/* * Copyright (c) 2024 Christian R. Helmrich * Copyright (c) 2024 Christian Lehmann * Copyright (c) 2024 Christian Stoffers * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Calculate the extended perceptually weighted PSNR (XPSNR) between two input videos. * * Authors: Christian Helmrich, Lehmann, and Stoffers, Fraunhofer HHI, Berlin, Germany */ #include "libavutil/avstring.h" #include "libavutil/file_open.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "drawutils.h" #include "filters.h" #include "framesync.h" #include "psnr.h" #include "xpsnr.h" /* XPSNR structure definition */ typedef struct XPSNRContext { /* required basic variables */ const AVClass *class; int bpp; /* unpacked */ int depth; /* packed */ char comps[4]; int num_comps; uint64_t num_frames_64; unsigned frame_rate; FFFrameSync fs; int line_sizes[4]; int plane_height[4]; int plane_width[4]; uint8_t rgba_map[4]; FILE *stats_file; char *stats_file_str; /* XPSNR specific variables */ double *sse_luma; double *weights; AVBufferRef *buf_org [3]; AVBufferRef *buf_org_m1[3]; AVBufferRef *buf_org_m2[3]; AVBufferRef *buf_rec [3]; uint64_t max_error_64; double sum_wdist [3]; double sum_xpsnr [3]; int and_is_inf[3]; int is_rgb; XPSNRDSPContext dsp; PSNRDSPContext pdsp; } XPSNRContext; /* required macro definitions */ #define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM #define OFFSET(x) offsetof(XPSNRContext, x) #define XPSNR_GAMMA 2 static const AVOption xpsnr_options[] = { {"stats_file", "Set file where to store per-frame XPSNR information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS}, {"f", "Set file where to store per-frame XPSNR information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS}, { NULL } }; FRAMESYNC_DEFINE_CLASS(xpsnr, XPSNRContext, fs); /* XPSNR function definitions */ static uint64_t highds(const int x_act, const int y_act, const int w_act, const int h_act, const int16_t *o_m0, const int o) { uint64_t sa_act = 0; for (int y = y_act; y < h_act; y += 2) { for (int x = x_act; x < w_act; x += 2) { const int f = 12 * ((int)o_m0[ y *o + x ] + (int)o_m0[ y *o + x+1] + (int)o_m0[(y+1)*o + x ] + (int)o_m0[(y+1)*o + x+1]) - 3 * ((int)o_m0[(y-1)*o + x ] + (int)o_m0[(y-1)*o + x+1] + (int)o_m0[(y+2)*o + x ] + (int)o_m0[(y+2)*o + x+1]) - 3 * ((int)o_m0[ y *o + x-1] + (int)o_m0[ y *o + x+2] + (int)o_m0[(y+1)*o + x-1] + (int)o_m0[(y+1)*o + x+2]) - 2 * ((int)o_m0[(y-1)*o + x-1] + (int)o_m0[(y-1)*o + x+2] + (int)o_m0[(y+2)*o + x-1] + (int)o_m0[(y+2)*o + x+2]) - ((int)o_m0[(y-2)*o + x-1] + (int)o_m0[(y-2)*o + x ] + (int)o_m0[(y-2)*o + x+1] + (int)o_m0[(y-2)*o + x+2] + (int)o_m0[(y+3)*o + x-1] + (int)o_m0[(y+3)*o + x ] + (int)o_m0[(y+3)*o + x+1] + (int)o_m0[(y+3)*o + x+2] + (int)o_m0[(y-1)*o + x-2] + (int)o_m0[ y *o + x-2] + (int)o_m0[(y+1)*o + x-2] + (int)o_m0[(y+2)*o + x-2] + (int)o_m0[(y-1)*o + x+3] + (int)o_m0[ y *o + x+3] + (int)o_m0[(y+1)*o + x+3] + (int)o_m0[(y+2)*o + x+3]); sa_act += (uint64_t) abs(f); } } return sa_act; } static uint64_t diff1st(const uint32_t w_act, const uint32_t h_act, const int16_t *o_m0, int16_t *o_m1, const int o) { uint64_t ta_act = 0; for (uint32_t y = 0; y < h_act; y += 2) { for (uint32_t x = 0; x < w_act; x += 2) { const int t = (int)o_m0[y*o + x] + (int)o_m0[y*o + x+1] + (int)o_m0[(y+1)*o + x] + (int)o_m0[(y+1)*o + x+1] - ((int)o_m1[y*o + x] + (int)o_m1[y*o + x+1] + (int)o_m1[(y+1)*o + x] + (int)o_m1[(y+1)*o + x+1]); ta_act += (uint64_t) abs(t); o_m1[y*o + x ] = o_m0[y*o + x ]; o_m1[(y+1)*o + x ] = o_m0[(y+1)*o + x ]; o_m1[y*o + x+1] = o_m0[y*o + x+1]; o_m1[(y+1)*o + x+1] = o_m0[(y+1)*o + x+1]; } } return (ta_act * XPSNR_GAMMA); } static uint64_t diff2nd(const uint32_t w_act, const uint32_t h_act, const int16_t *o_m0, int16_t *o_m1, int16_t *o_m2, const int o) { uint64_t ta_act = 0; for (uint32_t y = 0; y < h_act; y += 2) { for (uint32_t x = 0; x < w_act; x += 2) { const int t = (int)o_m0[y*o + x] + (int)o_m0[y*o + x+1] + (int)o_m0[(y+1)*o + x] + (int)o_m0[(y+1)*o + x+1] - 2 * ((int)o_m1[y*o + x] + (int)o_m1[y*o + x+1] + (int)o_m1[(y+1)*o + x] + (int)o_m1[(y+1)*o + x+1]) + (int)o_m2[y*o + x] + (int)o_m2[y*o + x+1] + (int)o_m2[(y+1)*o + x] + (int)o_m2[(y+1)*o + x+1]; ta_act += (uint64_t) abs(t); o_m2[y*o + x ] = o_m1[y*o + x ]; o_m2[(y+1)*o + x ] = o_m1[(y+1)*o + x ]; o_m2[y*o + x+1] = o_m1[y*o + x+1]; o_m2[(y+1)*o + x+1] = o_m1[(y+1)*o + x+1]; o_m1[y*o + x ] = o_m0[y*o + x ]; o_m1[(y+1)*o + x ] = o_m0[(y+1)*o + x ]; o_m1[y*o + x+1] = o_m0[y*o + x+1]; o_m1[(y+1)*o + x+1] = o_m0[(y+1)*o + x+1]; } } return (ta_act * XPSNR_GAMMA); } static inline uint64_t calc_squared_error(XPSNRContext const *s, const int16_t *blk_org, const uint32_t stride_org, const int16_t *blk_rec, const uint32_t stride_rec, const uint32_t block_width, const uint32_t block_height) { uint64_t sse = 0; /* sum of squared errors */ for (uint32_t y = 0; y < block_height; y++) { sse += s->pdsp.sse_line((const uint8_t *) blk_org, (const uint8_t *) blk_rec, (int) block_width); blk_org += stride_org; blk_rec += stride_rec; } /* return nonweighted sum of squared errors */ return sse; } static inline double calc_squared_error_and_weight (XPSNRContext const *s, const int16_t *pic_org, const uint32_t stride_org, int16_t *pic_org_m1, int16_t *pic_org_m2, const int16_t *pic_rec, const uint32_t stride_rec, const uint32_t offset_x, const uint32_t offset_y, const uint32_t block_width, const uint32_t block_height, const uint32_t bit_depth, const uint32_t int_frame_rate, double *ms_act) { const int o = (int) stride_org; const int r = (int) stride_rec; const int16_t *o_m0 = pic_org + offset_y * o + offset_x; int16_t *o_m1 = pic_org_m1 + offset_y * o + offset_x; int16_t *o_m2 = pic_org_m2 + offset_y * o + offset_x; const int16_t *r_m0 = pic_rec + offset_y * r + offset_x; const int b_val = (s->plane_width[0] * s->plane_height[0] > 2048 * 1152 ? 2 : 1); /* threshold is a bit more than HD resolution */ const int x_act = (offset_x > 0 ? 0 : b_val); const int y_act = (offset_y > 0 ? 0 : b_val); const int w_act = (offset_x + block_width < (uint32_t) s->plane_width [0] ? (int) block_width : (int) block_width - b_val); const int h_act = (offset_y + block_height < (uint32_t) s->plane_height[0] ? (int) block_height : (int) block_height - b_val); const double sse = (double) calc_squared_error (s, o_m0, stride_org, r_m0, stride_rec, block_width, block_height); uint64_t sa_act = 0; /* spatial abs. activity */ uint64_t ta_act = 0; /* temporal abs. activity */ if (w_act <= x_act || h_act <= y_act) /* small */ return sse; if (b_val > 1) { /* highpass with downsampling */ if (w_act > 12) sa_act = s->dsp.highds_func(x_act, y_act, w_act, h_act, o_m0, o); else highds(x_act, y_act, w_act, h_act, o_m0, o); } else { /* <=HD highpass without downsampling */ for (int y = y_act; y < h_act; y++) { for (int x = x_act; x < w_act; x++) { const int f = 12 * (int)o_m0[y*o + x] - 2 * ((int)o_m0[y*o + x-1] + (int)o_m0[y*o + x+1] + (int)o_m0[(y-1)*o + x] + (int)o_m0[(y+1)*o + x]) - ((int)o_m0[(y-1)*o + x-1] + (int)o_m0[(y-1)*o + x+1] + (int)o_m0[(y+1)*o + x-1] + (int)o_m0[(y+1)*o + x+1]); sa_act += (uint64_t) abs(f); } } } /* calculate weight (average squared activity) */ *ms_act = (double) sa_act / ((double) (w_act - x_act) * (double) (h_act - y_act)); if (b_val > 1) { /* highpass with downsampling */ if (int_frame_rate < 32) /* 1st-order diff */ ta_act = s->dsp.diff1st_func(block_width, block_height, o_m0, o_m1, o); else /* 2nd-order diff (diff of two diffs) */ ta_act = s->dsp.diff2nd_func(block_width, block_height, o_m0, o_m1, o_m2, o); } else { /* <=HD highpass without downsampling */ if (int_frame_rate < 32) { /* 1st-order diff */ for (uint32_t y = 0; y < block_height; y++) { for (uint32_t x = 0; x < block_width; x++) { const int t = (int)o_m0[y * o + x] - (int)o_m1[y * o + x]; ta_act += XPSNR_GAMMA * (uint64_t) abs(t); o_m1[y * o + x] = o_m0[y * o + x]; } } } else { /* 2nd-order diff (diff of 2 diffs) */ for (uint32_t y = 0; y < block_height; y++) { for (uint32_t x = 0; x < block_width; x++) { const int t = (int)o_m0[y * o + x] - 2 * (int)o_m1[y * o + x] + (int)o_m2[y * o + x]; ta_act += XPSNR_GAMMA * (uint64_t) abs(t); o_m2[y * o + x] = o_m1[y * o + x]; o_m1[y * o + x] = o_m0[y * o + x]; } } } } /* weight += mean squared temporal activity */ *ms_act += (double) ta_act / ((double) block_width * (double) block_height); /* lower limit, accounts for high-pass gain */ if (*ms_act < (double) (1 << (bit_depth - 6))) *ms_act = (double) (1 << (bit_depth - 6)); *ms_act *= *ms_act; /* since SSE is squared */ /* return nonweighted sum of squared errors */ return sse; } static inline double get_avg_xpsnr (const double sqrt_wsse_val, const double sum_xpsnr_val, const uint32_t image_width, const uint32_t image_height, const uint64_t max_error_64, const uint64_t num_frames_64) { if (num_frames_64 == 0) return INFINITY; if (sqrt_wsse_val >= (double) num_frames_64) { /* square-mean-root average */ const double avg_dist = sqrt_wsse_val / (double) num_frames_64; const uint64_t num64 = (uint64_t) image_width * (uint64_t) image_height * max_error_64; return 10.0 * log10((double) num64 / ((double) avg_dist * (double) avg_dist)); } return sum_xpsnr_val / (double) num_frames_64; /* older log-domain average */ } static int get_wsse(AVFilterContext *ctx, int16_t **org, int16_t **org_m1, int16_t **org_m2, int16_t **rec, uint64_t *const wsse64) { XPSNRContext *const s = ctx->priv; const uint32_t w = s->plane_width [0]; /* luma image width in pixels */ const uint32_t h = s->plane_height[0];/* luma image height in pixels */ const double r = (double)(w * h) / (3840.0 * 2160.0); /* UHD ratio */ const uint32_t b = FFMAX(0, 4 * (int32_t) (32.0 * sqrt(r) + 0.5)); /* block size, integer multiple of 4 for SIMD */ const uint32_t w_blk = (w + b - 1) / b; /* luma width in units of blocks */ const double avg_act = sqrt(16.0 * (double) (1 << (2 * s->depth - 9)) / sqrt(FFMAX(0.00001, r))); /* the sqrt(a_pic) */ const int *stride_org = (s->bpp == 1 ? s->plane_width : s->line_sizes); uint32_t x, y, idx_blk = 0; /* the "16.0" above is due to fixed-point code */ double *const sse_luma = s->sse_luma; double *const weights = s->weights; int c; if (!wsse64 || (s->depth < 6) || (s->depth > 16) || (s->num_comps <= 0) || (s->num_comps > 3) || (w == 0) || (h == 0)) { av_log(ctx, AV_LOG_ERROR, "Error in XPSNR routine: invalid argument(s).\n"); return AVERROR(EINVAL); } if (!weights || (b >= 4 && !sse_luma)) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate temporary block memory.\n"); return AVERROR(ENOMEM); } if (b >= 4) { const int16_t *p_org = org[0]; const uint32_t s_org = stride_org[0] / s->bpp; const int16_t *p_rec = rec[0]; const uint32_t s_rec = s->plane_width[0]; int16_t *p_org_m1 = org_m1[0]; /* pixel */ int16_t *p_org_m2 = org_m2[0]; /* memory */ double wsse_luma = 0.0; for (y = 0; y < h; y += b) { /* calculate block SSE and perceptual weights */ const uint32_t block_height = (y + b > h ? h - y : b); for (x = 0; x < w; x += b, idx_blk++) { const uint32_t block_width = (x + b > w ? w - x : b); double ms_act = 1.0, ms_act_prev = 0.0; sse_luma[idx_blk] = calc_squared_error_and_weight(s, p_org, s_org, p_org_m1, p_org_m2, p_rec, s_rec, x, y, block_width, block_height, s->depth, s->frame_rate, &ms_act); weights[idx_blk] = 1.0 / sqrt(ms_act); if (w * h <= 640 * 480) { /* in-line "min-smoothing" as in paper */ if (x == 0) /* first column */ ms_act_prev = (idx_blk > 1 ? weights[idx_blk - 2] : 0); else /* after first column */ ms_act_prev = (x > b ? FFMAX(weights[idx_blk - 2], weights[idx_blk]) : weights[idx_blk]); if (idx_blk > w_blk) /* after the first row and first column */ ms_act_prev = FFMAX(ms_act_prev, weights[idx_blk - 1 - w_blk]); /* min (L, T) */ if ((idx_blk > 0) && (weights[idx_blk - 1] > ms_act_prev)) weights[idx_blk - 1] = ms_act_prev; if ((x + b >= w) && (y + b >= h) && (idx_blk > w_blk)) { /* last block in picture */ ms_act_prev = FFMAX(weights[idx_blk - 1], weights[idx_blk - w_blk]); if (weights[idx_blk] > ms_act_prev) weights[idx_blk] = ms_act_prev; } } } /* for x */ } /* for y */ for (y = idx_blk = 0; y < h; y += b) { /* calculate sum for luma (Y) XPSNR */ for (x = 0; x < w; x += b, idx_blk++) { wsse_luma += sse_luma[idx_blk] * weights[idx_blk]; } } wsse64[0] = (wsse_luma <= 0.0 ? 0 : (uint64_t) (wsse_luma * avg_act + 0.5)); } /* b >= 4 */ for (c = 0; c < s->num_comps; c++) { /* finalize WSSE value for each component */ const int16_t *p_org = org[c]; const uint32_t s_org = stride_org[c] / s->bpp; const int16_t *p_rec = rec[c]; const uint32_t s_rec = s->plane_width[c]; const uint32_t w_pln = s->plane_width[c]; const uint32_t h_pln = s->plane_height[c]; if (b < 4) /* picture is too small for XPSNR, calculate nonweighted PSNR */ wsse64[c] = calc_squared_error (s, p_org, s_org, p_rec, s_rec, w_pln, h_pln); else if (c > 0) { /* b >= 4 so Y XPSNR has already been calculated above */ const uint32_t bx = (b * w_pln) / w; const uint32_t by = (b * h_pln) / h; /* up to chroma downsampling by 4 */ double wsse_chroma = 0.0; for (y = idx_blk = 0; y < h_pln; y += by) { /* calc chroma (Cb/Cr) XPSNR */ const uint32_t block_height = (y + by > h_pln ? h_pln - y : by); for (x = 0; x < w_pln; x += bx, idx_blk++) { const uint32_t block_width = (x + bx > w_pln ? w_pln - x : bx); wsse_chroma += (double) calc_squared_error (s, p_org + y * s_org + x, s_org, p_rec + y * s_rec + x, s_rec, block_width, block_height) * weights[idx_blk]; } } wsse64[c] = (wsse_chroma <= 0.0 ? 0 : (uint64_t) (wsse_chroma * avg_act + 0.5)); } } /* for c */ return 0; } static void set_meta(AVDictionary **metadata, const char *key, char comp, float d) { char value[128]; snprintf(value, sizeof(value), "%f", d); if (comp) { char key2[128]; snprintf(key2, sizeof(key2), "%s%c", key, comp); av_dict_set(metadata, key2, value, 0); } else { av_dict_set(metadata, key, value, 0); } } static int do_xpsnr(FFFrameSync *fs) { AVFilterContext *ctx = fs->parent; XPSNRContext *const s = ctx->priv; const uint32_t w = s->plane_width [0]; /* luma image width in pixels */ const uint32_t h = s->plane_height[0]; /* luma image height in pixels */ const uint32_t b = FFMAX(0, 4 * (int32_t) (32.0 * sqrt((double) (w * h) / (3840.0 * 2160.0)) + 0.5)); /* block size */ const uint32_t w_blk = (w + b - 1) / b; /* luma width in units of blocks */ const uint32_t h_blk = (h + b - 1) / b; /* luma height in units of blocks */ AVFrame *master, *ref = NULL; int16_t *porg [3]; int16_t *porg_m1[3]; int16_t *porg_m2[3]; int16_t *prec [3]; uint64_t wsse64 [3] = {0, 0, 0}; double cur_xpsnr[3] = {INFINITY, INFINITY, INFINITY}; int c, ret_value; AVDictionary **metadata; if ((ret_value = ff_framesync_dualinput_get(fs, &master, &ref)) < 0) return ret_value; if (ctx->is_disabled || !ref) return ff_filter_frame(ctx->outputs[0], master); metadata = &master->metadata; /* prepare XPSNR calculations: allocate temporary picture and block memory */ if (!s->sse_luma) s->sse_luma = av_malloc_array(w_blk * h_blk, sizeof(double)); if (!s->weights) s->weights = av_malloc_array(w_blk * h_blk, sizeof(double)); for (c = 0; c < s->num_comps; c++) { /* create temporal org buffer memory */ s->line_sizes[c] = master->linesize[c]; if (c == 0) { /* luma ch. */ const int stride_org_bpp = (s->bpp == 1 ? s->plane_width[c] : s->line_sizes[c] / s->bpp); if (!s->buf_org_m1[c]) s->buf_org_m1[c] = av_buffer_allocz(stride_org_bpp * s->plane_height[c] * sizeof(int16_t)); if (!s->buf_org_m2[c]) s->buf_org_m2[c] = av_buffer_allocz(stride_org_bpp * s->plane_height[c] * sizeof(int16_t)); porg_m1[c] = (int16_t *) s->buf_org_m1[c]->data; porg_m2[c] = (int16_t *) s->buf_org_m2[c]->data; } } if (s->bpp == 1) { /* 8 bit */ for (c = 0; c < s->num_comps; c++) { /* allocate org/rec buffer memory */ const int m = s->line_sizes[c]; /* master stride */ const int r = ref->linesize[c]; /* ref/c stride */ const int o = s->plane_width[c]; /* XPSNR stride */ if (!s->buf_org[c]) s->buf_org[c] = av_buffer_allocz(s->plane_width[c] * s->plane_height[c] * sizeof(int16_t)); if (!s->buf_rec[c]) s->buf_rec[c] = av_buffer_allocz(s->plane_width[c] * s->plane_height[c] * sizeof(int16_t)); porg[c] = (int16_t *) s->buf_org[c]->data; prec[c] = (int16_t *) s->buf_rec[c]->data; for (int y = 0; y < s->plane_height[c]; y++) { for (int x = 0; x < s->plane_width[c]; x++) { porg[c][y * o + x] = (int16_t) master->data[c][y * m + x]; prec[c][y * o + x] = (int16_t) ref->data[c][y * r + x]; } } } } else { /* 10, 12, 14 bit */ for (c = 0; c < s->num_comps; c++) { porg[c] = (int16_t *) master->data[c]; prec[c] = (int16_t *) ref->data[c]; } } /* extended perceptually weighted peak signal-to-noise ratio (XPSNR) value */ ret_value = get_wsse(ctx, (int16_t **) &porg, (int16_t **) &porg_m1, (int16_t **) &porg_m2, (int16_t **) &prec, wsse64); if ( ret_value < 0 ) return ret_value; /* an error here means something went wrong earlier! */ for (c = 0; c < s->num_comps; c++) { const double sqrt_wsse = sqrt((double) wsse64[c]); cur_xpsnr[c] = get_avg_xpsnr (sqrt_wsse, INFINITY, s->plane_width[c], s->plane_height[c], s->max_error_64, 1 /* single frame */); s->sum_wdist[c] += sqrt_wsse; s->sum_xpsnr[c] += cur_xpsnr[c]; s->and_is_inf[c] &= isinf(cur_xpsnr[c]); } s->num_frames_64++; for (int j = 0; j < s->num_comps; j++) { int c = s->is_rgb ? s->rgba_map[j] : j; set_meta(metadata, "lavfi.xpsnr.xpsnr.", s->comps[j], cur_xpsnr[c]); } if (s->stats_file) { /* print out frame- and component-wise XPSNR averages */ fprintf(s->stats_file, "n: %4"PRId64"", s->num_frames_64); for (c = 0; c < s->num_comps; c++) fprintf(s->stats_file, " XPSNR %c: %3.4f", s->comps[c], cur_xpsnr[c]); fprintf(s->stats_file, "\n"); } return ff_filter_frame(ctx->outputs[0], master); } static av_cold int init(AVFilterContext *ctx) { XPSNRContext *const s = ctx->priv; int c; if (s->stats_file_str) { if (!strcmp(s->stats_file_str, "-")) /* no stats file, so use stdout */ s->stats_file = stdout; else { s->stats_file = avpriv_fopen_utf8(s->stats_file_str, "w"); if (!s->stats_file) { const int err = AVERROR(errno); char buf[128]; av_strerror(err, buf, sizeof(buf)); av_log(ctx, AV_LOG_ERROR, "Could not open statistics file %s: %s\n", s->stats_file_str, buf); return err; } } } s->sse_luma = NULL; s->weights = NULL; for (c = 0; c < 3; c++) { /* initialize XPSNR data of each color component */ s->buf_org [c] = NULL; s->buf_org_m1[c] = NULL; s->buf_org_m2[c] = NULL; s->buf_rec [c] = NULL; s->sum_wdist [c] = 0.0; s->sum_xpsnr [c] = 0.0; s->and_is_inf[c] = 1; } s->fs.on_event = do_xpsnr; return 0; } static const enum AVPixelFormat xpsnr_formats[] = { AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, #define PF_NOALPHA(suf) AV_PIX_FMT_YUV420##suf, AV_PIX_FMT_YUV422##suf, AV_PIX_FMT_YUV444##suf #define PF_ALPHA(suf) AV_PIX_FMT_YUVA420##suf, AV_PIX_FMT_YUVA422##suf, AV_PIX_FMT_YUVA444##suf #define PF(suf) PF_NOALPHA(suf), PF_ALPHA(suf) PF(P), PF(P9), PF(P10), PF_NOALPHA(P12), PF_NOALPHA(P14), PF(P16), AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_NONE }; static int config_input_ref(AVFilterLink *inlink) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); AVFilterContext *ctx = inlink->dst; XPSNRContext *const s = ctx->priv; FilterLink *il = ff_filter_link(inlink); if ((ctx->inputs[0]->w != ctx->inputs[1]->w) || (ctx->inputs[0]->h != ctx->inputs[1]->h)) { av_log(ctx, AV_LOG_ERROR, "Width and height of the input videos must match.\n"); return AVERROR(EINVAL); } if (ctx->inputs[0]->format != ctx->inputs[1]->format) { av_log(ctx, AV_LOG_ERROR, "The input videos must be of the same pixel format.\n"); return AVERROR(EINVAL); } s->bpp = (desc->comp[0].depth <= 8 ? 1 : 2); s->depth = desc->comp[0].depth; s->max_error_64 = (1 << s->depth) - 1; /* conventional limit */ s->max_error_64 *= s->max_error_64; s->frame_rate = il->frame_rate.num / il->frame_rate.den; s->num_comps = (desc->nb_components > 3 ? 3 : desc->nb_components); s->is_rgb = (ff_fill_rgba_map(s->rgba_map, inlink->format) >= 0); s->comps[0] = (s->is_rgb ? 'r' : 'y'); s->comps[1] = (s->is_rgb ? 'g' : 'u'); s->comps[2] = (s->is_rgb ? 'b' : 'v'); s->comps[3] = 'a'; s->plane_width [1] = s->plane_width [2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); s->plane_width [0] = s->plane_width [3] = inlink->w; s->plane_height[1] = s->plane_height[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->plane_height[0] = s->plane_height[3] = inlink->h; /* XPSNR always operates with 16-bit internal precision */ ff_psnr_init(&s->pdsp, 15); s->dsp.highds_func = highds; /* initialize filtering methods */ s->dsp.diff1st_func = diff1st; s->dsp.diff2nd_func = diff2nd; return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; XPSNRContext *s = ctx->priv; AVFilterLink *mainlink = ctx->inputs[0]; FilterLink *il = ff_filter_link(mainlink); FilterLink *ol = ff_filter_link(outlink); int ret; if ((ret = ff_framesync_init_dualinput(&s->fs, ctx)) < 0) return ret; outlink->w = mainlink->w; outlink->h = mainlink->h; outlink->time_base = mainlink->time_base; outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio; ol->frame_rate = il->frame_rate; if ((ret = ff_framesync_configure(&s->fs)) < 0) return ret; outlink->time_base = s->fs.time_base; if (av_cmp_q(mainlink->time_base, outlink->time_base) || av_cmp_q(ctx->inputs[1]->time_base, outlink->time_base)) av_log(ctx, AV_LOG_WARNING, "not matching timebases found between first input: %d/%d and second input %d/%d, results may be incorrect!\n", mainlink->time_base.num, mainlink->time_base.den, ctx->inputs[1]->time_base.num, ctx->inputs[1]->time_base.den); return 0; } static int activate(AVFilterContext *ctx) { XPSNRContext *s = ctx->priv; return ff_framesync_activate(&s->fs); } static av_cold void uninit(AVFilterContext *ctx) { XPSNRContext *const s = ctx->priv; int c; if (s->num_frames_64 > 0) { /* print out overall component-wise mean XPSNR */ const double xpsnr_luma = get_avg_xpsnr(s->sum_wdist[0], s->sum_xpsnr[0], s->plane_width[0], s->plane_height[0], s->max_error_64, s->num_frames_64); double xpsnr_min = xpsnr_luma; /* luma */ av_log(ctx, AV_LOG_INFO, "XPSNR %c: %3.4f", s->comps[0], xpsnr_luma); if (s->stats_file) { fprintf(s->stats_file, "\nXPSNR average, %"PRId64" frames", s->num_frames_64); fprintf(s->stats_file, " %c: %3.4f", s->comps[0], xpsnr_luma); } /* chroma */ for (c = 1; c < s->num_comps; c++) { const double xpsnr_chroma = get_avg_xpsnr(s->sum_wdist[c], s->sum_xpsnr[c], s->plane_width[c], s->plane_height[c], s->max_error_64, s->num_frames_64); if (xpsnr_min > xpsnr_chroma) xpsnr_min = xpsnr_chroma; av_log(ctx, AV_LOG_INFO, " %c: %3.4f", s->comps[c], xpsnr_chroma); if (s->stats_file && s->stats_file != stdout) fprintf(s->stats_file, " %c: %3.4f", s->comps[c], xpsnr_chroma); } /* print out line break, and minimum XPSNR across the color components */ if (s->num_comps > 1) { av_log(ctx, AV_LOG_INFO, " (minimum: %3.4f)\n", xpsnr_min); if (s->stats_file && s->stats_file != stdout) fprintf(s->stats_file, " (minimum: %3.4f)\n", xpsnr_min); } else { av_log(ctx, AV_LOG_INFO, "\n"); if (s->stats_file && s->stats_file != stdout) fprintf(s->stats_file, "\n"); } } ff_framesync_uninit(&s->fs); /* free temporary picture or block buf memory */ if (s->stats_file && s->stats_file != stdout) fclose(s->stats_file); av_freep(&s->sse_luma); av_freep(&s->weights ); for (c = 0; c < s->num_comps; c++) { /* free extra temporal org buf memory */ if(s->buf_org_m1[c]) av_freep(s->buf_org_m1[c]); if(s->buf_org_m2[c]) av_freep(s->buf_org_m2[c]); } if (s->bpp == 1) { /* 8 bit */ for (c = 0; c < s->num_comps; c++) { /* and org/rec picture buf memory */ if(s->buf_org_m2[c]) av_freep(s->buf_org[c]); if(s->buf_rec[c]) av_freep(s->buf_rec[c]); } } } static const AVFilterPad xpsnr_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_VIDEO, }, { .name = "reference", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input_ref, } }; static const AVFilterPad xpsnr_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, } }; const AVFilter ff_vf_xpsnr = { .name = "xpsnr", .description = NULL_IF_CONFIG_SMALL("Calculate the extended perceptually weighted peak signal-to-noise ratio (XPSNR) between two video streams."), .preinit = xpsnr_framesync_preinit, .init = init, .uninit = uninit, .activate = activate, .priv_size = sizeof(XPSNRContext), .priv_class = &xpsnr_class, FILTER_INPUTS (xpsnr_inputs), FILTER_OUTPUTS(xpsnr_outputs), FILTER_PIXFMTS_ARRAY(xpsnr_formats), .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_METADATA_ONLY };