (jobnr+1)) / nb_jobs; for (int i = slice_start; i < slice_end; i++) s->ivtx_fn(s->ivrdft[jobnr][plane], s->rdft_vdata_in[plane] + i * s->rdft_vstride[plane], s->rdft_vdata_out[plane] + i * s->rdft_vstride[plane], sizeof(AVComplexFloat)); } return 0; } static int copy_horizontal(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { FFTFILTContext *s = ctx->priv; for (int plane = 0; plane < s->nb_planes; plane++) { const int hlen = s->rdft_hlen[plane]; const int hstride = s->rdft_hstride[plane]; const int vstride = s->rdft_vstride[plane]; const int slice_start = (hlen * jobnr) / nb_jobs; const int slice_end = (hlen * (jobnr+1)) / nb_jobs; const int h = s->planeheight[plane]; float *hdata = s->rdft_hdata_in[plane]; float *vdata = s->rdft_vdata_in[plane]; for (int i = slice_start; i < slice_end; i++) for (int j = 0; j < h; j++) hdata[j * hstride + i] = vdata[i * vstride + j]; } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = inlink->dst->outputs[0]; FFTFILTContext *s = ctx->priv; AVFrame *out; out = ff_get_video_buffer(outlink, inlink->w, inlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); ff_filter_execute(ctx, s->rdft_horizontal, in, NULL, FFMIN(s->planeheight[1], s->nb_threads)); ff_filter_execute(ctx, copy_vertical, NULL, NULL, FFMIN(s->planeheight[1], s->nb_threads)); ff_filter_execute(ctx, rdft_vertical, NULL, NULL, FFMIN(s->planeheight[1], s->nb_threads)); for (int plane = 0; plane < s->nb_planes; plane++) { if (s->eval_mode == EVAL_MODE_FRAME) do_eval(s, inlink, plane); } ff_filter_execute(ctx, multiply_data, NULL, NULL, FFMIN(s->planeheight[1], s->nb_threads)); for (int plane = 0; plane < s->nb_planes; plane++) s->rdft_vdata_out[plane][0] += s->rdft_hlen[plane] * s->rdft_vlen[plane] * s->dc[plane] * (1 << (s->depth - 8)); ff_filter_execute(ctx, irdft_vertical, NULL, NULL, FFMIN(s->planeheight[1], s->nb_threads)); ff_filter_execute(ctx, copy_horizontal, NULL, NULL, FFMIN(s->planeheight[1], s->nb_threads)); ff_filter_execute(ctx, s->irdft_horizontal, out, NULL, FFMIN(s->planeheight[1], s->nb_threads)); av_frame_free(&in); return ff_filter_frame(outlink, out); } static av_cold void uninit(AVFilterContext *ctx) { FFTFILTContext *s = ctx->priv; for (int i = 0; i < MAX_PLANES; i++) { av_freep(&s->rdft_hdata_in[i]); av_freep(&s->rdft_vdata_in[i]); av_freep(&s->rdft_hdata_out[i]); av_freep(&s->rdft_vdata_out[i]); av_expr_free(s->weight_expr[i]); av_freep(&s->weight[i]); for (int j = 0; j < s->nb_threads; j++) { av_tx_uninit(&s->hrdft[j][i]); av_tx_uninit(&s->ihrdft[j][i]); av_tx_uninit(&s->vrdft[j][i]); av_tx_uninit(&s->ivrdft[j][i]); } } } static const enum AVPixelFormat pixel_fmts_fftfilt[] = { AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_NONE }; static const AVFilterPad fftfilt_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_props, .filter_frame = filter_frame, }, }; const AVFilter ff_vf_fftfilt = { .name = "fftfilt", .description = NULL_IF_CONFIG_SMALL("Apply arbitrary expressions to pixels in frequency domain."), .priv_size = sizeof(FFTFILTContext), .priv_class = &fftfilt_class, FILTER_INPUTS(fftfilt_inputs), FILTER_OUTPUTS(ff_video_default_filterpad), FILTER_PIXFMTS_ARRAY(pixel_fmts_fftfilt), .init = initialize, .uninit = uninit, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, };