/* * Flash Screen Video decoder * Copyright (C) 2004 Alex Beregszaszi * Copyright (C) 2006 Benjamin Larsson * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Flash Screen Video decoder * @author Alex Beregszaszi * @author Benjamin Larsson * @author Daniel Verkamp * @author Konstantin Shishkov * * A description of the bitstream format for Flash Screen Video version 1/2 * is part of the SWF File Format Specification (version 10), which can be * downloaded from http://www.adobe.com/devnet/swf.html. */ #include "config_components.h" #include #include #include #include "libavutil/intreadwrite.h" #include "avcodec.h" #include "bytestream.h" #include "codec_internal.h" #include "get_bits.h" #include "internal.h" #include "zlib_wrapper.h" typedef struct BlockInfo { const uint8_t *pos; int size; } BlockInfo; typedef struct FlashSVContext { AVCodecContext *avctx; AVFrame *frame; int image_width, image_height; int block_width, block_height; uint8_t *tmpblock; int block_size; int ver; const uint32_t *pal; int is_keyframe; const uint8_t *keyframedata; AVBufferRef *keyframedata_buf; uint8_t *keyframe; BlockInfo *blocks; int color_depth; int zlibprime_curr, zlibprime_prev; int diff_start, diff_height; FFZStream zstream; uint8_t tmp[UINT16_MAX]; } FlashSVContext; static int decode_hybrid(const uint8_t *sptr, const uint8_t *sptr_end, uint8_t *dptr, int dx, int dy, int h, int w, int stride, const uint32_t *pal) { int x, y; const uint8_t *orig_src = sptr; for (y = dx + h; y > dx; y--) { uint8_t *dst = dptr + (y * stride) + dy * 3; for (x = 0; x < w; x++) { if (sptr >= sptr_end) return AVERROR_INVALIDDATA; if (*sptr & 0x80) { /* 15-bit color */ unsigned c = AV_RB16(sptr) & ~0x8000; unsigned b = c & 0x1F; unsigned g = (c >> 5) & 0x1F; unsigned r = c >> 10; /* 000aaabb -> aaabbaaa */ *dst++ = (b << 3) | (b >> 2); *dst++ = (g << 3) | (g >> 2); *dst++ = (r << 3) | (r >> 2); sptr += 2; } else { /* palette index */ uint32_t c = pal[*sptr++]; bytestream_put_le24(&dst, c); } } } return sptr - orig_src; } static av_cold int flashsv_decode_end(AVCodecContext *avctx) { FlashSVContext *s = avctx->priv_data; ff_inflate_end(&s->zstream); /* release the frame if needed */ av_frame_free(&s->frame); /* free the tmpblock */ av_freep(&s->tmpblock); return 0; } static av_cold int flashsv_decode_init(AVCodecContext *avctx) { FlashSVContext *s = avctx->priv_data; s->avctx = avctx; avctx->pix_fmt = AV_PIX_FMT_BGR24; s->frame = av_frame_alloc(); if (!s->frame) { return AVERROR(ENOMEM); } return ff_inflate_init(&s->zstream, avctx); } static int flashsv2_prime(FlashSVContext *s, const uint8_t *src, int size) { int zret; // Zlib return code static const uint8_t zlib_header[] = { 0x78, 0x01 }; z_stream *const zstream = &s->zstream.zstream; uint8_t *data = s->tmpblock; unsigned remaining; if (!src) return AVERROR_INVALIDDATA; zstream->next_in = src; zstream->avail_in = size; zstream->next_out = data; zstream->avail_out = s->block_size * 3; inflate(zstream, Z_SYNC_FLUSH); remaining = s->block_size * 3 - zstream->avail_out; if ((zret = inflateReset(zstream)) != Z_OK) { av_log(s->avctx, AV_LOG_ERROR, "Inflate reset error: %d\n", zret); return AVERROR_UNKNOWN; } /* Create input for zlib that is equivalent to encoding the output * from above and decoding it again (the net result of this is that * the dictionary of past decoded data is correctly primed and * the adler32 checksum is correctly initialized). * This is accomplished by synthetizing blocks of uncompressed data * out of the output from above. See section 3.2.4 of RFC 1951. */ zstream->next_in = zlib_header; zstream->avail_in = sizeof(zlib_header); inflate(zstream, Z_SYNC_FLUSH); while (remaining > 0) { unsigned block_size = FFMIN(UINT16_MAX, remaining); uint8_t header[5]; /* Bit 0: Non-last-block, bits 1-2: BTYPE for uncompressed block */ header[0] = 0; /* Block size */ AV_WL16(header + 1, block_size); /* Block size (one's complement) */ AV_WL16(header + 3, block_size ^ 0xFFFF); zstream->next_in = header; zstream->avail_in = sizeof(header); zstream->next_out = s->tmp; zstream->avail_out = sizeof(s->tmp); zret = inflate(zstream, Z_SYNC_FLUSH); if (zret != Z_OK) return AVERROR_UNKNOWN; zstream->next_in = data; zstream->avail_in = block_size; zret = inflate(zstream, Z_SYNC_FLUSH); if (zret != Z_OK) return AVERROR_UNKNOWN; data += block_size; remaining -= block_size; } return 0; } static int flashsv_decode_block(AVCodecContext *avctx, const AVPacket *avpkt, GetBitContext *gb, int block_size, int width, int height, int x_pos, int y_pos, int blk_idx) { struct FlashSVContext *s = avctx->priv_data; z_stream *const zstream = &s->zstream.zstream; uint8_t *line = s->tmpblock; int k; int ret = inflateReset(zstream); if (ret != Z_OK) { av_log(avctx, AV_LOG_ERROR, "Inflate reset error: %d\n", ret); return AVERROR_UNKNOWN; } if (s->zlibprime_curr || s->zlibprime_prev) { ret = flashsv2_prime(s, s->blocks[blk_idx].pos, s->blocks[blk_idx].size); if (ret < 0) return ret; } zstream->next_in = avpkt->data + get_bits_count(gb) / 8; zstream->avail_in = block_size; zstream->next_out = s->tmpblock; zstream->avail_out = s->block_size * 3; ret = inflate(zstream, Z_FINISH); if (ret == Z_DATA_ERROR) { av_log(avctx, AV_LOG_ERROR, "Zlib resync occurred\n"); inflateSync(zstream); ret = inflate(zstream, Z_FINISH); } if (ret != Z_OK && ret != Z_STREAM_END) { //return -1; } if (s->is_keyframe) { s->blocks[blk_idx].pos = s->keyframedata + (get_bits_count(gb) / 8); s->blocks[blk_idx].size = block_size; } y_pos += s->diff_start; if (!s->color_depth) { /* Flash Screen Video stores the image upside down, so copy * lines to destination in reverse order. */ for (k = 1; k <= s->diff_height; k++) { memcpy(s->frame->data[0] + x_pos * 3 + (s->image_height - y_pos - k) * s->frame->linesize[0], line, width * 3); /* advance source pointer to next line */ line += width * 3; } } else { /* hybrid 15-bit/palette mode */ ret = decode_hybrid(s->tmpblock, zstream->next_out, s->frame->data[0], s->image_height - (y_pos + 1 + s->diff_height), x_pos, s->diff_height, width, s->frame->linesize[0], s->pal); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "decode_hybrid failed\n"); return ret; } } skip_bits_long(gb, 8 * block_size); /* skip the consumed bits */ return 0; } static int flashsv_decode_frame(AVCodecContext *avctx, AVFrame *rframe, int *got_frame, AVPacket *avpkt) { int buf_size = avpkt->size; FlashSVContext *s = avctx->priv_data; int h_blocks, v_blocks, h_part, v_part, i, j, ret; GetBitContext gb; int last_blockwidth = s->block_width; int last_blockheight= s->block_height; /* no supplementary picture */ if (buf_size == 0) return 0; if (buf_size < 4) return -1; if ((ret = init_get_bits8(&gb, avpkt->data, buf_size)) < 0) return ret; /* start to parse the bitstream */ s->block_width = 16 * (get_bits(&gb, 4) + 1); s->image_width = get_bits(&gb, 12); s->block_height = 16 * (get_bits(&gb, 4) + 1); s->image_height = get_bits(&gb, 12); if ( last_blockwidth != s->block_width || last_blockheight!= s->block_height) av_freep(&s->blocks); if (s->ver == 2) { skip_bits(&gb, 6); if (get_bits1(&gb)) { avpriv_request_sample(avctx, "iframe"); return AVERROR_PATCHWELCOME; } if (get_bits1(&gb)) { avpriv_request_sample(avctx, "Custom palette"); return AVERROR_PATCHWELCOME; } } /* calculate number of blocks and size of border (partial) blocks */ h_blocks = s->image_width / s->block_width; h_part = s->image_width % s->block_width; v_blocks = s->image_height / s->block_height; v_part = s->image_height % s->block_height; /* the block size could change between frames, make sure the buffer * is large enough, if not, get a larger one */ if (s->block_size < s->block_width * s->block_height) { int tmpblock_size = 3 * s->block_width * s->block_height, err; if ((err = av_reallocp(&s->tmpblock, tmpblock_size)) < 0) { s->block_size = 0; av_log(avctx, AV_LOG_ERROR, "Cannot allocate decompression buffer.\n"); return err; } } s->block_size = s->block_width * s->block_height; /* initialize the image size once */ if (avctx->width == 0 && avctx->height == 0) { if ((ret = ff_set_dimensions(avctx, s->image_width, s->image_height)) < 0) return ret; } /* check for changes of image width and image height */ if (avctx->width != s->image_width || avctx->height != s->image_height) { av_log(avctx, AV_LOG_ERROR, "Frame width or height differs from first frame!\n"); av_log(avctx, AV_LOG_ERROR, "fh = %d, fv %d vs ch = %d, cv = %d\n", avctx->height, avctx->width, s->image_height, s->image_width); return AVERROR_INVALIDDATA; } /* we care for keyframes only in Screen Video v2 */ s->is_keyframe = (avpkt->flags & AV_PKT_FLAG_KEY) && (s->ver == 2); if (s->is_keyframe) { int err = av_buffer_replace(&s->keyframedata_buf, avpkt->buf); if (err < 0) return err; s->keyframedata = avpkt->data; } if(s->ver == 2 && !s->blocks) s->blocks = av_mallocz((v_blocks + !!v_part) * (h_blocks + !!h_part) * sizeof(s->blocks[0])); ff_dlog(avctx, "image: %dx%d block: %dx%d num: %dx%d part: %dx%d\n", s->image_width, s->image_height, s->block_width, s->block_height, h_blocks, v_blocks, h_part, v_part); if ((ret = ff_reget_buffer(avctx, s->frame, 0)) < 0) return ret; /* loop over all block columns */ for (j = 0; j < v_blocks + (v_part ? 1 : 0); j++) { int y_pos = j * s->block_height; // vertical position in frame int cur_blk_height = (j < v_blocks) ? s->block_height : v_part; /* loop over all block rows */ for (i = 0; i < h_blocks + (h_part ? 1 : 0); i++) { int x_pos = i * s->block_width; // horizontal position in frame int cur_blk_width = (i < h_blocks) ? s->block_width : h_part; int has_diff = 0; /* get the size of the compressed zlib chunk */ int size = get_bits(&gb, 16); s->color_depth = 0; s->zlibprime_curr = 0; s->zlibprime_prev = 0; s->diff_start = 0; s->diff_height = cur_blk_height; if (8 * size > get_bits_left(&gb)) { av_frame_unref(s->frame); return AVERROR_INVALIDDATA; } if (s->ver == 2 && size) { skip_bits(&gb, 3); s->color_depth = get_bits(&gb, 2); has_diff = get_bits1(&gb); s->zlibprime_curr = get_bits1(&gb); s->zlibprime_prev = get_bits1(&gb); if (s->color_depth != 0 && s->color_depth != 2) { av_log(avctx, AV_LOG_ERROR, "%dx%d invalid color depth %d\n", i, j, s->color_depth); return AVERROR_INVALIDDATA; } if (has_diff) { if (size < 3) { av_log(avctx, AV_LOG_ERROR, "size too small for diff\n"); return AVERROR_INVALIDDATA; } if (!s->keyframe) { av_log(avctx, AV_LOG_ERROR, "Inter frame without keyframe\n"); return AVERROR_INVALIDDATA; } s->diff_start = get_bits(&gb, 8); s->diff_height = get_bits(&gb, 8); if (s->diff_start + s->diff_height > cur_blk_height) { av_log(avctx, AV_LOG_ERROR, "Block parameters invalid: %d + %d > %d\n", s->diff_start, s->diff_height, cur_blk_height); return AVERROR_INVALIDDATA; } av_log(avctx, AV_LOG_DEBUG, "%dx%d diff start %d height %d\n", i, j, s->diff_start, s->diff_height); size -= 2; } if (s->zlibprime_prev) av_log(avctx, AV_LOG_DEBUG, "%dx%d zlibprime_prev\n", i, j); if (s->zlibprime_curr) { int col = get_bits(&gb, 8); int row = get_bits(&gb, 8); av_log(avctx, AV_LOG_DEBUG, "%dx%d zlibprime_curr %dx%d\n", i, j, col, row); if (size < 3) { av_log(avctx, AV_LOG_ERROR, "size too small for zlibprime_curr\n"); return AVERROR_INVALIDDATA; } size -= 2; avpriv_request_sample(avctx, "zlibprime_curr"); return AVERROR_PATCHWELCOME; } if (!s->blocks && (s->zlibprime_curr || s->zlibprime_prev)) { av_log(avctx, AV_LOG_ERROR, "no data available for zlib priming\n"); return AVERROR_INVALIDDATA; } size--; // account for flags byte } if (has_diff) { int k; int off = (s->image_height - y_pos - 1) * s->frame->linesize[0]; for (k = 0; k < cur_blk_height; k++) { int x = off - k * s->frame->linesize[0] + x_pos * 3; memcpy(s->frame->data[0] + x, s->keyframe + x, cur_blk_width * 3); } } /* skip unchanged blocks, which have size 0 */ if (size) { if (flashsv_decode_block(avctx, avpkt, &gb, size, cur_blk_width, cur_blk_height, x_pos, y_pos, i + j * (h_blocks + !!h_part))) av_log(avctx, AV_LOG_ERROR, "error in decompression of block %dx%d\n", i, j); } } } if (s->is_keyframe && s->ver == 2) { if (!s->keyframe) { s->keyframe = av_malloc(s->frame->linesize[0] * avctx->height); if (!s->keyframe) { av_log(avctx, AV_LOG_ERROR, "Cannot allocate image data\n"); return AVERROR(ENOMEM); } } memcpy(s->keyframe, s->frame->data[0], s->frame->linesize[0] * avctx->height); } if ((ret = av_frame_ref(rframe, s->frame)) < 0) return ret; *got_frame = 1; if ((get_bits_count(&gb) / 8) != buf_size) av_log(avctx, AV_LOG_ERROR, "buffer not fully consumed (%d != %d)\n", buf_size, (get_bits_count(&gb) / 8)); /* report that the buffer was completely consumed */ return buf_size; } #if CONFIG_FLASHSV_DECODER const FFCodec ff_flashsv_decoder = { .p.name = "flashsv", .p.long_name = NULL_IF_CONFIG_SMALL("Flash Screen Video v1"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_FLASHSV, .priv_data_size = sizeof(FlashSVContext), .init = flashsv_decode_init, .close = flashsv_decode_end, .decode = flashsv_decode_frame, .p.capabilities = AV_CODEC_CAP_DR1, .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, .p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_BGR24, AV_PIX_FMT_NONE }, }; #endif /* CONFIG_FLASHSV_DECODER */ #if CONFIG_FLASHSV2_DECODER static const uint32_t ff_flashsv2_default_palette[128] = { 0x000000, 0x333333, 0x666666, 0x999999, 0xCCCCCC, 0xFFFFFF, 0x330000, 0x660000, 0x990000, 0xCC0000, 0xFF0000, 0x003300, 0x006600, 0x009900, 0x00CC00, 0x00FF00, 0x000033, 0x000066, 0x000099, 0x0000CC, 0x0000FF, 0x333300, 0x666600, 0x999900, 0xCCCC00, 0xFFFF00, 0x003333, 0x006666, 0x009999, 0x00CCCC, 0x00FFFF, 0x330033, 0x660066, 0x990099, 0xCC00CC, 0xFF00FF, 0xFFFF33, 0xFFFF66, 0xFFFF99, 0xFFFFCC, 0xFF33FF, 0xFF66FF, 0xFF99FF, 0xFFCCFF, 0x33FFFF, 0x66FFFF, 0x99FFFF, 0xCCFFFF, 0xCCCC33, 0xCCCC66, 0xCCCC99, 0xCCCCFF, 0xCC33CC, 0xCC66CC, 0xCC99CC, 0xCCFFCC, 0x33CCCC, 0x66CCCC, 0x99CCCC, 0xFFCCCC, 0x999933, 0x999966, 0x9999CC, 0x9999FF, 0x993399, 0x996699, 0x99CC99, 0x99FF99, 0x339999, 0x669999, 0xCC9999, 0xFF9999, 0x666633, 0x666699, 0x6666CC, 0x6666FF, 0x663366, 0x669966, 0x66CC66, 0x66FF66, 0x336666, 0x996666, 0xCC6666, 0xFF6666, 0x333366, 0x333399, 0x3333CC, 0x3333FF, 0x336633, 0x339933, 0x33CC33, 0x33FF33, 0x663333, 0x993333, 0xCC3333, 0xFF3333, 0x003366, 0x336600, 0x660033, 0x006633, 0x330066, 0x663300, 0x336699, 0x669933, 0x993366, 0x339966, 0x663399, 0x996633, 0x6699CC, 0x99CC66, 0xCC6699, 0x66CC99, 0x9966CC, 0xCC9966, 0x99CCFF, 0xCCFF99, 0xFF99CC, 0x99FFCC, 0xCC99FF, 0xFFCC99, 0x111111, 0x222222, 0x444444, 0x555555, 0xAAAAAA, 0xBBBBBB, 0xDDDDDD, 0xEEEEEE }; static av_cold int flashsv2_decode_init(AVCodecContext *avctx) { FlashSVContext *s = avctx->priv_data; int ret; ret = flashsv_decode_init(avctx); if (ret < 0) return ret; s->pal = ff_flashsv2_default_palette; s->ver = 2; return 0; } static av_cold int flashsv2_decode_end(AVCodecContext *avctx) { FlashSVContext *s = avctx->priv_data; av_buffer_unref(&s->keyframedata_buf); av_freep(&s->blocks); av_freep(&s->keyframe); flashsv_decode_end(avctx); return 0; } const FFCodec ff_flashsv2_decoder = { .p.name = "flashsv2", .p.long_name = NULL_IF_CONFIG_SMALL("Flash Screen Video v2"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_FLASHSV2, .priv_data_size = sizeof(FlashSVContext), .init = flashsv2_decode_init, .close = flashsv2_decode_end, .decode = flashsv_decode_frame, .p.capabilities = AV_CODEC_CAP_DR1, .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, .p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_BGR24, AV_PIX_FMT_NONE }, }; #endif /* CONFIG_FLASHSV2_DECODER */