/* * Copyright (c) 2013 Clément Bœsch * Copyright (c) 2018 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * 3D Lookup table filter */ #include "float.h" #include "libavutil/opt.h" #include "libavutil/file.h" #include "libavutil/intreadwrite.h" #include "libavutil/intfloat.h" #include "libavutil/avassert.h" #include "libavutil/pixdesc.h" #include "libavutil/avstring.h" #include "avfilter.h" #include "drawutils.h" #include "formats.h" #include "framesync.h" #include "internal.h" #include "video.h" #define R 0 #define G 1 #define B 2 #define A 3 enum interp_mode { INTERPOLATE_NEAREST, INTERPOLATE_TRILINEAR, INTERPOLATE_TETRAHEDRAL, INTERPOLATE_PYRAMID, INTERPOLATE_PRISM, NB_INTERP_MODE }; struct rgbvec { float r, g, b; }; /* 3D LUT don't often go up to level 32, but it is common to have a Hald CLUT * of 512x512 (64x64x64) */ #define MAX_LEVEL 256 #define PRELUT_SIZE 65536 typedef struct Lut3DPreLut { int size; float min[3]; float max[3]; float scale[3]; float* lut[3]; } Lut3DPreLut; typedef struct LUT3DContext { const AVClass *class; int interpolation; ///r, v1->r, f), lerpf(v0->g, v1->g, f), lerpf(v0->b, v1->b, f) }; return v; } #define NEAR(x) ((int)((x) + .5)) #define PREV(x) ((int)(x)) #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1)) /** * Get the nearest defined point */ static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d, const struct rgbvec *s) { return lut3d->lut[NEAR(s->r) * lut3d->lutsize2 + NEAR(s->g) * lut3d->lutsize + NEAR(s->b)]; } /** * Interpolate using the 8 vertices of a cube * @see https://en.wikipedia.org/wiki/Trilinear_interpolation */ static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d, const struct rgbvec *s) { const int lutsize2 = lut3d->lutsize2; const int lutsize = lut3d->lutsize; const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)}; const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)}; const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]}; const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]]; const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]]; const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]]; const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]]; const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]]; const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]]; const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]]; const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]]; const struct rgbvec c00 = lerp(&c000, &c100, d.r); const struct rgbvec c10 = lerp(&c010, &c110, d.r); const struct rgbvec c01 = lerp(&c001, &c101, d.r); const struct rgbvec c11 = lerp(&c011, &c111, d.r); const struct rgbvec c0 = lerp(&c00, &c10, d.g); const struct rgbvec c1 = lerp(&c01, &c11, d.g); const struct rgbvec c = lerp(&c0, &c1, d.b); return c; } static inline struct rgbvec interp_pyramid(const LUT3DContext *lut3d, const struct rgbvec *s) { const int lutsize2 = lut3d->lutsize2; const int lutsize = lut3d->lutsize; const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)}; const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)}; const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]}; const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]]; const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]]; struct rgbvec c; if (d.g > d.r && d.b > d.r) { const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]]; const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]]; const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]]; c.r = c000.r + (c111.r - c011.r) * d.r + (c010.r - c000.r) * d.g + (c001.r - c000.r) * d.b + (c011.r - c001.r - c010.r + c000.r) * d.g * d.b; c.g = c000.g + (c111.g - c011.g) * d.r + (c010.g - c000.g) * d.g + (c001.g - c000.g) * d.b + (c011.g - c001.g - c010.g + c000.g) * d.g * d.b; c.b = c000.b + (c111.b - c011.b) * d.r + (c010.b - c000.b) * d.g + (c001.b - c000.b) * d.b + (c011.b - c001.b - c010.b + c000.b) * d.g * d.b; } else if (d.r > d.g && d.b > d.g) { const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]]; const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]]; const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]]; c.r = c000.r + (c100.r - c000.r) * d.r + (c111.r - c101.r) * d.g + (c001.r - c000.r) * d.b + (c101.r - c001.r - c100.r + c000.r) * d.r * d.b; c.g = c000.g + (c100.g - c000.g) * d.r + (c111.g - c101.g) * d.g + (c001.g - c000.g) * d.b + (c101.g - c001.g - c100.g + c000.g) * d.r * d.b; c.b = c000.b + (c100.b - c000.b) * d.r + (c111.b - c101.b) * d.g + (c001.b - c000.b) * d.b + (c101.b - c001.b - c100.b + c000.b) * d.r * d.b; } else { const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]]; const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]]; const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]]; c.r = c000.r + (c100.r - c000.r) * d.r + (c010.r - c000.r) * d.g + (c111.r - c110.r) * d.b + (c110.r - c100.r - c010.r + c000.r) * d.r * d.g; c.g = c000.g + (c100.g - c000.g) * d.r + (c010.g - c000.g) * d.g + (c111.g - c110.g) * d.b + (c110.g - c100.g - c010.g + c000.g) * d.r * d.g; c.b = c000.b + (c100.b - c000.b) * d.r + (c010.b - c000.b) * d.g + (c111.b - c110.b) * d.b + (c110.b - c100.b - c010.b + c000.b) * d.r * d.g; } return c; } static inline struct rgbvec interp_prism(const LUT3DContext *lut3d, const struct rgbvec *s) { const int lutsize2 = lut3d->lutsize2; const int lutsize = lut3d->lutsize; const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)}; const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)}; const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]}; const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]]; const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]]; const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]]; const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]]; struct rgbvec c; if (d.b > d.r) { const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]]; const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]]; c.r = c000.r + (c001.r - c000.r) * d.b + (c101.r - c001.r) * d.r + (c010.r - c000.r) * d.g + (c000.r - c010.r - c001.r + c011.r) * d.b * d.g + (c001.r - c011.r - c101.r + c111.r) * d.r * d.g; c.g = c000.g + (c001.g - c000.g) * d.b + (c101.g - c001.g) * d.r + (c010.g - c000.g) * d.g + (c000.g - c010.g - c001.g + c011.g) * d.b * d.g + (c001.g - c011.g - c101.g + c111.g) * d.r * d.g; c.b = c000.b + (c001.b - c000.b) * d.b + (c101.b - c001.b) * d.r + (c010.b - c000.b) * d.g + (c000.b - c010.b - c001.b + c011.b) * d.b * d.g + (c001.b - c011.b - c101.b + c111.b) * d.r * d.g; } else { const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]]; const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]]; c.r = c000.r + (c101.r - c100.r) * d.b + (c100.r - c000.r) * d.r + (c010.r - c000.r) * d.g + (c100.r - c110.r - c101.r + c111.r) * d.b * d.g + (c000.r - c010.r - c100.r + c110.r) * d.r * d.g; c.g = c000.g + (c101.g - c100.g) * d.b + (c100.g - c000.g) * d.r + (c010.g - c000.g) * d.g + (c100.g - c110.g - c101.g + c111.g) * d.b * d.g + (c000.g - c010.g - c100.g + c110.g) * d.r * d.g; c.b = c000.b + (c101.b - c100.b) * d.b + (c100.b - c000.b) * d.r + (c010.b - c000.b) * d.g + (c100.b - c110.b - c101.b + c111.b) * d.b * d.g + (c000.b - c010.b - c100.b + c110.b) * d.r * d.g; } return c; } /** * Tetrahedral interpolation. Based on code found in Truelight Software Library paper. * @see http://www.filmlight.ltd.uk/pdf/whitepapers/FL-TL-TN-0057-SoftwareLib.pdf */ static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, const struct rgbvec *s) { const int lutsize2 = lut3d->lutsize2; const int lutsize = lut3d->lutsize; const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)}; const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)}; const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]}; const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]]; const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]]; struct rgbvec c; if (d.r > d.g) { if (d.g > d.b) { const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]]; const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]]; c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r; c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g; c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b; } else if (d.r > d.b) { const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]]; const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]]; c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r; c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g; c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b; } else { const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]]; const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]]; c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r; c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g; c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b; } } else { if (d.b > d.g) { const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]]; const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]]; c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r; c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g; c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b; } else if (d.b > d.r) { const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]]; const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]]; c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r; c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g; c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b; } else { const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]]; const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]]; c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r; c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g; c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b; } } return c; } static inline float prelut_interp_1d_linear(const Lut3DPreLut *prelut, int idx, const float s) { const int lut_max = prelut->size - 1; const float scaled = (s - prelut->min[idx]) * prelut->scale[idx]; const float x = av_clipf(scaled, 0.0f, lut_max); const int prev = PREV(x); const int next = FFMIN((int)(x) + 1, lut_max); const float p = prelut->lut[idx][prev]; const float n = prelut->lut[idx][next]; const float d = x - (float)prev; return lerpf(p, n, d); } static inline struct rgbvec apply_prelut(const Lut3DPreLut *prelut, const struct rgbvec *s) { struct rgbvec c; if (prelut->size <= 0) return *s; c.r = prelut_interp_1d_linear(prelut, 0, s->r); c.g = prelut_interp_1d_linear(prelut, 1, s->g); c.b = prelut_interp_1d_linear(prelut, 2, s->b); return c; } #define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth) \ static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ { \ int x, y; \ const LUT3DContext *lut3d = ctx->priv; \ const Lut3DPreLut *prelut = &lut3d->prelut; \ const ThreadData *td = arg; \ const AVFrame *in = td->in; \ const AVFrame *out = td->out; \ const int direct = out == in; \ const int slice_start = (in->height * jobnr ) / nb_jobs; \ const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \ uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \ uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \ uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \ const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \ const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \ const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \ const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \ const float lut_max = lut3d->lutsize - 1; \ const float scale_f = 1.0f / ((1<scale.r * lut_max; \ const float scale_g = lut3d->scale.g * lut_max; \ const float scale_b = lut3d->scale.b * lut_max; \ \ for (y = slice_start; y < slice_end; y++) { \ uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \ uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \ uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \ uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \ const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \ const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \ const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \ const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \ for (x = 0; x < in->width; x++) { \ const struct rgbvec rgb = {srcr[x] * scale_f, \ srcg[x] * scale_f, \ srcb[x] * scale_f}; \ const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \ const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \ av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \ av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \ struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \ dstr[x] = av_clip_uintp2(vec.r * (float)((1<linesize[3]) \ dsta[x] = srca[x]; \ } \ grow += out->linesize[0]; \ brow += out->linesize[1]; \ rrow += out->linesize[2]; \ arow += out->linesize[3]; \ srcgrow += in->linesize[0]; \ srcbrow += in->linesize[1]; \ srcrrow += in->linesize[2]; \ srcarow += in->linesize[3]; \ } \ return 0; \ } DEFINE_INTERP_FUNC_PLANAR(nearest, 8, 8) DEFINE_INTERP_FUNC_PLANAR(trilinear, 8, 8) DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 8, 8) DEFINE_INTERP_FUNC_PLANAR(pyramid, 8, 8) DEFINE_INTERP_FUNC_PLANAR(prism, 8, 8) DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 9) DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 9) DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 9) DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 9) DEFINE_INTERP_FUNC_PLANAR(prism, 16, 9) DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 10) DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 10) DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 10) DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 10) DEFINE_INTERP_FUNC_PLANAR(prism, 16, 10) DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 12) DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 12) DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 12) DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 12) DEFINE_INTERP_FUNC_PLANAR(prism, 16, 12) DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 14) DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 14) DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 14) DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 14) DEFINE_INTERP_FUNC_PLANAR(prism, 16, 14) DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 16) DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 16) DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 16) DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 16) DEFINE_INTERP_FUNC_PLANAR(prism, 16, 16) #define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth) \ static int interp_##name##_pf##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ { \ int x, y; \ const LUT3DContext *lut3d = ctx->priv; \ const Lut3DPreLut *prelut = &lut3d->prelut; \ const ThreadData *td = arg; \ const AVFrame *in = td->in; \ const AVFrame *out = td->out; \ const int direct = out == in; \ const int slice_start = (in->height * jobnr ) / nb_jobs; \ const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \ uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \ uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \ uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \ const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \ const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \ const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \ const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \ const float lut_max = lut3d->lutsize - 1; \ const float scale_r = lut3d->scale.r * lut_max; \ const float scale_g = lut3d->scale.g * lut_max; \ const float scale_b = lut3d->scale.b * lut_max; \ \ for (y = slice_start; y < slice_end; y++) { \ float *dstg = (float *)grow; \ float *dstb = (float *)brow; \ float *dstr = (float *)rrow; \ float *dsta = (float *)arow; \ const float *srcg = (const float *)srcgrow; \ const float *srcb = (const float *)srcbrow; \ const float *srcr = (const float *)srcrrow; \ const float *srca = (const float *)srcarow; \ for (x = 0; x < in->width; x++) { \ const struct rgbvec rgb = {sanitizef(srcr[x]), \ sanitizef(srcg[x]), \ sanitizef(srcb[x])}; \ const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \ const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \ av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \ av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \ struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \ dstr[x] = vec.r; \ dstg[x] = vec.g; \ dstb[x] = vec.b; \ if (!direct && in->linesize[3]) \ dsta[x] = srca[x]; \ } \ grow += out->linesize[0]; \ brow += out->linesize[1]; \ rrow += out->linesize[2]; \ arow += out->linesize[3]; \ srcgrow += in->linesize[0]; \ srcbrow += in->linesize[1]; \ srcrrow += in->linesize[2]; \ srcarow += in->linesize[3]; \ } \ return 0; \ } DEFINE_INTERP_FUNC_PLANAR_FLOAT(nearest, 32) DEFINE_INTERP_FUNC_PLANAR_FLOAT(trilinear, 32) DEFINE_INTERP_FUNC_PLANAR_FLOAT(tetrahedral, 32) DEFINE_INTERP_FUNC_PLANAR_FLOAT(pyramid, 32) DEFINE_INTERP_FUNC_PLANAR_FLOAT(prism, 32) #define DEFINE_INTERP_FUNC(name, nbits) \ static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ { \ int x, y; \ const LUT3DContext *lut3d = ctx->priv; \ const Lut3DPreLut *prelut = &lut3d->prelut; \ const ThreadData *td = arg; \ const AVFrame *in = td->in; \ const AVFrame *out = td->out; \ const int direct = out == in; \ const int step = lut3d->step; \ const uint8_t r = lut3d->rgba_map[R]; \ const uint8_t g = lut3d->rgba_map[G]; \ const uint8_t b = lut3d->rgba_map[B]; \ const uint8_t a = lut3d->rgba_map[A]; \ const int slice_start = (in->height * jobnr ) / nb_jobs; \ const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \ const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \ const float lut_max = lut3d->lutsize - 1; \ const float scale_f = 1.0f / ((1<scale.r * lut_max; \ const float scale_g = lut3d->scale.g * lut_max; \ const float scale_b = lut3d->scale.b * lut_max; \ \ for (y = slice_start; y < slice_end; y++) { \ uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \ const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \ for (x = 0; x < in->width * step; x += step) { \ const struct rgbvec rgb = {src[x + r] * scale_f, \ src[x + g] * scale_f, \ src[x + b] * scale_f}; \ const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \ const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \ av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \ av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \ struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \ dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<linesize[0]; \ srcrow += in ->linesize[0]; \ } \ return 0; \ } DEFINE_INTERP_FUNC(nearest, 8) DEFINE_INTERP_FUNC(trilinear, 8) DEFINE_INTERP_FUNC(tetrahedral, 8) DEFINE_INTERP_FUNC(pyramid, 8) DEFINE_INTERP_FUNC(prism, 8) DEFINE_INTERP_FUNC(nearest, 16) DEFINE_INTERP_FUNC(trilinear, 16) DEFINE_INTERP_FUNC(tetrahedral, 16) DEFINE_INTERP_FUNC(pyramid, 16) DEFINE_INTERP_FUNC(prism, 16) #define MAX_LINE_SIZE 512 static int skip_line(const char *p) { while (*p && av_isspace(*p)) p++; return !*p || *p == '#'; } static char* fget_next_word(char* dst, int max, FILE* f) { int c; char *p = dst; /* for null */ max--; /* skip until next non whitespace char */ while ((c = fgetc(f)) != EOF) { if (av_isspace(c)) continue; *p++ = c; max--; break; } /* get max bytes or up until next whitespace char */ for (; max > 0; max--) { if ((c = fgetc(f)) == EOF) break; if (av_isspace(c)) break; *p++ = c; } *p = 0; if (p == dst) return NULL; return p; } #define NEXT_LINE(loop_cond) do { \ if (!fgets(line, sizeof(line), f)) { \ av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \ return AVERROR_INVALIDDATA; \ } \ } while (loop_cond) #define NEXT_LINE_OR_GOTO(loop_cond, label) do { \ if (!fgets(line, sizeof(line), f)) { \ av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \ ret = AVERROR_INVALIDDATA; \ goto label; \ } \ } while (loop_cond) static int allocate_3dlut(AVFilterContext *ctx, int lutsize, int prelut) { LUT3DContext *lut3d = ctx->priv; int i; if (lutsize < 2 || lutsize > MAX_LEVEL) { av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n"); return AVERROR(EINVAL); } av_freep(&lut3d->lut); lut3d->lut = av_malloc_array(lutsize * lutsize * lutsize, sizeof(*lut3d->lut)); if (!lut3d->lut) return AVERROR(ENOMEM); if (prelut) { lut3d->prelut.size = PRELUT_SIZE; for (i = 0; i < 3; i++) { av_freep(&lut3d->prelut.lut[i]); lut3d->prelut.lut[i] = av_malloc_array(PRELUT_SIZE, sizeof(*lut3d->prelut.lut[0])); if (!lut3d->prelut.lut[i]) return AVERROR(ENOMEM); } } else { lut3d->prelut.size = 0; for (i = 0; i < 3; i++) { av_freep(&lut3d->prelut.lut[i]); } } lut3d->lutsize = lutsize; lut3d->lutsize2 = lutsize * lutsize; return 0; } /* Basically r g and b float values on each line, with a facultative 3DLUTSIZE * directive; seems to be generated by Davinci */ static int parse_dat(AVFilterContext *ctx, FILE *f) { LUT3DContext *lut3d = ctx->priv; char line[MAX_LINE_SIZE]; int ret, i, j, k, size, size2; lut3d->lutsize = size = 33; size2 = size * size; NEXT_LINE(skip_line(line)); if (!strncmp(line, "3DLUTSIZE ", 10)) { size = strtol(line + 10, NULL, 0); NEXT_LINE(skip_line(line)); } ret = allocate_3dlut(ctx, size, 0); if (ret < 0) return ret; for (k = 0; k < size; k++) { for (j = 0; j < size; j++) { for (i = 0; i < size; i++) { struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i]; if (k != 0 || j != 0 || i != 0) NEXT_LINE(skip_line(line)); if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) return AVERROR_INVALIDDATA; } } } return 0; } /* Iridas format */ static int parse_cube(AVFilterContext *ctx, FILE *f) { LUT3DContext *lut3d = ctx->priv; char line[MAX_LINE_SIZE]; float min[3] = {0.0, 0.0, 0.0}; float max[3] = {1.0, 1.0, 1.0}; while (fgets(line, sizeof(line), f)) { if (!strncmp(line, "LUT_3D_SIZE", 11)) { int ret, i, j, k; const int size = strtol(line + 12, NULL, 0); const int size2 = size * size; ret = allocate_3dlut(ctx, size, 0); if (ret < 0) return ret; for (k = 0; k < size; k++) { for (j = 0; j < size; j++) { for (i = 0; i < size; i++) { struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k]; do { try_again: NEXT_LINE(0); if (!strncmp(line, "DOMAIN_", 7)) { float *vals = NULL; if (!strncmp(line + 7, "MIN ", 4)) vals = min; else if (!strncmp(line + 7, "MAX ", 4)) vals = max; if (!vals) return AVERROR_INVALIDDATA; av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2); av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n", min[0], min[1], min[2], max[0], max[1], max[2]); goto try_again; } else if (!strncmp(line, "TITLE", 5)) { goto try_again; } } while (skip_line(line)); if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) return AVERROR_INVALIDDATA; } } } break; } } lut3d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f); lut3d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f); lut3d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f); return 0; } /* Assume 17x17x17 LUT with a 16-bit depth * FIXME: it seems there are various 3dl formats */ static int parse_3dl(AVFilterContext *ctx, FILE *f) { char line[MAX_LINE_SIZE]; LUT3DContext *lut3d = ctx->priv; int ret, i, j, k; const int size = 17; const int size2 = 17 * 17; const float scale = 16*16*16; lut3d->lutsize = size; ret = allocate_3dlut(ctx, size, 0); if (ret < 0) return ret; NEXT_LINE(skip_line(line)); for (k = 0; k < size; k++) { for (j = 0; j < size; j++) { for (i = 0; i < size; i++) { int r, g, b; struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i]; NEXT_LINE(skip_line(line)); if (av_sscanf(line, "%d %d %d", &r, &g, &b) != 3) return AVERROR_INVALIDDATA; vec->r = r / scale; vec->g = g / scale; vec->b = b / scale; } } } return 0; } /* Pandora format */ static int parse_m3d(AVFilterContext *ctx, FILE *f) { LUT3DContext *lut3d = ctx->priv; float scale; int ret, i, j, k, size, size2, in = -1, out = -1; char line[MAX_LINE_SIZE]; uint8_t rgb_map[3] = {0, 1, 2}; while (fgets(line, sizeof(line), f)) { if (!strncmp(line, "in", 2)) in = strtol(line + 2, NULL, 0); else if (!strncmp(line, "out", 3)) out = strtol(line + 3, NULL, 0); else if (!strncmp(line, "values", 6)) { const char *p = line + 6; #define SET_COLOR(id) do { \ while (av_isspace(*p)) \ p++; \ switch (*p) { \ case 'r': rgb_map[id] = 0; break; \ case 'g': rgb_map[id] = 1; break; \ case 'b': rgb_map[id] = 2; break; \ } \ while (*p && !av_isspace(*p)) \ p++; \ } while (0) SET_COLOR(0); SET_COLOR(1); SET_COLOR(2); break; } } if (in == -1 || out == -1) { av_log(ctx, AV_LOG_ERROR, "in and out must be defined\n"); return AVERROR_INVALIDDATA; } if (in < 2 || out < 2 || in > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL || out > MAX_LEVEL*MAX_LEVEL*MAX_LEVEL) { av_log(ctx, AV_LOG_ERROR, "invalid in (%d) or out (%d)\n", in, out); return AVERROR_INVALIDDATA; } for (size = 1; size*size*size < in; size++); lut3d->lutsize = size; size2 = size * size; ret = allocate_3dlut(ctx, size, 0); if (ret < 0) return ret; scale = 1. / (out - 1); for (k = 0; k < size; k++) { for (j = 0; j < size; j++) { for (i = 0; i < size; i++) { struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i]; float val[3]; NEXT_LINE(0); if (av_sscanf(line, "%f %f %f", val, val + 1, val + 2) != 3) return AVERROR_INVALIDDATA; vec->r = val[rgb_map[0]] * scale; vec->g = val[rgb_map[1]] * scale; vec->b = val[rgb_map[2]] * scale; } } } return 0; } static int nearest_sample_index(float *data, float x, int low, int hi) { int mid; if (x < data[low]) return low; if (x > data[hi]) return hi; for (;;) { av_assert0(x >= data[low]); av_assert0(x <= data[hi]); av_assert0((hi-low) > 0); if (hi - low == 1) return low; mid = (low + hi) / 2; if (x < data[mid]) hi = mid; else low = mid; } return 0; } #define NEXT_FLOAT_OR_GOTO(value, label) \ if (!fget_next_word(line, sizeof(line) ,f)) { \ ret = AVERROR_INVALIDDATA; \ goto label; \ } \ if (av_sscanf(line, "%f", &value) != 1) { \ ret = AVERROR_INVALIDDATA; \ goto label; \ } static int parse_cinespace(AVFilterContext *ctx, FILE *f) { LUT3DContext *lut3d = ctx->priv; char line[MAX_LINE_SIZE]; float in_min[3] = {0.0, 0.0, 0.0}; float in_max[3] = {1.0, 1.0, 1.0}; float out_min[3] = {0.0, 0.0, 0.0}; float out_max[3] = {1.0, 1.0, 1.0}; int inside_metadata = 0, size, size2; int prelut = 0; int ret = 0; int prelut_sizes[3] = {0, 0, 0}; float *in_prelut[3] = {NULL, NULL, NULL}; float *out_prelut[3] = {NULL, NULL, NULL}; NEXT_LINE_OR_GOTO(skip_line(line), end); if (strncmp(line, "CSPLUTV100", 10)) { av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n"); ret = AVERROR(EINVAL); goto end; } NEXT_LINE_OR_GOTO(skip_line(line), end); if (strncmp(line, "3D", 2)) { av_log(ctx, AV_LOG_ERROR, "Not 3D LUT format\n"); ret = AVERROR(EINVAL); goto end; } while (1) { NEXT_LINE_OR_GOTO(skip_line(line), end); if (!strncmp(line, "BEGIN METADATA", 14)) { inside_metadata = 1; continue; } if (!strncmp(line, "END METADATA", 12)) { inside_metadata = 0; continue; } if (inside_metadata == 0) { int size_r, size_g, size_b; for (int i = 0; i < 3; i++) { int npoints = strtol(line, NULL, 0); if (npoints > 2) { float v,last; if (npoints > PRELUT_SIZE) { av_log(ctx, AV_LOG_ERROR, "Prelut size too large.\n"); ret = AVERROR_INVALIDDATA; goto end; } if (in_prelut[i] || out_prelut[i]) { av_log(ctx, AV_LOG_ERROR, "Invalid file has multiple preluts.\n"); ret = AVERROR_INVALIDDATA; goto end; } in_prelut[i] = (float*)av_malloc(npoints * sizeof(float)); out_prelut[i] = (float*)av_malloc(npoints * sizeof(float)); if (!in_prelut[i] || !out_prelut[i]) { ret = AVERROR(ENOMEM); goto end; } prelut_sizes[i] = npoints; in_min[i] = FLT_MAX; in_max[i] = -FLT_MAX; out_min[i] = FLT_MAX; out_max[i] = -FLT_MAX; for (int j = 0; j < npoints; j++) { NEXT_FLOAT_OR_GOTO(v, end) in_min[i] = FFMIN(in_min[i], v); in_max[i] = FFMAX(in_max[i], v); in_prelut[i][j] = v; if (j > 0 && v < last) { av_log(ctx, AV_LOG_ERROR, "Invalid file, non increasing prelut.\n"); ret = AVERROR(ENOMEM); goto end; } last = v; } for (int j = 0; j < npoints; j++) { NEXT_FLOAT_OR_GOTO(v, end) out_min[i] = FFMIN(out_min[i], v); out_max[i] = FFMAX(out_max[i], v); out_prelut[i][j] = v; } } else if (npoints == 2) { NEXT_LINE_OR_GOTO(skip_line(line), end); if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2) { ret = AVERROR_INVALIDDATA; goto end; } NEXT_LINE_OR_GOTO(skip_line(line), end); if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2) { ret = AVERROR_INVALIDDATA; goto end; } } else { av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n"); ret = AVERROR_PATCHWELCOME; goto end; } NEXT_LINE_OR_GOTO(skip_line(line), end); } if (av_sscanf(line, "%d %d %d", &size_r, &size_g, &size_b) != 3) { ret = AVERROR(EINVAL); goto end; } if (size_r != size_g || size_r != size_b) { av_log(ctx, AV_LOG_ERROR, "Unsupported size combination: %dx%dx%d.\n", size_r, size_g, size_b); ret = AVERROR_PATCHWELCOME; goto end; } size = size_r; size2 = size * size; if (prelut_sizes[0] && prelut_sizes[1] && prelut_sizes[2]) prelut = 1; ret = allocate_3dlut(ctx, size, prelut); if (ret < 0) return ret; for (int k = 0; k < size; k++) { for (int j = 0; j < size; j++) { for (int i = 0; i < size; i++) { struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k]; NEXT_LINE_OR_GOTO(skip_line(line), end); if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) { ret = AVERROR_INVALIDDATA; goto end; } vec->r *= out_max[0] - out_min[0]; vec->g *= out_max[1] - out_min[1]; vec->b *= out_max[2] - out_min[2]; } } } break; } } if (prelut) { for (int c = 0; c < 3; c++) { lut3d->prelut.min[c] = in_min[c]; lut3d->prelut.max[c] = in_max[c]; lut3d->prelut.scale[c] = (1.0f / (float)(in_max[c] - in_min[c])) * (lut3d->prelut.size - 1); for (int i = 0; i < lut3d->prelut.size; ++i) { float mix = (float) i / (float)(lut3d->prelut.size - 1); float x = lerpf(in_min[c], in_max[c], mix), a, b; int idx = nearest_sample_index(in_prelut[c], x, 0, prelut_sizes[c]-1); av_assert0(idx + 1 < prelut_sizes[c]); a = out_prelut[c][idx + 0]; b = out_prelut[c][idx + 1]; mix = x - in_prelut[c][idx]; lut3d->prelut.lut[c][i] = sanitizef(lerpf(a, b, mix)); } } lut3d->scale.r = 1.00f; lut3d->scale.g = 1.00f; lut3d->scale.b = 1.00f; } else { lut3d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f); lut3d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f); lut3d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f); } end: for (int c = 0; c < 3; c++) { av_freep(&in_prelut[c]); av_freep(&out_prelut[c]); } return ret; } static int set_identity_matrix(AVFilterContext *ctx, int size) { LUT3DContext *lut3d = ctx->priv; int ret, i, j, k; const int size2 = size * size; const float c = 1. / (size - 1); ret = allocate_3dlut(ctx, size, 0); if (ret < 0) return ret; for (k = 0; k < size; k++) { for (j = 0; j < size; j++) { for (i = 0; i < size; i++) { struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i]; vec->r = k * c; vec->g = j * c; vec->b = i * c; } } } return 0; } static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA, AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR, AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0, AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48, AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_GBRPF32, AV_PIX_FMT_GBRAPF32, AV_PIX_FMT_NONE }; return ff_set_common_formats_from_list(ctx, pix_fmts); } static int config_input(AVFilterLink *inlink) { int depth, is16bit, isfloat, planar; LUT3DContext *lut3d = inlink->dst->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); depth = desc->comp[0].depth; is16bit = desc->comp[0].depth > 8; planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR; isfloat = desc->flags & AV_PIX_FMT_FLAG_FLOAT; ff_fill_rgba_map(lut3d->rgba_map, inlink->format); lut3d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit); #define SET_FUNC(name) do { \ if (planar && !isfloat) { \ switch (depth) { \ case 8: lut3d->interp = interp_8_##name##_p8; break; \ case 9: lut3d->interp = interp_16_##name##_p9; break; \ case 10: lut3d->interp = interp_16_##name##_p10; break; \ case 12: lut3d->interp = interp_16_##name##_p12; break; \ case 14: lut3d->interp = interp_16_##name##_p14; break; \ case 16: lut3d->interp = interp_16_##name##_p16; break; \ } \ } else if (isfloat) { lut3d->interp = interp_##name##_pf32; \ } else if (is16bit) { lut3d->interp = interp_16_##name; \ } else { lut3d->interp = interp_8_##name; } \ } while (0) switch (lut3d->interpolation) { case INTERPOLATE_NEAREST: SET_FUNC(nearest); break; case INTERPOLATE_TRILINEAR: SET_FUNC(trilinear); break; case INTERPOLATE_TETRAHEDRAL: SET_FUNC(tetrahedral); break; case INTERPOLATE_PYRAMID: SET_FUNC(pyramid); break; case INTERPOLATE_PRISM: SET_FUNC(prism); break; default: av_assert0(0); } return 0; } static AVFrame *apply_lut(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; LUT3DContext *lut3d = ctx->priv; AVFilterLink *outlink = inlink->dst->outputs[0]; AVFrame *out; ThreadData td; if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return NULL; } av_frame_copy_props(out, in); } td.in = in; td.out = out; ff_filter_execute(ctx, lut3d->interp, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx))); if (out != in) av_frame_free(&in); return out; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterLink *outlink = inlink->dst->outputs[0]; AVFrame *out = apply_lut(inlink, in); if (!out) return AVERROR(ENOMEM); return ff_filter_frame(outlink, out); } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { int ret; ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); if (ret < 0) return ret; return config_input(ctx->inputs[0]); } #if CONFIG_LUT3D_FILTER static const AVOption lut3d_options[] = { { "file", "set 3D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, COMMON_OPTIONS }; AVFILTER_DEFINE_CLASS(lut3d); static av_cold int lut3d_init(AVFilterContext *ctx) { int ret; FILE *f; const char *ext; LUT3DContext *lut3d = ctx->priv; lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f; if (!lut3d->file) { return set_identity_matrix(ctx, 32); } f = av_fopen_utf8(lut3d->file, "r"); if (!f) { ret = AVERROR(errno); av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut3d->file, av_err2str(ret)); return ret; } ext = strrchr(lut3d->file, '.'); if (!ext) { av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n"); ret = AVERROR_INVALIDDATA; goto end; } ext++; if (!av_strcasecmp(ext, "dat")) { ret = parse_dat(ctx, f); } else if (!av_strcasecmp(ext, "3dl")) { ret = parse_3dl(ctx, f); } else if (!av_strcasecmp(ext, "cube")) { ret = parse_cube(ctx, f); } else if (!av_strcasecmp(ext, "m3d")) { ret = parse_m3d(ctx, f); } else if (!av_strcasecmp(ext, "csp")) { ret = parse_cinespace(ctx, f); } else { av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext); ret = AVERROR(EINVAL); } if (!ret && !lut3d->lutsize) { av_log(ctx, AV_LOG_ERROR, "3D LUT is empty\n"); ret = AVERROR_INVALIDDATA; } end: fclose(f); return ret; } static av_cold void lut3d_uninit(AVFilterContext *ctx) { LUT3DContext *lut3d = ctx->priv; int i; av_freep(&lut3d->lut); for (i = 0; i < 3; i++) { av_freep(&lut3d->prelut.lut[i]); } } static const AVFilterPad lut3d_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, .config_props = config_input, }, { NULL } }; static const AVFilterPad lut3d_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, }, { NULL } }; const AVFilter ff_vf_lut3d = { .name = "lut3d", .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."), .priv_size = sizeof(LUT3DContext), .init = lut3d_init, .uninit = lut3d_uninit, .query_formats = query_formats, .inputs = lut3d_inputs, .outputs = lut3d_outputs, .priv_class = &lut3d_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, .process_command = process_command, }; #endif #if CONFIG_HALDCLUT_FILTER static void update_clut_packed(LUT3DContext *lut3d, const AVFrame *frame) { const uint8_t *data = frame->data[0]; const int linesize = frame->linesize[0]; const int w = lut3d->clut_width; const int step = lut3d->clut_step; const uint8_t *rgba_map = lut3d->clut_rgba_map; const int level = lut3d->lutsize; const int level2 = lut3d->lutsize2; #define LOAD_CLUT(nbits) do { \ int i, j, k, x = 0, y = 0; \ \ for (k = 0; k < level; k++) { \ for (j = 0; j < level; j++) { \ for (i = 0; i < level; i++) { \ const uint##nbits##_t *src = (const uint##nbits##_t *) \ (data + y*linesize + x*step); \ struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \ vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \ vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \ vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \ if (++x == w) { \ x = 0; \ y++; \ } \ } \ } \ } \ } while (0) switch (lut3d->clut_bits) { case 8: LOAD_CLUT(8); break; case 16: LOAD_CLUT(16); break; } } static void update_clut_planar(LUT3DContext *lut3d, const AVFrame *frame) { const uint8_t *datag = frame->data[0]; const uint8_t *datab = frame->data[1]; const uint8_t *datar = frame->data[2]; const int glinesize = frame->linesize[0]; const int blinesize = frame->linesize[1]; const int rlinesize = frame->linesize[2]; const int w = lut3d->clut_width; const int level = lut3d->lutsize; const int level2 = lut3d->lutsize2; #define LOAD_CLUT_PLANAR(nbits, depth) do { \ int i, j, k, x = 0, y = 0; \ \ for (k = 0; k < level; k++) { \ for (j = 0; j < level; j++) { \ for (i = 0; i < level; i++) { \ const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \ (datag + y*glinesize); \ const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \ (datab + y*blinesize); \ const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \ (datar + y*rlinesize); \ struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \ vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \ vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \ vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \ if (++x == w) { \ x = 0; \ y++; \ } \ } \ } \ } \ } while (0) switch (lut3d->clut_bits) { case 8: LOAD_CLUT_PLANAR(8, 8); break; case 9: LOAD_CLUT_PLANAR(16, 9); break; case 10: LOAD_CLUT_PLANAR(16, 10); break; case 12: LOAD_CLUT_PLANAR(16, 12); break; case 14: LOAD_CLUT_PLANAR(16, 14); break; case 16: LOAD_CLUT_PLANAR(16, 16); break; } } static void update_clut_float(LUT3DContext *lut3d, const AVFrame *frame) { const uint8_t *datag = frame->data[0]; const uint8_t *datab = frame->data[1]; const uint8_t *datar = frame->data[2]; const int glinesize = frame->linesize[0]; const int blinesize = frame->linesize[1]; const int rlinesize = frame->linesize[2]; const int w = lut3d->clut_width; const int level = lut3d->lutsize; const int level2 = lut3d->lutsize2; int i, j, k, x = 0, y = 0; for (k = 0; k < level; k++) { for (j = 0; j < level; j++) { for (i = 0; i < level; i++) { const float *gsrc = (const float *)(datag + y*glinesize); const float *bsrc = (const float *)(datab + y*blinesize); const float *rsrc = (const float *)(datar + y*rlinesize); struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; vec->r = rsrc[x]; vec->g = gsrc[x]; vec->b = bsrc[x]; if (++x == w) { x = 0; y++; } } } } } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; LUT3DContext *lut3d = ctx->priv; int ret; ret = ff_framesync_init_dualinput(&lut3d->fs, ctx); if (ret < 0) return ret; outlink->w = ctx->inputs[0]->w; outlink->h = ctx->inputs[0]->h; outlink->time_base = ctx->inputs[0]->time_base; if ((ret = ff_framesync_configure(&lut3d->fs)) < 0) return ret; return 0; } static int activate(AVFilterContext *ctx) { LUT3DContext *s = ctx->priv; return ff_framesync_activate(&s->fs); } static int config_clut(AVFilterLink *inlink) { int size, level, w, h; AVFilterContext *ctx = inlink->dst; LUT3DContext *lut3d = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); av_assert0(desc); lut3d->clut_bits = desc->comp[0].depth; lut3d->clut_planar = av_pix_fmt_count_planes(inlink->format) > 1; lut3d->clut_float = desc->flags & AV_PIX_FMT_FLAG_FLOAT; lut3d->clut_step = av_get_padded_bits_per_pixel(desc) >> 3; ff_fill_rgba_map(lut3d->clut_rgba_map, inlink->format); if (inlink->w > inlink->h) av_log(ctx, AV_LOG_INFO, "Padding on the right (%dpx) of the " "Hald CLUT will be ignored\n", inlink->w - inlink->h); else if (inlink->w < inlink->h) av_log(ctx, AV_LOG_INFO, "Padding at the bottom (%dpx) of the " "Hald CLUT will be ignored\n", inlink->h - inlink->w); lut3d->clut_width = w = h = FFMIN(inlink->w, inlink->h); for (level = 1; level*level*level < w; level++); size = level*level*level; if (size != w) { av_log(ctx, AV_LOG_WARNING, "The Hald CLUT width does not match the level\n"); return AVERROR_INVALIDDATA; } av_assert0(w == h && w == size); level *= level; if (level > MAX_LEVEL) { const int max_clut_level = sqrt(MAX_LEVEL); const int max_clut_size = max_clut_level*max_clut_level*max_clut_level; av_log(ctx, AV_LOG_ERROR, "Too large Hald CLUT " "(maximum level is %d, or %dx%d CLUT)\n", max_clut_level, max_clut_size, max_clut_size); return AVERROR(EINVAL); } return allocate_3dlut(ctx, level, 0); } static int update_apply_clut(FFFrameSync *fs) { AVFilterContext *ctx = fs->parent; LUT3DContext *lut3d = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; AVFrame *master, *second, *out; int ret; ret = ff_framesync_dualinput_get(fs, &master, &second); if (ret < 0) return ret; if (!second) return ff_filter_frame(ctx->outputs[0], master); if (lut3d->clut_float) update_clut_float(ctx->priv, second); else if (lut3d->clut_planar) update_clut_planar(ctx->priv, second); else update_clut_packed(ctx->priv, second); out = apply_lut(inlink, master); return ff_filter_frame(ctx->outputs[0], out); } static av_cold int haldclut_init(AVFilterContext *ctx) { LUT3DContext *lut3d = ctx->priv; lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f; lut3d->fs.on_event = update_apply_clut; return 0; } static av_cold void haldclut_uninit(AVFilterContext *ctx) { LUT3DContext *lut3d = ctx->priv; ff_framesync_uninit(&lut3d->fs); av_freep(&lut3d->lut); } static const AVOption haldclut_options[] = { COMMON_OPTIONS }; FRAMESYNC_DEFINE_CLASS(haldclut, LUT3DContext, fs); static const AVFilterPad haldclut_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input, },{ .name = "clut", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_clut, }, { NULL } }; static const AVFilterPad haldclut_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, { NULL } }; const AVFilter ff_vf_haldclut = { .name = "haldclut", .description = NULL_IF_CONFIG_SMALL("Adjust colors using a Hald CLUT."), .priv_size = sizeof(LUT3DContext), .preinit = haldclut_framesync_preinit, .init = haldclut_init, .uninit = haldclut_uninit, .query_formats = query_formats, .activate = activate, .inputs = haldclut_inputs, .outputs = haldclut_outputs, .priv_class = &haldclut_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, .process_command = process_command, }; #endif #if CONFIG_LUT1D_FILTER enum interp_1d_mode { INTERPOLATE_1D_NEAREST, INTERPOLATE_1D_LINEAR, INTERPOLATE_1D_CUBIC, INTERPOLATE_1D_COSINE, INTERPOLATE_1D_SPLINE, NB_INTERP_1D_MODE }; #define MAX_1D_LEVEL 65536 typedef struct LUT1DContext { const AVClass *class; char *file; int interpolation; ///lutsize = size; for (i = 0; i < size; i++) { lut1d->lut[0][i] = i * c; lut1d->lut[1][i] = i * c; lut1d->lut[2][i] = i * c; } } static int parse_cinespace_1d(AVFilterContext *ctx, FILE *f) { LUT1DContext *lut1d = ctx->priv; char line[MAX_LINE_SIZE]; float in_min[3] = {0.0, 0.0, 0.0}; float in_max[3] = {1.0, 1.0, 1.0}; float out_min[3] = {0.0, 0.0, 0.0}; float out_max[3] = {1.0, 1.0, 1.0}; int inside_metadata = 0, size; NEXT_LINE(skip_line(line)); if (strncmp(line, "CSPLUTV100", 10)) { av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n"); return AVERROR(EINVAL); } NEXT_LINE(skip_line(line)); if (strncmp(line, "1D", 2)) { av_log(ctx, AV_LOG_ERROR, "Not 1D LUT format\n"); return AVERROR(EINVAL); } while (1) { NEXT_LINE(skip_line(line)); if (!strncmp(line, "BEGIN METADATA", 14)) { inside_metadata = 1; continue; } if (!strncmp(line, "END METADATA", 12)) { inside_metadata = 0; continue; } if (inside_metadata == 0) { for (int i = 0; i < 3; i++) { int npoints = strtol(line, NULL, 0); if (npoints != 2) { av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n"); return AVERROR_PATCHWELCOME; } NEXT_LINE(skip_line(line)); if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2) return AVERROR_INVALIDDATA; NEXT_LINE(skip_line(line)); if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2) return AVERROR_INVALIDDATA; NEXT_LINE(skip_line(line)); } size = strtol(line, NULL, 0); if (size < 2 || size > MAX_1D_LEVEL) { av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n"); return AVERROR(EINVAL); } lut1d->lutsize = size; for (int i = 0; i < size; i++) { NEXT_LINE(skip_line(line)); if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3) return AVERROR_INVALIDDATA; lut1d->lut[0][i] *= out_max[0] - out_min[0]; lut1d->lut[1][i] *= out_max[1] - out_min[1]; lut1d->lut[2][i] *= out_max[2] - out_min[2]; } break; } } lut1d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f); lut1d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f); lut1d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f); return 0; } static int parse_cube_1d(AVFilterContext *ctx, FILE *f) { LUT1DContext *lut1d = ctx->priv; char line[MAX_LINE_SIZE]; float min[3] = {0.0, 0.0, 0.0}; float max[3] = {1.0, 1.0, 1.0}; while (fgets(line, sizeof(line), f)) { if (!strncmp(line, "LUT_1D_SIZE", 11)) { const int size = strtol(line + 12, NULL, 0); int i; if (size < 2 || size > MAX_1D_LEVEL) { av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n"); return AVERROR(EINVAL); } lut1d->lutsize = size; for (i = 0; i < size; i++) { do { try_again: NEXT_LINE(0); if (!strncmp(line, "DOMAIN_", 7)) { float *vals = NULL; if (!strncmp(line + 7, "MIN ", 4)) vals = min; else if (!strncmp(line + 7, "MAX ", 4)) vals = max; if (!vals) return AVERROR_INVALIDDATA; av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2); av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n", min[0], min[1], min[2], max[0], max[1], max[2]); goto try_again; } else if (!strncmp(line, "LUT_1D_INPUT_RANGE ", 19)) { av_sscanf(line + 19, "%f %f", min, max); min[1] = min[2] = min[0]; max[1] = max[2] = max[0]; goto try_again; } else if (!strncmp(line, "TITLE", 5)) { goto try_again; } } while (skip_line(line)); if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3) return AVERROR_INVALIDDATA; } break; } } lut1d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f); lut1d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f); lut1d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f); return 0; } static const AVOption lut1d_options[] = { { "file", "set 1D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = TFLAGS }, { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_1D_LINEAR}, 0, NB_INTERP_1D_MODE-1, TFLAGS, "interp_mode" }, { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST}, 0, 0, TFLAGS, "interp_mode" }, { "linear", "use values from the linear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR}, 0, 0, TFLAGS, "interp_mode" }, { "cosine", "use values from the cosine interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_COSINE}, 0, 0, TFLAGS, "interp_mode" }, { "cubic", "use values from the cubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC}, 0, 0, TFLAGS, "interp_mode" }, { "spline", "use values from the spline interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_SPLINE}, 0, 0, TFLAGS, "interp_mode" }, { NULL } }; AVFILTER_DEFINE_CLASS(lut1d); static inline float interp_1d_nearest(const LUT1DContext *lut1d, int idx, const float s) { return lut1d->lut[idx][NEAR(s)]; } #define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1)) static inline float interp_1d_linear(const LUT1DContext *lut1d, int idx, const float s) { const int prev = PREV(s); const int next = NEXT1D(s); const float d = s - prev; const float p = lut1d->lut[idx][prev]; const float n = lut1d->lut[idx][next]; return lerpf(p, n, d); } static inline float interp_1d_cosine(const LUT1DContext *lut1d, int idx, const float s) { const int prev = PREV(s); const int next = NEXT1D(s); const float d = s - prev; const float p = lut1d->lut[idx][prev]; const float n = lut1d->lut[idx][next]; const float m = (1.f - cosf(d * M_PI)) * .5f; return lerpf(p, n, m); } static inline float interp_1d_cubic(const LUT1DContext *lut1d, int idx, const float s) { const int prev = PREV(s); const int next = NEXT1D(s); const float mu = s - prev; float a0, a1, a2, a3, mu2; float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)]; float y1 = lut1d->lut[idx][prev]; float y2 = lut1d->lut[idx][next]; float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)]; mu2 = mu * mu; a0 = y3 - y2 - y0 + y1; a1 = y0 - y1 - a0; a2 = y2 - y0; a3 = y1; return a0 * mu * mu2 + a1 * mu2 + a2 * mu + a3; } static inline float interp_1d_spline(const LUT1DContext *lut1d, int idx, const float s) { const int prev = PREV(s); const int next = NEXT1D(s); const float x = s - prev; float c0, c1, c2, c3; float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)]; float y1 = lut1d->lut[idx][prev]; float y2 = lut1d->lut[idx][next]; float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)]; c0 = y1; c1 = .5f * (y2 - y0); c2 = y0 - 2.5f * y1 + 2.f * y2 - .5f * y3; c3 = .5f * (y3 - y0) + 1.5f * (y1 - y2); return ((c3 * x + c2) * x + c1) * x + c0; } #define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth) \ static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx, \ void *arg, int jobnr, \ int nb_jobs) \ { \ int x, y; \ const LUT1DContext *lut1d = ctx->priv; \ const ThreadData *td = arg; \ const AVFrame *in = td->in; \ const AVFrame *out = td->out; \ const int direct = out == in; \ const int slice_start = (in->height * jobnr ) / nb_jobs; \ const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \ uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \ uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \ uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \ const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \ const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \ const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \ const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \ const float factor = (1 << depth) - 1; \ const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \ const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \ const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \ \ for (y = slice_start; y < slice_end; y++) { \ uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \ uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \ uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \ uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \ const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \ const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \ const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \ const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \ for (x = 0; x < in->width; x++) { \ float r = srcr[x] * scale_r; \ float g = srcg[x] * scale_g; \ float b = srcb[x] * scale_b; \ r = interp_1d_##name(lut1d, 0, r); \ g = interp_1d_##name(lut1d, 1, g); \ b = interp_1d_##name(lut1d, 2, b); \ dstr[x] = av_clip_uintp2(r * factor, depth); \ dstg[x] = av_clip_uintp2(g * factor, depth); \ dstb[x] = av_clip_uintp2(b * factor, depth); \ if (!direct && in->linesize[3]) \ dsta[x] = srca[x]; \ } \ grow += out->linesize[0]; \ brow += out->linesize[1]; \ rrow += out->linesize[2]; \ arow += out->linesize[3]; \ srcgrow += in->linesize[0]; \ srcbrow += in->linesize[1]; \ srcrrow += in->linesize[2]; \ srcarow += in->linesize[3]; \ } \ return 0; \ } DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 8, 8) DEFINE_INTERP_FUNC_PLANAR_1D(linear, 8, 8) DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 8, 8) DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 8, 8) DEFINE_INTERP_FUNC_PLANAR_1D(spline, 8, 8) DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 9) DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 9) DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 9) DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 9) DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 9) DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 10) DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 10) DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 10) DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 10) DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 10) DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 12) DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 12) DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 12) DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 12) DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 12) DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 14) DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 14) DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 14) DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 14) DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 14) DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 16) DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 16) DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 16) DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 16) DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 16) #define DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(name, depth) \ static int interp_1d_##name##_pf##depth(AVFilterContext *ctx, \ void *arg, int jobnr, \ int nb_jobs) \ { \ int x, y; \ const LUT1DContext *lut1d = ctx->priv; \ const ThreadData *td = arg; \ const AVFrame *in = td->in; \ const AVFrame *out = td->out; \ const int direct = out == in; \ const int slice_start = (in->height * jobnr ) / nb_jobs; \ const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \ uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \ uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \ uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \ const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \ const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \ const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \ const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \ const float lutsize = lut1d->lutsize - 1; \ const float scale_r = lut1d->scale.r * lutsize; \ const float scale_g = lut1d->scale.g * lutsize; \ const float scale_b = lut1d->scale.b * lutsize; \ \ for (y = slice_start; y < slice_end; y++) { \ float *dstg = (float *)grow; \ float *dstb = (float *)brow; \ float *dstr = (float *)rrow; \ float *dsta = (float *)arow; \ const float *srcg = (const float *)srcgrow; \ const float *srcb = (const float *)srcbrow; \ const float *srcr = (const float *)srcrrow; \ const float *srca = (const float *)srcarow; \ for (x = 0; x < in->width; x++) { \ float r = av_clipf(sanitizef(srcr[x]) * scale_r, 0.0f, lutsize); \ float g = av_clipf(sanitizef(srcg[x]) * scale_g, 0.0f, lutsize); \ float b = av_clipf(sanitizef(srcb[x]) * scale_b, 0.0f, lutsize); \ r = interp_1d_##name(lut1d, 0, r); \ g = interp_1d_##name(lut1d, 1, g); \ b = interp_1d_##name(lut1d, 2, b); \ dstr[x] = r; \ dstg[x] = g; \ dstb[x] = b; \ if (!direct && in->linesize[3]) \ dsta[x] = srca[x]; \ } \ grow += out->linesize[0]; \ brow += out->linesize[1]; \ rrow += out->linesize[2]; \ arow += out->linesize[3]; \ srcgrow += in->linesize[0]; \ srcbrow += in->linesize[1]; \ srcrrow += in->linesize[2]; \ srcarow += in->linesize[3]; \ } \ return 0; \ } DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(nearest, 32) DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(linear, 32) DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cosine, 32) DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cubic, 32) DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(spline, 32) #define DEFINE_INTERP_FUNC_1D(name, nbits) \ static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg, \ int jobnr, int nb_jobs) \ { \ int x, y; \ const LUT1DContext *lut1d = ctx->priv; \ const ThreadData *td = arg; \ const AVFrame *in = td->in; \ const AVFrame *out = td->out; \ const int direct = out == in; \ const int step = lut1d->step; \ const uint8_t r = lut1d->rgba_map[R]; \ const uint8_t g = lut1d->rgba_map[G]; \ const uint8_t b = lut1d->rgba_map[B]; \ const uint8_t a = lut1d->rgba_map[A]; \ const int slice_start = (in->height * jobnr ) / nb_jobs; \ const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \ const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \ const float factor = (1 << nbits) - 1; \ const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \ const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \ const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \ \ for (y = slice_start; y < slice_end; y++) { \ uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \ const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \ for (x = 0; x < in->width * step; x += step) { \ float rr = src[x + r] * scale_r; \ float gg = src[x + g] * scale_g; \ float bb = src[x + b] * scale_b; \ rr = interp_1d_##name(lut1d, 0, rr); \ gg = interp_1d_##name(lut1d, 1, gg); \ bb = interp_1d_##name(lut1d, 2, bb); \ dst[x + r] = av_clip_uint##nbits(rr * factor); \ dst[x + g] = av_clip_uint##nbits(gg * factor); \ dst[x + b] = av_clip_uint##nbits(bb * factor); \ if (!direct && step == 4) \ dst[x + a] = src[x + a]; \ } \ dstrow += out->linesize[0]; \ srcrow += in ->linesize[0]; \ } \ return 0; \ } DEFINE_INTERP_FUNC_1D(nearest, 8) DEFINE_INTERP_FUNC_1D(linear, 8) DEFINE_INTERP_FUNC_1D(cosine, 8) DEFINE_INTERP_FUNC_1D(cubic, 8) DEFINE_INTERP_FUNC_1D(spline, 8) DEFINE_INTERP_FUNC_1D(nearest, 16) DEFINE_INTERP_FUNC_1D(linear, 16) DEFINE_INTERP_FUNC_1D(cosine, 16) DEFINE_INTERP_FUNC_1D(cubic, 16) DEFINE_INTERP_FUNC_1D(spline, 16) static int config_input_1d(AVFilterLink *inlink) { int depth, is16bit, isfloat, planar; LUT1DContext *lut1d = inlink->dst->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); depth = desc->comp[0].depth; is16bit = desc->comp[0].depth > 8; planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR; isfloat = desc->flags & AV_PIX_FMT_FLAG_FLOAT; ff_fill_rgba_map(lut1d->rgba_map, inlink->format); lut1d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit); #define SET_FUNC_1D(name) do { \ if (planar && !isfloat) { \ switch (depth) { \ case 8: lut1d->interp = interp_1d_8_##name##_p8; break; \ case 9: lut1d->interp = interp_1d_16_##name##_p9; break; \ case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \ case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \ case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \ case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \ } \ } else if (isfloat) { lut1d->interp = interp_1d_##name##_pf32; \ } else if (is16bit) { lut1d->interp = interp_1d_16_##name; \ } else { lut1d->interp = interp_1d_8_##name; } \ } while (0) switch (lut1d->interpolation) { case INTERPOLATE_1D_NEAREST: SET_FUNC_1D(nearest); break; case INTERPOLATE_1D_LINEAR: SET_FUNC_1D(linear); break; case INTERPOLATE_1D_COSINE: SET_FUNC_1D(cosine); break; case INTERPOLATE_1D_CUBIC: SET_FUNC_1D(cubic); break; case INTERPOLATE_1D_SPLINE: SET_FUNC_1D(spline); break; default: av_assert0(0); } return 0; } static av_cold int lut1d_init(AVFilterContext *ctx) { int ret; FILE *f; const char *ext; LUT1DContext *lut1d = ctx->priv; lut1d->scale.r = lut1d->scale.g = lut1d->scale.b = 1.f; if (!lut1d->file) { set_identity_matrix_1d(lut1d, 32); return 0; } f = av_fopen_utf8(lut1d->file, "r"); if (!f) { ret = AVERROR(errno); av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut1d->file, av_err2str(ret)); return ret; } ext = strrchr(lut1d->file, '.'); if (!ext) { av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n"); ret = AVERROR_INVALIDDATA; goto end; } ext++; if (!av_strcasecmp(ext, "cube") || !av_strcasecmp(ext, "1dlut")) { ret = parse_cube_1d(ctx, f); } else if (!av_strcasecmp(ext, "csp")) { ret = parse_cinespace_1d(ctx, f); } else { av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext); ret = AVERROR(EINVAL); } if (!ret && !lut1d->lutsize) { av_log(ctx, AV_LOG_ERROR, "1D LUT is empty\n"); ret = AVERROR_INVALIDDATA; } end: fclose(f); return ret; } static AVFrame *apply_1d_lut(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; LUT1DContext *lut1d = ctx->priv; AVFilterLink *outlink = inlink->dst->outputs[0]; AVFrame *out; ThreadData td; if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return NULL; } av_frame_copy_props(out, in); } td.in = in; td.out = out; ff_filter_execute(ctx, lut1d->interp, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx))); if (out != in) av_frame_free(&in); return out; } static int filter_frame_1d(AVFilterLink *inlink, AVFrame *in) { AVFilterLink *outlink = inlink->dst->outputs[0]; AVFrame *out = apply_1d_lut(inlink, in); if (!out) return AVERROR(ENOMEM); return ff_filter_frame(outlink, out); } static int lut1d_process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { LUT1DContext *lut1d = ctx->priv; int ret; ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); if (ret < 0) return ret; ret = lut1d_init(ctx); if (ret < 0) { set_identity_matrix_1d(lut1d, 32); return ret; } return config_input_1d(ctx->inputs[0]); } static const AVFilterPad lut1d_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame_1d, .config_props = config_input_1d, }, { NULL } }; static const AVFilterPad lut1d_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, }, { NULL } }; const AVFilter ff_vf_lut1d = { .name = "lut1d", .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 1D LUT."), .priv_size = sizeof(LUT1DContext), .init = lut1d_init, .query_formats = query_formats, .inputs = lut1d_inputs, .outputs = lut1d_outputs, .priv_class = &lut1d_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, .process_command = lut1d_process_command, }; #endif