/* * Copyright (c) 2017 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/audio_fifo.h" #include "libavutil/channel_layout.h" #include "libavutil/opt.h" #include "libavcodec/avfft.h" #include "avfilter.h" #include "audio.h" #include "formats.h" #include "window_func.h" typedef struct AudioSurroundContext { const AVClass *class; char *out_channel_layout_str; char *in_channel_layout_str; float level_in; float level_out; float fc_in; float fc_out; float lfe_in; float lfe_out; int lfe_mode; int win_func; float overlap; float all_x; float all_y; float fc_x; float fl_x; float fr_x; float bl_x; float br_x; float sl_x; float sr_x; float bc_x; float fc_y; float fl_y; float fr_y; float bl_y; float br_y; float sl_y; float sr_y; float bc_y; float *input_levels; float *output_levels; int output_lfe; int lowcutf; int highcutf; float lowcut; float highcut; uint64_t out_channel_layout; uint64_t in_channel_layout; int nb_in_channels; int nb_out_channels; AVFrame *input; AVFrame *output; AVFrame *overlap_buffer; int buf_size; int hop_size; AVAudioFifo *fifo; RDFTContext **rdft, **irdft; float *window_func_lut; int64_t pts; void (*filter)(AVFilterContext *ctx); void (*upmix_stereo)(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float x, float y, int n); void (*upmix_2_1)(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float lfe_im, float lfe_re, float x, float y, int n); void (*upmix_3_0)(AVFilterContext *ctx, float l_phase, float r_phase, float c_mag, float c_phase, float mag_total, float x, float y, int n); void (*upmix_5_0)(AVFilterContext *ctx, float c_re, float c_im, float mag_totall, float mag_totalr, float fl_phase, float fr_phase, float bl_phase, float br_phase, float sl_phase, float sr_phase, float xl, float yl, float xr, float yr, int n); void (*upmix_5_1)(AVFilterContext *ctx, float c_re, float c_im, float lfe_re, float lfe_im, float mag_totall, float mag_totalr, float fl_phase, float fr_phase, float bl_phase, float br_phase, float sl_phase, float sr_phase, float xl, float yl, float xr, float yr, int n); } AudioSurroundContext; static int query_formats(AVFilterContext *ctx) { AudioSurroundContext *s = ctx->priv; AVFilterFormats *formats = NULL; AVFilterChannelLayouts *layouts = NULL; int ret; ret = ff_add_format(&formats, AV_SAMPLE_FMT_FLTP); if (ret) return ret; ret = ff_set_common_formats(ctx, formats); if (ret) return ret; layouts = NULL; ret = ff_add_channel_layout(&layouts, s->out_channel_layout); if (ret) return ret; ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts); if (ret) return ret; layouts = NULL; ret = ff_add_channel_layout(&layouts, s->in_channel_layout); if (ret) return ret; ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts); if (ret) return ret; formats = ff_all_samplerates(); if (!formats) return AVERROR(ENOMEM); return ff_set_common_samplerates(ctx, formats); } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; AudioSurroundContext *s = ctx->priv; int ch; s->rdft = av_calloc(inlink->channels, sizeof(*s->rdft)); if (!s->rdft) return AVERROR(ENOMEM); for (ch = 0; ch < inlink->channels; ch++) { s->rdft[ch] = av_rdft_init(ff_log2(s->buf_size), DFT_R2C); if (!s->rdft[ch]) return AVERROR(ENOMEM); } s->nb_in_channels = inlink->channels; s->input_levels = av_malloc_array(s->nb_in_channels, sizeof(*s->input_levels)); if (!s->input_levels) return AVERROR(ENOMEM); for (ch = 0; ch < s->nb_in_channels; ch++) s->input_levels[ch] = s->level_in; ch = av_get_channel_layout_channel_index(inlink->channel_layout, AV_CH_FRONT_CENTER); if (ch >= 0) s->input_levels[ch] *= s->fc_in; ch = av_get_channel_layout_channel_index(inlink->channel_layout, AV_CH_LOW_FREQUENCY); if (ch >= 0) s->input_levels[ch] *= s->lfe_in; s->input = ff_get_audio_buffer(inlink, s->buf_size * 2); if (!s->input) return AVERROR(ENOMEM); s->fifo = av_audio_fifo_alloc(inlink->format, inlink->channels, s->buf_size); if (!s->fifo) return AVERROR(ENOMEM); s->lowcut = 1.f * s->lowcutf / (inlink->sample_rate * 0.5) * (s->buf_size / 2); s->highcut = 1.f * s->highcutf / (inlink->sample_rate * 0.5) * (s->buf_size / 2); return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AudioSurroundContext *s = ctx->priv; int ch; s->irdft = av_calloc(outlink->channels, sizeof(*s->irdft)); if (!s->irdft) return AVERROR(ENOMEM); for (ch = 0; ch < outlink->channels; ch++) { s->irdft[ch] = av_rdft_init(ff_log2(s->buf_size), IDFT_C2R); if (!s->irdft[ch]) return AVERROR(ENOMEM); } s->nb_out_channels = outlink->channels; s->output_levels = av_malloc_array(s->nb_out_channels, sizeof(*s->output_levels)); if (!s->output_levels) return AVERROR(ENOMEM); for (ch = 0; ch < s->nb_out_channels; ch++) s->output_levels[ch] = s->level_out; ch = av_get_channel_layout_channel_index(outlink->channel_layout, AV_CH_FRONT_CENTER); if (ch >= 0) s->output_levels[ch] *= s->fc_out; ch = av_get_channel_layout_channel_index(outlink->channel_layout, AV_CH_LOW_FREQUENCY); if (ch >= 0) s->output_levels[ch] *= s->lfe_out; s->output = ff_get_audio_buffer(outlink, s->buf_size * 2); s->overlap_buffer = ff_get_audio_buffer(outlink, s->buf_size * 2); if (!s->overlap_buffer || !s->output) return AVERROR(ENOMEM); return 0; } static void stereo_position(float a, float p, float *x, float *y) { *x = av_clipf(a+FFMAX(0, sinf(p-M_PI_2))*FFDIFFSIGN(a,0), -1, 1); *y = av_clipf(cosf(a*M_PI_2+M_PI)*cosf(M_PI_2-p/M_PI)*M_LN10+1, -1, 1); } static inline void get_lfe(int output_lfe, int n, float lowcut, float highcut, float *lfe_mag, float *mag_total, int lfe_mode) { if (output_lfe && n < highcut) { *lfe_mag = n < lowcut ? 1.f : .5f*(1.f+cosf(M_PI*(lowcut-n)/(lowcut-highcut))); *lfe_mag *= *mag_total; if (lfe_mode) *mag_total -= *lfe_mag; } else { *lfe_mag = 0.f; } } static void upmix_1_0(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float x, float y, int n) { AudioSurroundContext *s = ctx->priv; float mag, *dst; dst = (float *)s->output->extended_data[0]; mag = powf(1.f - fabsf(x), s->fc_x) * powf((y + 1.f) * .5f, s->fc_y) * mag_total; dst[2 * n ] = mag * cosf(c_phase); dst[2 * n + 1] = mag * sinf(c_phase); } static void upmix_stereo(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float x, float y, int n) { AudioSurroundContext *s = ctx->priv; float l_mag, r_mag, *dstl, *dstr; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); } static void upmix_2_1(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float x, float y, int n) { AudioSurroundContext *s = ctx->priv; float lfe_mag, l_mag, r_mag, *dstl, *dstr, *dstlfe; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstlfe = (float *)s->output->extended_data[2]; get_lfe(s->output_lfe, n, s->lowcut, s->highcut, &lfe_mag, &mag_total, s->lfe_mode); l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); dstlfe[2 * n ] = lfe_mag * cosf(c_phase); dstlfe[2 * n + 1] = lfe_mag * sinf(c_phase); } static void upmix_3_0(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float x, float y, int n) { AudioSurroundContext *s = ctx->priv; float l_mag, r_mag, c_mag, *dstc, *dstl, *dstr; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; c_mag = powf(1.f - fabsf(x), s->fc_x) * powf((y + 1.f) * .5f, s->fc_y) * mag_total; l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); dstc[2 * n ] = c_mag * cosf(c_phase); dstc[2 * n + 1] = c_mag * sinf(c_phase); } static void upmix_3_1(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float x, float y, int n) { AudioSurroundContext *s = ctx->priv; float lfe_mag, l_mag, r_mag, c_mag, *dstc, *dstl, *dstr, *dstlfe; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; dstlfe = (float *)s->output->extended_data[3]; get_lfe(s->output_lfe, n, s->lowcut, s->highcut, &lfe_mag, &mag_total, s->lfe_mode); c_mag = powf(1.f - fabsf(x), s->fc_x) * powf((y + 1.f) * .5f, s->fc_y) * mag_total; l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); dstc[2 * n ] = c_mag * cosf(c_phase); dstc[2 * n + 1] = c_mag * sinf(c_phase); dstlfe[2 * n ] = lfe_mag * cosf(c_phase); dstlfe[2 * n + 1] = lfe_mag * sinf(c_phase); } static void upmix_3_1_surround(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float c_mag, float mag_total, float x, float y, int n) { AudioSurroundContext *s = ctx->priv; float lfe_mag, l_mag, r_mag, *dstc, *dstl, *dstr, *dstlfe; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; dstlfe = (float *)s->output->extended_data[3]; get_lfe(s->output_lfe, n, s->lowcut, s->highcut, &lfe_mag, &c_mag, s->lfe_mode); l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); dstc[2 * n ] = c_mag * cosf(c_phase); dstc[2 * n + 1] = c_mag * sinf(c_phase); dstlfe[2 * n ] = lfe_mag * cosf(c_phase); dstlfe[2 * n + 1] = lfe_mag * sinf(c_phase); } static void upmix_4_0(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float x, float y, int n) { AudioSurroundContext *s = ctx->priv; float b_mag, l_mag, r_mag, c_mag, *dstc, *dstl, *dstr, *dstb; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; dstb = (float *)s->output->extended_data[3]; c_mag = powf(1.f - fabsf(x), s->fc_x) * powf((y + 1.f) * .5f, s->fc_y) * mag_total; b_mag = powf(1.f - fabsf(x), s->bc_x) * powf((1.f - y) * .5f, s->bc_y) * mag_total; l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); dstc[2 * n ] = c_mag * cosf(c_phase); dstc[2 * n + 1] = c_mag * sinf(c_phase); dstb[2 * n ] = b_mag * cosf(c_phase); dstb[2 * n + 1] = b_mag * sinf(c_phase); } static void upmix_4_1(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float x, float y, int n) { AudioSurroundContext *s = ctx->priv; float lfe_mag, b_mag, l_mag, r_mag, c_mag, *dstc, *dstl, *dstr, *dstb, *dstlfe; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; dstlfe = (float *)s->output->extended_data[3]; dstb = (float *)s->output->extended_data[4]; get_lfe(s->output_lfe, n, s->lowcut, s->highcut, &lfe_mag, &mag_total, s->lfe_mode); dstlfe[2 * n ] = lfe_mag * cosf(c_phase); dstlfe[2 * n + 1] = lfe_mag * sinf(c_phase); c_mag = powf(1.f - fabsf(x), s->fc_x) * powf((y + 1.f) * .5f, s->fc_y) * mag_total; b_mag = powf(1.f - fabsf(x), s->bc_x) * powf((1.f - y) * .5f, s->bc_y) * mag_total; l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); dstc[2 * n ] = c_mag * cosf(c_phase); dstc[2 * n + 1] = c_mag * sinf(c_phase); dstb[2 * n ] = b_mag * cosf(c_phase); dstb[2 * n + 1] = b_mag * sinf(c_phase); } static void upmix_5_0_back(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float x, float y, int n) { AudioSurroundContext *s = ctx->priv; float l_mag, r_mag, ls_mag, rs_mag, c_mag, *dstc, *dstl, *dstr, *dstls, *dstrs; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; dstls = (float *)s->output->extended_data[3]; dstrs = (float *)s->output->extended_data[4]; c_mag = powf(1.f - fabsf(x), s->fc_x) * powf((y + 1.f) * .5f, s->fc_y) * mag_total; l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; ls_mag = powf(.5f * ( x + 1.f), s->bl_x) * powf(1.f - ((y + 1.f) * .5f), s->bl_y) * mag_total; rs_mag = powf(.5f * (-x + 1.f), s->br_x) * powf(1.f - ((y + 1.f) * .5f), s->br_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); dstc[2 * n ] = c_mag * cosf(c_phase); dstc[2 * n + 1] = c_mag * sinf(c_phase); dstls[2 * n ] = ls_mag * cosf(l_phase); dstls[2 * n + 1] = ls_mag * sinf(l_phase); dstrs[2 * n ] = rs_mag * cosf(r_phase); dstrs[2 * n + 1] = rs_mag * sinf(r_phase); } static void upmix_5_1_back(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float x, float y, int n) { AudioSurroundContext *s = ctx->priv; float lfe_mag, l_mag, r_mag, ls_mag, rs_mag, c_mag, *dstc, *dstl, *dstr, *dstls, *dstrs, *dstlfe; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; dstlfe = (float *)s->output->extended_data[3]; dstls = (float *)s->output->extended_data[4]; dstrs = (float *)s->output->extended_data[5]; get_lfe(s->output_lfe, n, s->lowcut, s->highcut, &lfe_mag, &mag_total, s->lfe_mode); c_mag = powf(1.f - fabsf(x), s->fc_x) * powf((y + 1.f) * .5f, s->fc_y) * mag_total; l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; ls_mag = powf(.5f * ( x + 1.f), s->bl_x) * powf(1.f - ((y + 1.f) * .5f), s->bl_y) * mag_total; rs_mag = powf(.5f * (-x + 1.f), s->br_x) * powf(1.f - ((y + 1.f) * .5f), s->br_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); dstc[2 * n ] = c_mag * cosf(c_phase); dstc[2 * n + 1] = c_mag * sinf(c_phase); dstlfe[2 * n ] = lfe_mag * cosf(c_phase); dstlfe[2 * n + 1] = lfe_mag * sinf(c_phase); dstls[2 * n ] = ls_mag * cosf(l_phase); dstls[2 * n + 1] = ls_mag * sinf(l_phase); dstrs[2 * n ] = rs_mag * cosf(r_phase); dstrs[2 * n + 1] = rs_mag * sinf(r_phase); } static void upmix_6_0(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float x, float y, int n) { AudioSurroundContext *s = ctx->priv; float l_mag, r_mag, ls_mag, rs_mag, c_mag, b_mag, *dstc, *dstb, *dstl, *dstr, *dstls, *dstrs; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; dstb = (float *)s->output->extended_data[3]; dstls = (float *)s->output->extended_data[4]; dstrs = (float *)s->output->extended_data[5]; c_mag = powf(1.f - fabsf(x), s->fc_x) * powf((y + 1.f) * .5f, s->fc_y) * mag_total; b_mag = powf(1.f - fabsf(x), s->bc_x) * powf((1.f - y) * .5f, s->bc_y) * mag_total; l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; ls_mag = powf(.5f * ( x + 1.f), s->bl_x) * powf(1.f - ((y + 1.f) * .5f), s->bl_y) * mag_total; rs_mag = powf(.5f * (-x + 1.f), s->br_x) * powf(1.f - ((y + 1.f) * .5f), s->br_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); dstc[2 * n ] = c_mag * cosf(c_phase); dstc[2 * n + 1] = c_mag * sinf(c_phase); dstls[2 * n ] = ls_mag * cosf(l_phase); dstls[2 * n + 1] = ls_mag * sinf(l_phase); dstrs[2 * n ] = rs_mag * cosf(r_phase); dstrs[2 * n + 1] = rs_mag * sinf(r_phase); dstb[2 * n ] = b_mag * cosf(c_phase); dstb[2 * n + 1] = b_mag * sinf(c_phase); } static void upmix_6_1(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float x, float y, int n) { AudioSurroundContext *s = ctx->priv; float lfe_mag, l_mag, r_mag, ls_mag, rs_mag, c_mag, b_mag, *dstc, *dstb, *dstl, *dstr, *dstls, *dstrs, *dstlfe; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; dstlfe = (float *)s->output->extended_data[3]; dstb = (float *)s->output->extended_data[4]; dstls = (float *)s->output->extended_data[5]; dstrs = (float *)s->output->extended_data[6]; get_lfe(s->output_lfe, n, s->lowcut, s->highcut, &lfe_mag, &mag_total, s->lfe_mode); c_mag = powf(1.f - fabsf(x), s->fc_x) * powf((y + 1.f) * .5f, s->fc_y) * mag_total; b_mag = powf(1.f - fabsf(x), s->bc_x) * powf((1.f - y) * .5f, s->bc_y) * mag_total; l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; ls_mag = powf(.5f * ( x + 1.f), s->bl_x) * powf(1.f - ((y + 1.f) * .5f), s->bl_y) * mag_total; rs_mag = powf(.5f * (-x + 1.f), s->br_x) * powf(1.f - ((y + 1.f) * .5f), s->br_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); dstc[2 * n ] = c_mag * cosf(c_phase); dstc[2 * n + 1] = c_mag * sinf(c_phase); dstlfe[2 * n ] = lfe_mag * cosf(c_phase); dstlfe[2 * n + 1] = lfe_mag * sinf(c_phase); dstls[2 * n ] = ls_mag * cosf(l_phase); dstls[2 * n + 1] = ls_mag * sinf(l_phase); dstrs[2 * n ] = rs_mag * cosf(r_phase); dstrs[2 * n + 1] = rs_mag * sinf(r_phase); dstb[2 * n ] = b_mag * cosf(c_phase); dstb[2 * n + 1] = b_mag * sinf(c_phase); } static void upmix_5_1_back_surround(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float c_mag, float mag_total, float x, float y, int n) { AudioSurroundContext *s = ctx->priv; float lfe_mag, l_mag, r_mag, *dstc, *dstl, *dstr, *dstlfe; float ls_mag, rs_mag, *dstls, *dstrs; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; dstlfe = (float *)s->output->extended_data[3]; dstls = (float *)s->output->extended_data[4]; dstrs = (float *)s->output->extended_data[5]; get_lfe(s->output_lfe, n, s->lowcut, s->highcut, &lfe_mag, &c_mag, s->lfe_mode); l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; ls_mag = powf(.5f * ( x + 1.f), s->bl_x) * powf(1.f - ((y + 1.f) * .5f), s->bl_y) * mag_total; rs_mag = powf(.5f * (-x + 1.f), s->br_x) * powf(1.f - ((y + 1.f) * .5f), s->br_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); dstc[2 * n ] = c_mag * cosf(c_phase); dstc[2 * n + 1] = c_mag * sinf(c_phase); dstlfe[2 * n ] = lfe_mag * cosf(c_phase); dstlfe[2 * n + 1] = lfe_mag * sinf(c_phase); dstls[2 * n ] = ls_mag * cosf(l_phase); dstls[2 * n + 1] = ls_mag * sinf(l_phase); dstrs[2 * n ] = rs_mag * cosf(r_phase); dstrs[2 * n + 1] = rs_mag * sinf(r_phase); } static void upmix_5_1_back_2_1(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float lfe_re, float lfe_im, float x, float y, int n) { AudioSurroundContext *s = ctx->priv; float c_mag, l_mag, r_mag, *dstc, *dstl, *dstr, *dstlfe; float ls_mag, rs_mag, *dstls, *dstrs; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; dstlfe = (float *)s->output->extended_data[3]; dstls = (float *)s->output->extended_data[4]; dstrs = (float *)s->output->extended_data[5]; c_mag = powf(1.f - fabsf(x), s->fc_x) * powf((y + 1.f) * .5f, s->fc_y) * mag_total; l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; ls_mag = powf(.5f * ( x + 1.f), s->bl_x) * powf(1.f - ((y + 1.f) * .5f), s->bl_y) * mag_total; rs_mag = powf(.5f * (-x + 1.f), s->br_x) * powf(1.f - ((y + 1.f) * .5f), s->br_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); dstc[2 * n ] = c_mag * cosf(c_phase); dstc[2 * n + 1] = c_mag * sinf(c_phase); dstlfe[2 * n ] = lfe_re; dstlfe[2 * n + 1] = lfe_im; dstls[2 * n ] = ls_mag * cosf(l_phase); dstls[2 * n + 1] = ls_mag * sinf(l_phase); dstrs[2 * n ] = rs_mag * cosf(r_phase); dstrs[2 * n + 1] = rs_mag * sinf(r_phase); } static void upmix_7_0(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float x, float y, int n) { float l_mag, r_mag, ls_mag, rs_mag, c_mag, lb_mag, rb_mag; float *dstc, *dstl, *dstr, *dstls, *dstrs, *dstlb, *dstrb; AudioSurroundContext *s = ctx->priv; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; dstlb = (float *)s->output->extended_data[3]; dstrb = (float *)s->output->extended_data[4]; dstls = (float *)s->output->extended_data[5]; dstrs = (float *)s->output->extended_data[6]; c_mag = powf(1.f - fabsf(x), s->fc_x) * powf((y + 1.f) * .5f, s->fc_y) * mag_total; l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; lb_mag = powf(.5f * ( x + 1.f), s->bl_x) * powf(1.f - ((y + 1.f) * .5f), s->bl_y) * mag_total; rb_mag = powf(.5f * (-x + 1.f), s->br_x) * powf(1.f - ((y + 1.f) * .5f), s->br_y) * mag_total; ls_mag = powf(.5f * ( x + 1.f), s->sl_x) * powf(1.f - fabsf(y), s->sl_y) * mag_total; rs_mag = powf(.5f * (-x + 1.f), s->sr_x) * powf(1.f - fabsf(y), s->sr_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); dstc[2 * n ] = c_mag * cosf(c_phase); dstc[2 * n + 1] = c_mag * sinf(c_phase); dstlb[2 * n ] = lb_mag * cosf(l_phase); dstlb[2 * n + 1] = lb_mag * sinf(l_phase); dstrb[2 * n ] = rb_mag * cosf(r_phase); dstrb[2 * n + 1] = rb_mag * sinf(r_phase); dstls[2 * n ] = ls_mag * cosf(l_phase); dstls[2 * n + 1] = ls_mag * sinf(l_phase); dstrs[2 * n ] = rs_mag * cosf(r_phase); dstrs[2 * n + 1] = rs_mag * sinf(r_phase); } static void upmix_7_1(AVFilterContext *ctx, float l_phase, float r_phase, float c_phase, float mag_total, float x, float y, int n) { float lfe_mag, l_mag, r_mag, ls_mag, rs_mag, c_mag, lb_mag, rb_mag; float *dstc, *dstl, *dstr, *dstls, *dstrs, *dstlb, *dstrb, *dstlfe; AudioSurroundContext *s = ctx->priv; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; dstlfe = (float *)s->output->extended_data[3]; dstlb = (float *)s->output->extended_data[4]; dstrb = (float *)s->output->extended_data[5]; dstls = (float *)s->output->extended_data[6]; dstrs = (float *)s->output->extended_data[7]; get_lfe(s->output_lfe, n, s->lowcut, s->highcut, &lfe_mag, &mag_total, s->lfe_mode); c_mag = powf(1.f - fabsf(x), s->fc_x) * powf((y + 1.f) * .5f, s->fc_y) * mag_total; l_mag = powf(.5f * ( x + 1.f), s->fl_x) * powf((y + 1.f) * .5f, s->fl_y) * mag_total; r_mag = powf(.5f * (-x + 1.f), s->fr_x) * powf((y + 1.f) * .5f, s->fr_y) * mag_total; lb_mag = powf(.5f * ( x + 1.f), s->bl_x) * powf(1.f - ((y + 1.f) * .5f), s->bl_y) * mag_total; rb_mag = powf(.5f * (-x + 1.f), s->br_x) * powf(1.f - ((y + 1.f) * .5f), s->br_y) * mag_total; ls_mag = powf(.5f * ( x + 1.f), s->sl_x) * powf(1.f - fabsf(y), s->sl_y) * mag_total; rs_mag = powf(.5f * (-x + 1.f), s->sr_x) * powf(1.f - fabsf(y), s->sr_y) * mag_total; dstl[2 * n ] = l_mag * cosf(l_phase); dstl[2 * n + 1] = l_mag * sinf(l_phase); dstr[2 * n ] = r_mag * cosf(r_phase); dstr[2 * n + 1] = r_mag * sinf(r_phase); dstc[2 * n ] = c_mag * cosf(c_phase); dstc[2 * n + 1] = c_mag * sinf(c_phase); dstlfe[2 * n ] = lfe_mag * cosf(c_phase); dstlfe[2 * n + 1] = lfe_mag * sinf(c_phase); dstlb[2 * n ] = lb_mag * cosf(l_phase); dstlb[2 * n + 1] = lb_mag * sinf(l_phase); dstrb[2 * n ] = rb_mag * cosf(r_phase); dstrb[2 * n + 1] = rb_mag * sinf(r_phase); dstls[2 * n ] = ls_mag * cosf(l_phase); dstls[2 * n + 1] = ls_mag * sinf(l_phase); dstrs[2 * n ] = rs_mag * cosf(r_phase); dstrs[2 * n + 1] = rs_mag * sinf(r_phase); } static void upmix_7_1_5_0_side(AVFilterContext *ctx, float c_re, float c_im, float mag_totall, float mag_totalr, float fl_phase, float fr_phase, float bl_phase, float br_phase, float sl_phase, float sr_phase, float xl, float yl, float xr, float yr, int n) { float fl_mag, fr_mag, ls_mag, rs_mag, lb_mag, rb_mag; float *dstc, *dstl, *dstr, *dstls, *dstrs, *dstlb, *dstrb, *dstlfe; float lfe_mag, c_phase, mag_total = (mag_totall + mag_totalr) * 0.5; AudioSurroundContext *s = ctx->priv; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; dstlfe = (float *)s->output->extended_data[3]; dstlb = (float *)s->output->extended_data[4]; dstrb = (float *)s->output->extended_data[5]; dstls = (float *)s->output->extended_data[6]; dstrs = (float *)s->output->extended_data[7]; c_phase = atan2f(c_im, c_re); get_lfe(s->output_lfe, n, s->lowcut, s->highcut, &lfe_mag, &mag_total, s->lfe_mode); fl_mag = powf(.5f * (xl + 1.f), s->fl_x) * powf((yl + 1.f) * .5f, s->fl_y) * mag_totall; fr_mag = powf(.5f * (xr + 1.f), s->fr_x) * powf((yr + 1.f) * .5f, s->fr_y) * mag_totalr; lb_mag = powf(.5f * (-xl + 1.f), s->bl_x) * powf((yl + 1.f) * .5f, s->bl_y) * mag_totall; rb_mag = powf(.5f * (-xr + 1.f), s->br_x) * powf((yr + 1.f) * .5f, s->br_y) * mag_totalr; ls_mag = powf(1.f - fabsf(xl), s->sl_x) * powf((yl + 1.f) * .5f, s->sl_y) * mag_totall; rs_mag = powf(1.f - fabsf(xr), s->sr_x) * powf((yr + 1.f) * .5f, s->sr_y) * mag_totalr; dstl[2 * n ] = fl_mag * cosf(fl_phase); dstl[2 * n + 1] = fl_mag * sinf(fl_phase); dstr[2 * n ] = fr_mag * cosf(fr_phase); dstr[2 * n + 1] = fr_mag * sinf(fr_phase); dstc[2 * n ] = c_re; dstc[2 * n + 1] = c_im; dstlfe[2 * n ] = lfe_mag * cosf(c_phase); dstlfe[2 * n + 1] = lfe_mag * sinf(c_phase); dstlb[2 * n ] = lb_mag * cosf(bl_phase); dstlb[2 * n + 1] = lb_mag * sinf(bl_phase); dstrb[2 * n ] = rb_mag * cosf(br_phase); dstrb[2 * n + 1] = rb_mag * sinf(br_phase); dstls[2 * n ] = ls_mag * cosf(sl_phase); dstls[2 * n + 1] = ls_mag * sinf(sl_phase); dstrs[2 * n ] = rs_mag * cosf(sr_phase); dstrs[2 * n + 1] = rs_mag * sinf(sr_phase); } static void upmix_7_1_5_1(AVFilterContext *ctx, float c_re, float c_im, float lfe_re, float lfe_im, float mag_totall, float mag_totalr, float fl_phase, float fr_phase, float bl_phase, float br_phase, float sl_phase, float sr_phase, float xl, float yl, float xr, float yr, int n) { float fl_mag, fr_mag, ls_mag, rs_mag, lb_mag, rb_mag; float *dstc, *dstl, *dstr, *dstls, *dstrs, *dstlb, *dstrb, *dstlfe; AudioSurroundContext *s = ctx->priv; dstl = (float *)s->output->extended_data[0]; dstr = (float *)s->output->extended_data[1]; dstc = (float *)s->output->extended_data[2]; dstlfe = (float *)s->output->extended_data[3]; dstlb = (float *)s->output->extended_data[4]; dstrb = (float *)s->output->extended_data[5]; dstls = (float *)s->output->extended_data[6]; dstrs = (float *)s->output->extended_data[7]; fl_mag = powf(.5f * (xl + 1.f), s->fl_x) * powf((yl + 1.f) * .5f, s->fl_y) * mag_totall; fr_mag = powf(.5f * (xr + 1.f), s->fr_x) * powf((yr + 1.f) * .5f, s->fr_y) * mag_totalr; lb_mag = powf(.5f * (-xl + 1.f), s->bl_x) * powf((yl + 1.f) * .5f, s->bl_y) * mag_totall; rb_mag = powf(.5f * (-xr + 1.f), s->br_x) * powf((yr + 1.f) * .5f, s->br_y) * mag_totalr; ls_mag = powf(1.f - fabsf(xl), s->sl_x) * powf((yl + 1.f) * .5f, s->sl_y) * mag_totall; rs_mag = powf(1.f - fabsf(xr), s->sl_x) * powf((yr + 1.f) * .5f, s->sr_y) * mag_totalr; dstl[2 * n ] = fl_mag * cosf(fl_phase); dstl[2 * n + 1] = fl_mag * sinf(fl_phase); dstr[2 * n ] = fr_mag * cosf(fr_phase); dstr[2 * n + 1] = fr_mag * sinf(fr_phase); dstc[2 * n ] = c_re; dstc[2 * n + 1] = c_im; dstlfe[2 * n ] = lfe_re; dstlfe[2 * n + 1] = lfe_im; dstlb[2 * n ] = lb_mag * cosf(bl_phase); dstlb[2 * n + 1] = lb_mag * sinf(bl_phase); dstrb[2 * n ] = rb_mag * cosf(br_phase); dstrb[2 * n + 1] = rb_mag * sinf(br_phase); dstls[2 * n ] = ls_mag * cosf(sl_phase); dstls[2 * n + 1] = ls_mag * sinf(sl_phase); dstrs[2 * n ] = rs_mag * cosf(sr_phase); dstrs[2 * n + 1] = rs_mag * sinf(sr_phase); } static void filter_stereo(AVFilterContext *ctx) { AudioSurroundContext *s = ctx->priv; float *srcl, *srcr; int n; srcl = (float *)s->input->extended_data[0]; srcr = (float *)s->input->extended_data[1]; for (n = 0; n < s->buf_size; n++) { float l_re = srcl[2 * n], r_re = srcr[2 * n]; float l_im = srcl[2 * n + 1], r_im = srcr[2 * n + 1]; float c_phase = atan2f(l_im + r_im, l_re + r_re); float l_mag = hypotf(l_re, l_im); float r_mag = hypotf(r_re, r_im); float l_phase = atan2f(l_im, l_re); float r_phase = atan2f(r_im, r_re); float phase_dif = fabsf(l_phase - r_phase); float mag_sum = l_mag + r_mag; float mag_dif = mag_sum < 0.000001 ? 0.f : (l_mag - r_mag) / mag_sum; float mag_total = hypotf(l_mag, r_mag); float x, y; if (phase_dif > M_PI) phase_dif = 2 * M_PI - phase_dif; stereo_position(mag_dif, phase_dif, &x, &y); s->upmix_stereo(ctx, l_phase, r_phase, c_phase, mag_total, x, y, n); } } static void filter_surround(AVFilterContext *ctx) { AudioSurroundContext *s = ctx->priv; float *srcl, *srcr, *srcc; int n; srcl = (float *)s->input->extended_data[0]; srcr = (float *)s->input->extended_data[1]; srcc = (float *)s->input->extended_data[2]; for (n = 0; n < s->buf_size; n++) { float l_re = srcl[2 * n], r_re = srcr[2 * n]; float l_im = srcl[2 * n + 1], r_im = srcr[2 * n + 1]; float c_re = srcc[2 * n], c_im = srcc[2 * n + 1]; float c_mag = hypotf(c_re, c_im); float c_phase = atan2f(c_im, c_re); float l_mag = hypotf(l_re, l_im); float r_mag = hypotf(r_re, r_im); float l_phase = atan2f(l_im, l_re); float r_phase = atan2f(r_im, r_re); float phase_dif = fabsf(l_phase - r_phase); float mag_sum = l_mag + r_mag; float mag_dif = mag_sum < 0.000001 ? 0.f : (l_mag - r_mag) / mag_sum; float mag_total = hypotf(l_mag, r_mag); float x, y; if (phase_dif > M_PI) phase_dif = 2 * M_PI - phase_dif; stereo_position(mag_dif, phase_dif, &x, &y); s->upmix_3_0(ctx, l_phase, r_phase, c_phase, c_mag, mag_total, x, y, n); } } static void filter_2_1(AVFilterContext *ctx) { AudioSurroundContext *s = ctx->priv; float *srcl, *srcr, *srclfe; int n; srcl = (float *)s->input->extended_data[0]; srcr = (float *)s->input->extended_data[1]; srclfe = (float *)s->input->extended_data[2]; for (n = 0; n < s->buf_size; n++) { float l_re = srcl[2 * n], r_re = srcr[2 * n]; float l_im = srcl[2 * n + 1], r_im = srcr[2 * n + 1]; float lfe_re = srclfe[2 * n], lfe_im = srclfe[2 * n + 1]; float c_phase = atan2f(l_im + r_im, l_re + r_re); float l_mag = hypotf(l_re, l_im); float r_mag = hypotf(r_re, r_im); float l_phase = atan2f(l_im, l_re); float r_phase = atan2f(r_im, r_re); float phase_dif = fabsf(l_phase - r_phase); float mag_sum = l_mag + r_mag; float mag_dif = mag_sum < 0.000001 ? 0.f : (l_mag - r_mag) / mag_sum; float mag_total = hypotf(l_mag, r_mag); float x, y; if (phase_dif > M_PI) phase_dif = 2 * M_PI - phase_dif; stereo_position(mag_dif, phase_dif, &x, &y); s->upmix_2_1(ctx, l_phase, r_phase, c_phase, mag_total, lfe_re, lfe_im, x, y, n); } } static void filter_5_0_side(AVFilterContext *ctx) { AudioSurroundContext *s = ctx->priv; float *srcl, *srcr, *srcc, *srcsl, *srcsr; int n; srcl = (float *)s->input->extended_data[0]; srcr = (float *)s->input->extended_data[1]; srcc = (float *)s->input->extended_data[2]; srcsl = (float *)s->input->extended_data[3]; srcsr = (float *)s->input->extended_data[4]; for (n = 0; n < s->buf_size; n++) { float fl_re = srcl[2 * n], fr_re = srcr[2 * n]; float fl_im = srcl[2 * n + 1], fr_im = srcr[2 * n + 1]; float c_re = srcc[2 * n], c_im = srcc[2 * n + 1]; float sl_re = srcsl[2 * n], sl_im = srcsl[2 * n + 1]; float sr_re = srcsr[2 * n], sr_im = srcsr[2 * n + 1]; float fl_mag = hypotf(fl_re, fl_im); float fr_mag = hypotf(fr_re, fr_im); float fl_phase = atan2f(fl_im, fl_re); float fr_phase = atan2f(fr_im, fr_re); float sl_mag = hypotf(sl_re, sl_im); float sr_mag = hypotf(sr_re, sr_im); float sl_phase = atan2f(sl_im, sl_re); float sr_phase = atan2f(sr_im, sr_re); float phase_difl = fabsf(fl_phase - sl_phase); float phase_difr = fabsf(fr_phase - sr_phase); float magl_sum = fl_mag + sl_mag; float magr_sum = fr_mag + sr_mag; float mag_difl = magl_sum < 0.000001 ? 0.f : (fl_mag - sl_mag) / magl_sum; float mag_difr = magr_sum < 0.000001 ? 0.f : (fr_mag - sr_mag) / magr_sum; float mag_totall = hypotf(fl_mag, sl_mag); float mag_totalr = hypotf(fr_mag, sr_mag); float bl_phase = atan2f(fl_im + sl_im, fl_re + sl_re); float br_phase = atan2f(fr_im + sr_im, fr_re + sr_re); float xl, yl; float xr, yr; if (phase_difl > M_PI) phase_difl = 2 * M_PI - phase_difl; if (phase_difr > M_PI) phase_difr = 2 * M_PI - phase_difr; stereo_position(mag_difl, phase_difl, &xl, &yl); stereo_position(mag_difr, phase_difr, &xr, &yr); s->upmix_5_0(ctx, c_re, c_im, mag_totall, mag_totalr, fl_phase, fr_phase, bl_phase, br_phase, sl_phase, sr_phase, xl, yl, xr, yr, n); } } static void filter_5_1_side(AVFilterContext *ctx) { AudioSurroundContext *s = ctx->priv; float *srcl, *srcr, *srcc, *srclfe, *srcsl, *srcsr; int n; srcl = (float *)s->input->extended_data[0]; srcr = (float *)s->input->extended_data[1]; srcc = (float *)s->input->extended_data[2]; srclfe = (float *)s->input->extended_data[3]; srcsl = (float *)s->input->extended_data[4]; srcsr = (float *)s->input->extended_data[5]; for (n = 0; n < s->buf_size; n++) { float fl_re = srcl[2 * n], fr_re = srcr[2 * n]; float fl_im = srcl[2 * n + 1], fr_im = srcr[2 * n + 1]; float c_re = srcc[2 * n], c_im = srcc[2 * n + 1]; float lfe_re = srclfe[2 * n], lfe_im = srclfe[2 * n + 1]; float sl_re = srcsl[2 * n], sl_im = srcsl[2 * n + 1]; float sr_re = srcsr[2 * n], sr_im = srcsr[2 * n + 1]; float fl_mag = hypotf(fl_re, fl_im); float fr_mag = hypotf(fr_re, fr_im); float fl_phase = atan2f(fl_im, fl_re); float fr_phase = atan2f(fr_im, fr_re); float sl_mag = hypotf(sl_re, sl_im); float sr_mag = hypotf(sr_re, sr_im); float sl_phase = atan2f(sl_im, sl_re); float sr_phase = atan2f(sr_im, sr_re); float phase_difl = fabsf(fl_phase - sl_phase); float phase_difr = fabsf(fr_phase - sr_phase); float magl_sum = fl_mag + sl_mag; float magr_sum = fr_mag + sr_mag; float mag_difl = magl_sum < 0.000001 ? 0.f : (fl_mag - sl_mag) / magl_sum; float mag_difr = magr_sum < 0.000001 ? 0.f : (fr_mag - sr_mag) / magr_sum; float mag_totall = hypotf(fl_mag, sl_mag); float mag_totalr = hypotf(fr_mag, sr_mag); float bl_phase = atan2f(fl_im + sl_im, fl_re + sl_re); float br_phase = atan2f(fr_im + sr_im, fr_re + sr_re); float xl, yl; float xr, yr; if (phase_difl > M_PI) phase_difl = 2 * M_PI - phase_difl; if (phase_difr > M_PI) phase_difr = 2 * M_PI - phase_difr; stereo_position(mag_difl, phase_difl, &xl, &yl); stereo_position(mag_difr, phase_difr, &xr, &yr); s->upmix_5_1(ctx, c_re, c_im, lfe_re, lfe_im, mag_totall, mag_totalr, fl_phase, fr_phase, bl_phase, br_phase, sl_phase, sr_phase, xl, yl, xr, yr, n); } } static void filter_5_1_back(AVFilterContext *ctx) { AudioSurroundContext *s = ctx->priv; float *srcl, *srcr, *srcc, *srclfe, *srcbl, *srcbr; int n; srcl = (float *)s->input->extended_data[0]; srcr = (float *)s->input->extended_data[1]; srcc = (float *)s->input->extended_data[2]; srclfe = (float *)s->input->extended_data[3]; srcbl = (float *)s->input->extended_data[4]; srcbr = (float *)s->input->extended_data[5]; for (n = 0; n < s->buf_size; n++) { float fl_re = srcl[2 * n], fr_re = srcr[2 * n]; float fl_im = srcl[2 * n + 1], fr_im = srcr[2 * n + 1]; float c_re = srcc[2 * n], c_im = srcc[2 * n + 1]; float lfe_re = srclfe[2 * n], lfe_im = srclfe[2 * n + 1]; float bl_re = srcbl[2 * n], bl_im = srcbl[2 * n + 1]; float br_re = srcbr[2 * n], br_im = srcbr[2 * n + 1]; float fl_mag = hypotf(fl_re, fl_im); float fr_mag = hypotf(fr_re, fr_im); float fl_phase = atan2f(fl_im, fl_re); float fr_phase = atan2f(fr_im, fr_re); float bl_mag = hypotf(bl_re, bl_im); float br_mag = hypotf(br_re, br_im); float bl_phase = atan2f(bl_im, bl_re); float br_phase = atan2f(br_im, br_re); float phase_difl = fabsf(fl_phase - bl_phase); float phase_difr = fabsf(fr_phase - br_phase); float magl_sum = fl_mag + bl_mag; float magr_sum = fr_mag + br_mag; float mag_difl = magl_sum < 0.000001 ? 0.f : (fl_mag - bl_mag) / magl_sum; float mag_difr = magr_sum < 0.000001 ? 0.f : (fr_mag - br_mag) / magr_sum; float mag_totall = hypotf(fl_mag, bl_mag); float mag_totalr = hypotf(fr_mag, br_mag); float sl_phase = atan2f(fl_im + bl_im, fl_re + bl_re); float sr_phase = atan2f(fr_im + br_im, fr_re + br_re); float xl, yl; float xr, yr; if (phase_difl > M_PI) phase_difl = 2 * M_PI - phase_difl; if (phase_difr > M_PI) phase_difr = 2 * M_PI - phase_difr; stereo_position(mag_difl, phase_difl, &xl, &yl); stereo_position(mag_difr, phase_difr, &xr, &yr); s->upmix_5_1(ctx, c_re, c_im, lfe_re, lfe_im, mag_totall, mag_totalr, fl_phase, fr_phase, bl_phase, br_phase, sl_phase, sr_phase, xl, yl, xr, yr, n); } } static int init(AVFilterContext *ctx) { AudioSurroundContext *s = ctx->priv; float overlap; int i; if (!(s->out_channel_layout = av_get_channel_layout(s->out_channel_layout_str))) { av_log(ctx, AV_LOG_ERROR, "Error parsing output channel layout '%s'.\n", s->out_channel_layout_str); return AVERROR(EINVAL); } if (!(s->in_channel_layout = av_get_channel_layout(s->in_channel_layout_str))) { av_log(ctx, AV_LOG_ERROR, "Error parsing input channel layout '%s'.\n", s->in_channel_layout_str); return AVERROR(EINVAL); } if (s->lowcutf >= s->highcutf) { av_log(ctx, AV_LOG_ERROR, "Low cut-off '%d' should be less than high cut-off '%d'.\n", s->lowcutf, s->highcutf); return AVERROR(EINVAL); } switch (s->in_channel_layout) { case AV_CH_LAYOUT_STEREO: s->filter = filter_stereo; switch (s->out_channel_layout) { case AV_CH_LAYOUT_MONO: s->upmix_stereo = upmix_1_0; break; case AV_CH_LAYOUT_STEREO: s->upmix_stereo = upmix_stereo; break; case AV_CH_LAYOUT_2POINT1: s->upmix_stereo = upmix_2_1; break; case AV_CH_LAYOUT_SURROUND: s->upmix_stereo = upmix_3_0; break; case AV_CH_LAYOUT_3POINT1: s->upmix_stereo = upmix_3_1; break; case AV_CH_LAYOUT_4POINT0: s->upmix_stereo = upmix_4_0; break; case AV_CH_LAYOUT_4POINT1: s->upmix_stereo = upmix_4_1; break; case AV_CH_LAYOUT_5POINT0_BACK: s->upmix_stereo = upmix_5_0_back; break; case AV_CH_LAYOUT_5POINT1_BACK: s->upmix_stereo = upmix_5_1_back; break; case AV_CH_LAYOUT_6POINT0: s->upmix_stereo = upmix_6_0; break; case AV_CH_LAYOUT_6POINT1: s->upmix_stereo = upmix_6_1; break; case AV_CH_LAYOUT_7POINT0: s->upmix_stereo = upmix_7_0; break; case AV_CH_LAYOUT_7POINT1: s->upmix_stereo = upmix_7_1; break; default: goto fail; } break; case AV_CH_LAYOUT_2POINT1: s->filter = filter_2_1; switch (s->out_channel_layout) { case AV_CH_LAYOUT_5POINT1_BACK: s->upmix_2_1 = upmix_5_1_back_2_1; break; default: goto fail; } break; case AV_CH_LAYOUT_SURROUND: s->filter = filter_surround; switch (s->out_channel_layout) { case AV_CH_LAYOUT_3POINT1: s->upmix_3_0 = upmix_3_1_surround; break; case AV_CH_LAYOUT_5POINT1_BACK: s->upmix_3_0 = upmix_5_1_back_surround; break; default: goto fail; } break; case AV_CH_LAYOUT_5POINT0: s->filter = filter_5_0_side; switch (s->out_channel_layout) { case AV_CH_LAYOUT_7POINT1: s->upmix_5_0 = upmix_7_1_5_0_side; break; default: goto fail; } break; case AV_CH_LAYOUT_5POINT1: s->filter = filter_5_1_side; switch (s->out_channel_layout) { case AV_CH_LAYOUT_7POINT1: s->upmix_5_1 = upmix_7_1_5_1; break; default: goto fail; } break; case AV_CH_LAYOUT_5POINT1_BACK: s->filter = filter_5_1_back; switch (s->out_channel_layout) { case AV_CH_LAYOUT_7POINT1: s->upmix_5_1 = upmix_7_1_5_1; break; default: goto fail; } break; default: fail: av_log(ctx, AV_LOG_ERROR, "Unsupported upmix: '%s' -> '%s'.\n", s->in_channel_layout_str, s->out_channel_layout_str); return AVERROR(EINVAL); } s->buf_size = 4096; s->pts = AV_NOPTS_VALUE; s->window_func_lut = av_calloc(s->buf_size, sizeof(*s->window_func_lut)); if (!s->window_func_lut) return AVERROR(ENOMEM); generate_window_func(s->window_func_lut, s->buf_size, s->win_func, &overlap); if (s->overlap == 1) s->overlap = overlap; for (i = 0; i < s->buf_size; i++) s->window_func_lut[i] = sqrtf(s->window_func_lut[i] / s->buf_size); s->hop_size = s->buf_size * (1. - s->overlap); if (s->hop_size <= 0) return AVERROR(EINVAL); if (s->all_x >= 0.f) s->fc_x = s->fl_x = s->fr_x = s->bc_x = s->sl_x = s->sr_x = s->bl_x = s->br_x = s->all_x; if (s->all_y >= 0.f) s->fc_y = s->fl_y = s->fr_y = s->bc_y = s->sl_y = s->sr_y = s->bl_y = s->br_y = s->all_y; return 0; } static int fft_channel(AVFilterContext *ctx, void *arg, int ch, int nb_jobs) { AudioSurroundContext *s = ctx->priv; const float level_in = s->input_levels[ch]; float *dst; int n; memset(s->input->extended_data[ch] + s->buf_size * sizeof(float), 0, s->buf_size * sizeof(float)); dst = (float *)s->input->extended_data[ch]; for (n = 0; n < s->buf_size; n++) { dst[n] *= s->window_func_lut[n] * level_in; } av_rdft_calc(s->rdft[ch], (float *)s->input->extended_data[ch]); return 0; } static int ifft_channel(AVFilterContext *ctx, void *arg, int ch, int nb_jobs) { AudioSurroundContext *s = ctx->priv; const float level_out = s->output_levels[ch]; AVFrame *out = arg; float *dst, *ptr; int n; av_rdft_calc(s->irdft[ch], (float *)s->output->extended_data[ch]); dst = (float *)s->output->extended_data[ch]; ptr = (float *)s->overlap_buffer->extended_data[ch]; memmove(s->overlap_buffer->extended_data[ch], s->overlap_buffer->extended_data[ch] + s->hop_size * sizeof(float), s->buf_size * sizeof(float)); memset(s->overlap_buffer->extended_data[ch] + s->buf_size * sizeof(float), 0, s->hop_size * sizeof(float)); for (n = 0; n < s->buf_size; n++) { ptr[n] += dst[n] * s->window_func_lut[n] * level_out; } ptr = (float *)s->overlap_buffer->extended_data[ch]; dst = (float *)out->extended_data[ch]; memcpy(dst, ptr, s->hop_size * sizeof(float)); return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; AudioSurroundContext *s = ctx->priv; int ret; ret = av_audio_fifo_write(s->fifo, (void **)in->extended_data, in->nb_samples); if (ret >= 0 && s->pts == AV_NOPTS_VALUE) s->pts = in->pts; av_frame_free(&in); if (ret < 0) return ret; while (av_audio_fifo_size(s->fifo) >= s->buf_size) { AVFrame *out; ret = av_audio_fifo_peek(s->fifo, (void **)s->input->extended_data, s->buf_size); if (ret < 0) return ret; ctx->internal->execute(ctx, fft_channel, NULL, NULL, inlink->channels); s->filter(ctx); out = ff_get_audio_buffer(outlink, s->hop_size); if (!out) return AVERROR(ENOMEM); ctx->internal->execute(ctx, ifft_channel, out, NULL, outlink->channels); out->pts = s->pts; if (s->pts != AV_NOPTS_VALUE) s->pts += av_rescale_q(out->nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base); av_audio_fifo_drain(s->fifo, s->hop_size); ret = ff_filter_frame(outlink, out); if (ret < 0) return ret; } return 0; } static int request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AudioSurroundContext *s = ctx->priv; int ret = 0; ret = ff_request_frame(ctx->inputs[0]); if (ret == AVERROR_EOF && av_audio_fifo_size(s->fifo) > 0 && av_audio_fifo_size(s->fifo) < s->buf_size) { AVFrame *in; in = ff_get_audio_buffer(outlink, s->buf_size - av_audio_fifo_size(s->fifo)); if (!in) return AVERROR(ENOMEM); ret = filter_frame(ctx->inputs[0], in); av_audio_fifo_drain(s->fifo, s->buf_size); } return ret; } static av_cold void uninit(AVFilterContext *ctx) { AudioSurroundContext *s = ctx->priv; int ch; av_frame_free(&s->input); av_frame_free(&s->output); av_frame_free(&s->overlap_buffer); for (ch = 0; ch < s->nb_in_channels; ch++) { av_rdft_end(s->rdft[ch]); } for (ch = 0; ch < s->nb_out_channels; ch++) { av_rdft_end(s->irdft[ch]); } av_freep(&s->input_levels); av_freep(&s->output_levels); av_freep(&s->rdft); av_freep(&s->irdft); av_audio_fifo_free(s->fifo); av_freep(&s->window_func_lut); } #define OFFSET(x) offsetof(AudioSurroundContext, x) #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption surround_options[] = { { "chl_out", "set output channel layout", OFFSET(out_channel_layout_str), AV_OPT_TYPE_STRING, {.str="5.1"}, 0, 0, FLAGS }, { "chl_in", "set input channel layout", OFFSET(in_channel_layout_str), AV_OPT_TYPE_STRING, {.str="stereo"},0, 0, FLAGS }, { "level_in", "set input level", OFFSET(level_in), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, FLAGS }, { "level_out", "set output level", OFFSET(level_out), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, FLAGS }, { "lfe", "output LFE", OFFSET(output_lfe), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, FLAGS }, { "lfe_low", "LFE low cut off", OFFSET(lowcutf), AV_OPT_TYPE_INT, {.i64=128}, 0, 256, FLAGS }, { "lfe_high", "LFE high cut off", OFFSET(highcutf), AV_OPT_TYPE_INT, {.i64=256}, 0, 512, FLAGS }, { "lfe_mode", "set LFE channel mode", OFFSET(lfe_mode), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "lfe_mode" }, { "add", "just add LFE channel", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 1, FLAGS, "lfe_mode" }, { "sub", "substract LFE channel with others", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 1, FLAGS, "lfe_mode" }, { "fc_in", "set front center channel input level", OFFSET(fc_in), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, FLAGS }, { "fc_out", "set front center channel output level", OFFSET(fc_out), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, FLAGS }, { "lfe_in", "set lfe channel input level", OFFSET(lfe_in), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, FLAGS }, { "lfe_out", "set lfe channel output level", OFFSET(lfe_out), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, FLAGS }, { "allx", "set all channel's x spread", OFFSET(all_x), AV_OPT_TYPE_FLOAT, {.dbl=-1}, -1, 15, FLAGS }, { "ally", "set all channel's y spread", OFFSET(all_y), AV_OPT_TYPE_FLOAT, {.dbl=-1}, -1, 15, FLAGS }, { "fcx", "set front center channel x spread", OFFSET(fc_x), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "flx", "set front left channel x spread", OFFSET(fl_x), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "frx", "set front right channel x spread", OFFSET(fr_x), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "blx", "set back left channel x spread", OFFSET(bl_x), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "brx", "set back right channel x spread", OFFSET(br_x), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "slx", "set side left channel x spread", OFFSET(sl_x), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "srx", "set side right channel x spread", OFFSET(sr_x), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "bcx", "set back center channel x spread", OFFSET(bc_x), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "fcy", "set front center channel y spread", OFFSET(fc_y), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "fly", "set front left channel y spread", OFFSET(fl_y), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "fry", "set front right channel y spread", OFFSET(fr_y), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "bly", "set back left channel y spread", OFFSET(bl_y), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "bry", "set back right channel y spread", OFFSET(br_y), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "sly", "set side left channel y spread", OFFSET(sl_y), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "sry", "set side right channel y spread", OFFSET(sr_y), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "bcy", "set back center channel y spread", OFFSET(bc_y), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 15, FLAGS }, { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" }, { "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, FLAGS, "win_func" }, { "bartlett", "Bartlett", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" }, { "hann", "Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" }, { "hanning", "Hanning", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" }, { "hamming", "Hamming", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING}, 0, 0, FLAGS, "win_func" }, { "blackman", "Blackman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" }, { "welch", "Welch", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH}, 0, 0, FLAGS, "win_func" }, { "flattop", "Flat-top", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP}, 0, 0, FLAGS, "win_func" }, { "bharris", "Blackman-Harris", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS}, 0, 0, FLAGS, "win_func" }, { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" }, { "bhann", "Bartlett-Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN}, 0, 0, FLAGS, "win_func" }, { "sine", "Sine", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE}, 0, 0, FLAGS, "win_func" }, { "nuttall", "Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL}, 0, 0, FLAGS, "win_func" }, { "lanczos", "Lanczos", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS}, 0, 0, FLAGS, "win_func" }, { "gauss", "Gauss", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS}, 0, 0, FLAGS, "win_func" }, { "tukey", "Tukey", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY}, 0, 0, FLAGS, "win_func" }, { "dolph", "Dolph-Chebyshev", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH}, 0, 0, FLAGS, "win_func" }, { "cauchy", "Cauchy", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY}, 0, 0, FLAGS, "win_func" }, { "parzen", "Parzen", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN}, 0, 0, FLAGS, "win_func" }, { "poisson", "Poisson", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON}, 0, 0, FLAGS, "win_func" }, { "bohman", "Bohman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BOHMAN}, 0, 0, FLAGS, "win_func" }, { "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=0.5}, 0, 1, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(surround); static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, .config_props = config_input, }, { NULL } }; static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .request_frame = request_frame, .config_props = config_output, }, { NULL } }; AVFilter ff_af_surround = { .name = "surround", .description = NULL_IF_CONFIG_SMALL("Apply audio surround upmix filter."), .query_formats = query_formats, .priv_size = sizeof(AudioSurroundContext), .priv_class = &surround_class, .init = init, .uninit = uninit, .inputs = inputs, .outputs = outputs, .flags = AVFILTER_FLAG_SLICE_THREADS, };