/* * VP9 compatible video decoder * * Copyright (C) 2013 Ronald S. Bultje * Copyright (C) 2013 Clément Bœsch * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "avcodec.h" #include "get_bits.h" #include "internal.h" #include "thread.h" #include "videodsp.h" #include "vp56.h" #include "vp9.h" #include "vp9data.h" #include "vp9dsp.h" #include "libavutil/avassert.h" #include "libavutil/pixdesc.h" #define VP9_SYNCCODE 0x498342 enum CompPredMode { PRED_SINGLEREF, PRED_COMPREF, PRED_SWITCHABLE, }; enum BlockLevel { BL_64X64, BL_32X32, BL_16X16, BL_8X8, }; enum BlockSize { BS_64x64, BS_64x32, BS_32x64, BS_32x32, BS_32x16, BS_16x32, BS_16x16, BS_16x8, BS_8x16, BS_8x8, BS_8x4, BS_4x8, BS_4x4, N_BS_SIZES, }; struct VP9mvrefPair { VP56mv mv[2]; int8_t ref[2]; }; typedef struct VP9Frame { ThreadFrame tf; AVBufferRef *extradata; uint8_t *segmentation_map; struct VP9mvrefPair *mv; int uses_2pass; } VP9Frame; struct VP9Filter { uint8_t level[8 * 8]; uint8_t /* bit=col */ mask[2 /* 0=y, 1=uv */][2 /* 0=col, 1=row */] [8 /* rows */][4 /* 0=16, 1=8, 2=4, 3=inner4 */]; }; typedef struct VP9Block { uint8_t seg_id, intra, comp, ref[2], mode[4], uvmode, skip; enum FilterMode filter; VP56mv mv[4 /* b_idx */][2 /* ref */]; enum BlockSize bs; enum TxfmMode tx, uvtx; enum BlockLevel bl; enum BlockPartition bp; } VP9Block; typedef struct VP9Context { VP9DSPContext dsp; VideoDSPContext vdsp; GetBitContext gb; VP56RangeCoder c; VP56RangeCoder *c_b; unsigned c_b_size; VP9Block *b_base, *b; int pass; int row, row7, col, col7; uint8_t *dst[3]; ptrdiff_t y_stride, uv_stride; // bitstream header uint8_t keyframe, last_keyframe; uint8_t last_bpp, bpp, bpp_index, bytesperpixel; uint8_t invisible; uint8_t use_last_frame_mvs; uint8_t errorres; uint8_t ss_h, ss_v; uint8_t intraonly; uint8_t resetctx; uint8_t refreshrefmask; uint8_t highprecisionmvs; enum FilterMode filtermode; uint8_t allowcompinter; uint8_t fixcompref; uint8_t refreshctx; uint8_t parallelmode; uint8_t framectxid; uint8_t refidx[3]; uint8_t signbias[3]; uint8_t varcompref[2]; ThreadFrame refs[8], next_refs[8]; #define CUR_FRAME 0 #define REF_FRAME_MVPAIR 1 #define REF_FRAME_SEGMAP 2 VP9Frame frames[3]; struct { uint8_t level; int8_t sharpness; uint8_t lim_lut[64]; uint8_t mblim_lut[64]; } filter; struct { uint8_t enabled; int8_t mode[2]; int8_t ref[4]; } lf_delta; uint8_t yac_qi; int8_t ydc_qdelta, uvdc_qdelta, uvac_qdelta; uint8_t lossless; #define MAX_SEGMENT 8 struct { uint8_t enabled; uint8_t temporal; uint8_t absolute_vals; uint8_t update_map; uint8_t ignore_refmap; struct { uint8_t q_enabled; uint8_t lf_enabled; uint8_t ref_enabled; uint8_t skip_enabled; uint8_t ref_val; int16_t q_val; int8_t lf_val; int16_t qmul[2][2]; uint8_t lflvl[4][2]; } feat[MAX_SEGMENT]; } segmentation; struct { unsigned log2_tile_cols, log2_tile_rows; unsigned tile_cols, tile_rows; unsigned tile_row_start, tile_row_end, tile_col_start, tile_col_end; } tiling; unsigned sb_cols, sb_rows, rows, cols; struct { prob_context p; uint8_t coef[4][2][2][6][6][3]; } prob_ctx[4]; struct { prob_context p; uint8_t coef[4][2][2][6][6][11]; uint8_t seg[7]; uint8_t segpred[3]; } prob; struct { unsigned y_mode[4][10]; unsigned uv_mode[10][10]; unsigned filter[4][3]; unsigned mv_mode[7][4]; unsigned intra[4][2]; unsigned comp[5][2]; unsigned single_ref[5][2][2]; unsigned comp_ref[5][2]; unsigned tx32p[2][4]; unsigned tx16p[2][3]; unsigned tx8p[2][2]; unsigned skip[3][2]; unsigned mv_joint[4]; struct { unsigned sign[2]; unsigned classes[11]; unsigned class0[2]; unsigned bits[10][2]; unsigned class0_fp[2][4]; unsigned fp[4]; unsigned class0_hp[2]; unsigned hp[2]; } mv_comp[2]; unsigned partition[4][4][4]; unsigned coef[4][2][2][6][6][3]; unsigned eob[4][2][2][6][6][2]; } counts; enum TxfmMode txfmmode; enum CompPredMode comppredmode; // contextual (left/above) cache DECLARE_ALIGNED(16, uint8_t, left_y_nnz_ctx)[16]; DECLARE_ALIGNED(16, uint8_t, left_mode_ctx)[16]; DECLARE_ALIGNED(16, VP56mv, left_mv_ctx)[16][2]; DECLARE_ALIGNED(16, uint8_t, left_uv_nnz_ctx)[2][16]; DECLARE_ALIGNED(8, uint8_t, left_partition_ctx)[8]; DECLARE_ALIGNED(8, uint8_t, left_skip_ctx)[8]; DECLARE_ALIGNED(8, uint8_t, left_txfm_ctx)[8]; DECLARE_ALIGNED(8, uint8_t, left_segpred_ctx)[8]; DECLARE_ALIGNED(8, uint8_t, left_intra_ctx)[8]; DECLARE_ALIGNED(8, uint8_t, left_comp_ctx)[8]; DECLARE_ALIGNED(8, uint8_t, left_ref_ctx)[8]; DECLARE_ALIGNED(8, uint8_t, left_filter_ctx)[8]; uint8_t *above_partition_ctx; uint8_t *above_mode_ctx; // FIXME maybe merge some of the below in a flags field? uint8_t *above_y_nnz_ctx; uint8_t *above_uv_nnz_ctx[2]; uint8_t *above_skip_ctx; // 1bit uint8_t *above_txfm_ctx; // 2bit uint8_t *above_segpred_ctx; // 1bit uint8_t *above_intra_ctx; // 1bit uint8_t *above_comp_ctx; // 1bit uint8_t *above_ref_ctx; // 2bit uint8_t *above_filter_ctx; VP56mv (*above_mv_ctx)[2]; // whole-frame cache uint8_t *intra_pred_data[3]; struct VP9Filter *lflvl; DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer)[135 * 144 * 2]; // block reconstruction intermediates int block_alloc_using_2pass; int16_t *block_base, *block, *uvblock_base[2], *uvblock[2]; uint8_t *eob_base, *uveob_base[2], *eob, *uveob[2]; struct { int x, y; } min_mv, max_mv; DECLARE_ALIGNED(32, uint8_t, tmp_y)[64 * 64 * 2]; DECLARE_ALIGNED(32, uint8_t, tmp_uv)[2][64 * 64 * 2]; uint16_t mvscale[3][2]; uint8_t mvstep[3][2]; } VP9Context; static const uint8_t bwh_tab[2][N_BS_SIZES][2] = { { { 16, 16 }, { 16, 8 }, { 8, 16 }, { 8, 8 }, { 8, 4 }, { 4, 8 }, { 4, 4 }, { 4, 2 }, { 2, 4 }, { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 }, }, { { 8, 8 }, { 8, 4 }, { 4, 8 }, { 4, 4 }, { 4, 2 }, { 2, 4 }, { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 }, { 1, 1 }, { 1, 1 }, { 1, 1 }, } }; static int vp9_alloc_frame(AVCodecContext *ctx, VP9Frame *f) { VP9Context *s = ctx->priv_data; int ret, sz; if ((ret = ff_thread_get_buffer(ctx, &f->tf, AV_GET_BUFFER_FLAG_REF)) < 0) return ret; sz = 64 * s->sb_cols * s->sb_rows; if (!(f->extradata = av_buffer_allocz(sz * (1 + sizeof(struct VP9mvrefPair))))) { ff_thread_release_buffer(ctx, &f->tf); return AVERROR(ENOMEM); } f->segmentation_map = f->extradata->data; f->mv = (struct VP9mvrefPair *) (f->extradata->data + sz); return 0; } static void vp9_unref_frame(AVCodecContext *ctx, VP9Frame *f) { ff_thread_release_buffer(ctx, &f->tf); av_buffer_unref(&f->extradata); } static int vp9_ref_frame(AVCodecContext *ctx, VP9Frame *dst, VP9Frame *src) { int res; if ((res = ff_thread_ref_frame(&dst->tf, &src->tf)) < 0) { return res; } else if (!(dst->extradata = av_buffer_ref(src->extradata))) { vp9_unref_frame(ctx, dst); return AVERROR(ENOMEM); } dst->segmentation_map = src->segmentation_map; dst->mv = src->mv; dst->uses_2pass = src->uses_2pass; return 0; } static int update_size(AVCodecContext *ctx, int w, int h, enum AVPixelFormat fmt) { VP9Context *s = ctx->priv_data; uint8_t *p; int bytesperpixel = s->bytesperpixel; av_assert0(w > 0 && h > 0); if (s->intra_pred_data[0] && w == ctx->width && h == ctx->height && ctx->pix_fmt == fmt) return 0; ctx->width = w; ctx->height = h; ctx->pix_fmt = fmt; s->sb_cols = (w + 63) >> 6; s->sb_rows = (h + 63) >> 6; s->cols = (w + 7) >> 3; s->rows = (h + 7) >> 3; #define assign(var, type, n) var = (type) p; p += s->sb_cols * (n) * sizeof(*var) av_freep(&s->intra_pred_data[0]); // FIXME we slightly over-allocate here for subsampled chroma, but a little // bit of padding shouldn't affect performance... p = av_malloc(s->sb_cols * (128 + 192 * bytesperpixel + sizeof(*s->lflvl) + 16 * sizeof(*s->above_mv_ctx))); if (!p) return AVERROR(ENOMEM); assign(s->intra_pred_data[0], uint8_t *, 64 * bytesperpixel); assign(s->intra_pred_data[1], uint8_t *, 64 * bytesperpixel); assign(s->intra_pred_data[2], uint8_t *, 64 * bytesperpixel); assign(s->above_y_nnz_ctx, uint8_t *, 16); assign(s->above_mode_ctx, uint8_t *, 16); assign(s->above_mv_ctx, VP56mv(*)[2], 16); assign(s->above_uv_nnz_ctx[0], uint8_t *, 16); assign(s->above_uv_nnz_ctx[1], uint8_t *, 16); assign(s->above_partition_ctx, uint8_t *, 8); assign(s->above_skip_ctx, uint8_t *, 8); assign(s->above_txfm_ctx, uint8_t *, 8); assign(s->above_segpred_ctx, uint8_t *, 8); assign(s->above_intra_ctx, uint8_t *, 8); assign(s->above_comp_ctx, uint8_t *, 8); assign(s->above_ref_ctx, uint8_t *, 8); assign(s->above_filter_ctx, uint8_t *, 8); assign(s->lflvl, struct VP9Filter *, 1); #undef assign // these will be re-allocated a little later av_freep(&s->b_base); av_freep(&s->block_base); if (s->bpp != s->last_bpp) { ff_vp9dsp_init(&s->dsp, s->bpp); ff_videodsp_init(&s->vdsp, s->bpp); s->last_bpp = s->bpp; } return 0; } static int update_block_buffers(AVCodecContext *ctx) { VP9Context *s = ctx->priv_data; int chroma_blocks, chroma_eobs, bytesperpixel = s->bytesperpixel; if (s->b_base && s->block_base && s->block_alloc_using_2pass == s->frames[CUR_FRAME].uses_2pass) return 0; av_free(s->b_base); av_free(s->block_base); chroma_blocks = 64 * 64 >> (s->ss_h + s->ss_v); chroma_eobs = 16 * 16 >> (s->ss_h + s->ss_v); if (s->frames[CUR_FRAME].uses_2pass) { int sbs = s->sb_cols * s->sb_rows; s->b_base = av_malloc_array(s->cols * s->rows, sizeof(VP9Block)); s->block_base = av_mallocz(((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) + 16 * 16 + 2 * chroma_eobs) * sbs); if (!s->b_base || !s->block_base) return AVERROR(ENOMEM); s->uvblock_base[0] = s->block_base + sbs * 64 * 64 * bytesperpixel; s->uvblock_base[1] = s->uvblock_base[0] + sbs * chroma_blocks * bytesperpixel; s->eob_base = (uint8_t *) (s->uvblock_base[1] + sbs * chroma_blocks * bytesperpixel); s->uveob_base[0] = s->eob_base + 16 * 16 * sbs; s->uveob_base[1] = s->uveob_base[0] + chroma_eobs * sbs; } else { s->b_base = av_malloc(sizeof(VP9Block)); s->block_base = av_mallocz((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) + 16 * 16 + 2 * chroma_eobs); if (!s->b_base || !s->block_base) return AVERROR(ENOMEM); s->uvblock_base[0] = s->block_base + 64 * 64 * bytesperpixel; s->uvblock_base[1] = s->uvblock_base[0] + chroma_blocks * bytesperpixel; s->eob_base = (uint8_t *) (s->uvblock_base[1] + chroma_blocks * bytesperpixel); s->uveob_base[0] = s->eob_base + 16 * 16; s->uveob_base[1] = s->uveob_base[0] + chroma_eobs; } s->block_alloc_using_2pass = s->frames[CUR_FRAME].uses_2pass; return 0; } // for some reason the sign bit is at the end, not the start, of a bit sequence static av_always_inline int get_sbits_inv(GetBitContext *gb, int n) { int v = get_bits(gb, n); return get_bits1(gb) ? -v : v; } static av_always_inline int inv_recenter_nonneg(int v, int m) { return v > 2 * m ? v : v & 1 ? m - ((v + 1) >> 1) : m + (v >> 1); } // differential forward probability updates static int update_prob(VP56RangeCoder *c, int p) { static const int inv_map_table[254] = { 7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176, 189, 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, }; int d; /* This code is trying to do a differential probability update. For a * current probability A in the range [1, 255], the difference to a new * probability of any value can be expressed differentially as 1-A,255-A * where some part of this (absolute range) exists both in positive as * well as the negative part, whereas another part only exists in one * half. We're trying to code this shared part differentially, i.e. * times two where the value of the lowest bit specifies the sign, and * the single part is then coded on top of this. This absolute difference * then again has a value of [0,254], but a bigger value in this range * indicates that we're further away from the original value A, so we * can code this as a VLC code, since higher values are increasingly * unlikely. The first 20 values in inv_map_table[] allow 'cheap, rough' * updates vs. the 'fine, exact' updates further down the range, which * adds one extra dimension to this differential update model. */ if (!vp8_rac_get(c)) { d = vp8_rac_get_uint(c, 4) + 0; } else if (!vp8_rac_get(c)) { d = vp8_rac_get_uint(c, 4) + 16; } else if (!vp8_rac_get(c)) { d = vp8_rac_get_uint(c, 5) + 32; } else { d = vp8_rac_get_uint(c, 7); if (d >= 65) d = (d << 1) - 65 + vp8_rac_get(c); d += 64; } return p <= 128 ? 1 + inv_recenter_nonneg(inv_map_table[d], p - 1) : 255 - inv_recenter_nonneg(inv_map_table[d], 255 - p); } static enum AVPixelFormat read_colorspace_details(AVCodecContext *ctx) { static const enum AVColorSpace colorspaces[8] = { AVCOL_SPC_UNSPECIFIED, AVCOL_SPC_BT470BG, AVCOL_SPC_BT709, AVCOL_SPC_SMPTE170M, AVCOL_SPC_SMPTE240M, AVCOL_SPC_BT2020_NCL, AVCOL_SPC_RESERVED, AVCOL_SPC_RGB, }; VP9Context *s = ctx->priv_data; enum AVPixelFormat res; int bits = ctx->profile <= 1 ? 0 : 1 + get_bits1(&s->gb); // 0:8, 1:10, 2:12 s->bpp_index = bits; s->bpp = 8 + bits * 2; s->bytesperpixel = (7 + s->bpp) >> 3; ctx->colorspace = colorspaces[get_bits(&s->gb, 3)]; if (ctx->colorspace == AVCOL_SPC_RGB) { // RGB = profile 1 static const enum AVPixelFormat pix_fmt_rgb[3] = { AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12 }; if (ctx->profile & 1) { s->ss_h = s->ss_v = 1; res = pix_fmt_rgb[bits]; ctx->color_range = AVCOL_RANGE_JPEG; } else { av_log(ctx, AV_LOG_ERROR, "RGB not supported in profile %d\n", ctx->profile); return AVERROR_INVALIDDATA; } } else { static const enum AVPixelFormat pix_fmt_for_ss[3][2 /* v */][2 /* h */] = { { { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P }, { AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV420P } }, { { AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10 }, { AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV420P10 } }, { { AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12 }, { AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV420P12 } } }; ctx->color_range = get_bits1(&s->gb) ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG; if (ctx->profile & 1) { s->ss_h = get_bits1(&s->gb); s->ss_v = get_bits1(&s->gb); if ((res = pix_fmt_for_ss[bits][s->ss_v][s->ss_h]) == AV_PIX_FMT_YUV420P) { av_log(ctx, AV_LOG_ERROR, "YUV 4:2:0 not supported in profile %d\n", ctx->profile); return AVERROR_INVALIDDATA; } else if (get_bits1(&s->gb)) { av_log(ctx, AV_LOG_ERROR, "Profile %d color details reserved bit set\n", ctx->profile); return AVERROR_INVALIDDATA; } } else { s->ss_h = s->ss_v = 1; res = pix_fmt_for_ss[bits][1][1]; } } return res; } static int decode_frame_header(AVCodecContext *ctx, const uint8_t *data, int size, int *ref) { VP9Context *s = ctx->priv_data; int c, i, j, k, l, m, n, w, h, max, size2, res, sharp; enum AVPixelFormat fmt = ctx->pix_fmt; int last_invisible; const uint8_t *data2; /* general header */ if ((res = init_get_bits8(&s->gb, data, size)) < 0) { av_log(ctx, AV_LOG_ERROR, "Failed to initialize bitstream reader\n"); return res; } if (get_bits(&s->gb, 2) != 0x2) { // frame marker av_log(ctx, AV_LOG_ERROR, "Invalid frame marker\n"); return AVERROR_INVALIDDATA; } ctx->profile = get_bits1(&s->gb); ctx->profile |= get_bits1(&s->gb) << 1; if (ctx->profile == 3) ctx->profile += get_bits1(&s->gb); if (ctx->profile > 3) { av_log(ctx, AV_LOG_ERROR, "Profile %d is not yet supported\n", ctx->profile); return AVERROR_INVALIDDATA; } if (get_bits1(&s->gb)) { *ref = get_bits(&s->gb, 3); return 0; } s->last_keyframe = s->keyframe; s->keyframe = !get_bits1(&s->gb); last_invisible = s->invisible; s->invisible = !get_bits1(&s->gb); s->errorres = get_bits1(&s->gb); s->use_last_frame_mvs = !s->errorres && !last_invisible; if (s->keyframe) { if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n"); return AVERROR_INVALIDDATA; } if ((fmt = read_colorspace_details(ctx)) < 0) return fmt; // for profile 1, here follows the subsampling bits s->refreshrefmask = 0xff; w = get_bits(&s->gb, 16) + 1; h = get_bits(&s->gb, 16) + 1; if (get_bits1(&s->gb)) // display size skip_bits(&s->gb, 32); } else { s->intraonly = s->invisible ? get_bits1(&s->gb) : 0; s->resetctx = s->errorres ? 0 : get_bits(&s->gb, 2); if (s->intraonly) { if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n"); return AVERROR_INVALIDDATA; } if (ctx->profile == 1) { if ((fmt = read_colorspace_details(ctx)) < 0) return fmt; } else { s->ss_h = s->ss_v = 1; s->bpp = 8; s->bpp_index = 0; s->bytesperpixel = 1; fmt = AV_PIX_FMT_YUV420P; ctx->colorspace = AVCOL_SPC_BT470BG; ctx->color_range = AVCOL_RANGE_JPEG; } s->refreshrefmask = get_bits(&s->gb, 8); w = get_bits(&s->gb, 16) + 1; h = get_bits(&s->gb, 16) + 1; if (get_bits1(&s->gb)) // display size skip_bits(&s->gb, 32); } else { s->refreshrefmask = get_bits(&s->gb, 8); s->refidx[0] = get_bits(&s->gb, 3); s->signbias[0] = get_bits1(&s->gb); s->refidx[1] = get_bits(&s->gb, 3); s->signbias[1] = get_bits1(&s->gb); s->refidx[2] = get_bits(&s->gb, 3); s->signbias[2] = get_bits1(&s->gb); if (!s->refs[s->refidx[0]].f->data[0] || !s->refs[s->refidx[1]].f->data[0] || !s->refs[s->refidx[2]].f->data[0]) { av_log(ctx, AV_LOG_ERROR, "Not all references are available\n"); return AVERROR_INVALIDDATA; } if (get_bits1(&s->gb)) { w = s->refs[s->refidx[0]].f->width; h = s->refs[s->refidx[0]].f->height; } else if (get_bits1(&s->gb)) { w = s->refs[s->refidx[1]].f->width; h = s->refs[s->refidx[1]].f->height; } else if (get_bits1(&s->gb)) { w = s->refs[s->refidx[2]].f->width; h = s->refs[s->refidx[2]].f->height; } else { w = get_bits(&s->gb, 16) + 1; h = get_bits(&s->gb, 16) + 1; } // Note that in this code, "CUR_FRAME" is actually before we // have formally allocated a frame, and thus actually represents // the _last_ frame s->use_last_frame_mvs &= s->frames[CUR_FRAME].tf.f->width == w && s->frames[CUR_FRAME].tf.f->height == h; if (get_bits1(&s->gb)) // display size skip_bits(&s->gb, 32); s->highprecisionmvs = get_bits1(&s->gb); s->filtermode = get_bits1(&s->gb) ? FILTER_SWITCHABLE : get_bits(&s->gb, 2); s->allowcompinter = s->signbias[0] != s->signbias[1] || s->signbias[0] != s->signbias[2]; if (s->allowcompinter) { if (s->signbias[0] == s->signbias[1]) { s->fixcompref = 2; s->varcompref[0] = 0; s->varcompref[1] = 1; } else if (s->signbias[0] == s->signbias[2]) { s->fixcompref = 1; s->varcompref[0] = 0; s->varcompref[1] = 2; } else { s->fixcompref = 0; s->varcompref[0] = 1; s->varcompref[1] = 2; } } for (i = 0; i < 3; i++) { AVFrame *ref = s->refs[s->refidx[i]].f; int refw = ref->width, refh = ref->height; if (ref->format != fmt) { av_log(ctx, AV_LOG_ERROR, "Ref pixfmt (%s) did not match current frame (%s)", av_get_pix_fmt_name(ref->format), av_get_pix_fmt_name(fmt)); return AVERROR_INVALIDDATA; } else if (refw == w && refh == h) { s->mvscale[i][0] = s->mvscale[i][1] = 0; } else { if (w * 2 < refw || h * 2 < refh || w > 16 * refw || h > 16 * refh) { av_log(ctx, AV_LOG_ERROR, "Invalid ref frame dimensions %dx%d for frame size %dx%d\n", refw, refh, w, h); return AVERROR_INVALIDDATA; } s->mvscale[i][0] = (refw << 14) / w; s->mvscale[i][1] = (refh << 14) / h; s->mvstep[i][0] = 16 * s->mvscale[i][0] >> 14; s->mvstep[i][1] = 16 * s->mvscale[i][1] >> 14; } } } } s->refreshctx = s->errorres ? 0 : get_bits1(&s->gb); s->parallelmode = s->errorres ? 1 : get_bits1(&s->gb); s->framectxid = c = get_bits(&s->gb, 2); /* loopfilter header data */ s->filter.level = get_bits(&s->gb, 6); sharp = get_bits(&s->gb, 3); // if sharpness changed, reinit lim/mblim LUTs. if it didn't change, keep // the old cache values since they are still valid if (s->filter.sharpness != sharp) memset(s->filter.lim_lut, 0, sizeof(s->filter.lim_lut)); s->filter.sharpness = sharp; if ((s->lf_delta.enabled = get_bits1(&s->gb))) { if (get_bits1(&s->gb)) { for (i = 0; i < 4; i++) if (get_bits1(&s->gb)) s->lf_delta.ref[i] = get_sbits_inv(&s->gb, 6); for (i = 0; i < 2; i++) if (get_bits1(&s->gb)) s->lf_delta.mode[i] = get_sbits_inv(&s->gb, 6); } } /* quantization header data */ s->yac_qi = get_bits(&s->gb, 8); s->ydc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0; s->uvdc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0; s->uvac_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0; s->lossless = s->yac_qi == 0 && s->ydc_qdelta == 0 && s->uvdc_qdelta == 0 && s->uvac_qdelta == 0; /* segmentation header info */ s->segmentation.ignore_refmap = 0; if ((s->segmentation.enabled = get_bits1(&s->gb))) { if ((s->segmentation.update_map = get_bits1(&s->gb))) { for (i = 0; i < 7; i++) s->prob.seg[i] = get_bits1(&s->gb) ? get_bits(&s->gb, 8) : 255; if ((s->segmentation.temporal = get_bits1(&s->gb))) { for (i = 0; i < 3; i++) s->prob.segpred[i] = get_bits1(&s->gb) ? get_bits(&s->gb, 8) : 255; } } if ((!s->segmentation.update_map || s->segmentation.temporal) && (w != s->frames[CUR_FRAME].tf.f->width || h != s->frames[CUR_FRAME].tf.f->height)) { av_log(ctx, AV_LOG_WARNING, "Reference segmap (temp=%d,update=%d) enabled on size-change!\n", s->segmentation.temporal, s->segmentation.update_map); s->segmentation.ignore_refmap = 1; //return AVERROR_INVALIDDATA; } if (get_bits1(&s->gb)) { s->segmentation.absolute_vals = get_bits1(&s->gb); for (i = 0; i < 8; i++) { if ((s->segmentation.feat[i].q_enabled = get_bits1(&s->gb))) s->segmentation.feat[i].q_val = get_sbits_inv(&s->gb, 8); if ((s->segmentation.feat[i].lf_enabled = get_bits1(&s->gb))) s->segmentation.feat[i].lf_val = get_sbits_inv(&s->gb, 6); if ((s->segmentation.feat[i].ref_enabled = get_bits1(&s->gb))) s->segmentation.feat[i].ref_val = get_bits(&s->gb, 2); s->segmentation.feat[i].skip_enabled = get_bits1(&s->gb); } } } else { s->segmentation.feat[0].q_enabled = 0; s->segmentation.feat[0].lf_enabled = 0; s->segmentation.feat[0].skip_enabled = 0; s->segmentation.feat[0].ref_enabled = 0; } // set qmul[] based on Y/UV, AC/DC and segmentation Q idx deltas for (i = 0; i < (s->segmentation.enabled ? 8 : 1); i++) { int qyac, qydc, quvac, quvdc, lflvl, sh; if (s->segmentation.feat[i].q_enabled) { if (s->segmentation.absolute_vals) qyac = s->segmentation.feat[i].q_val; else qyac = s->yac_qi + s->segmentation.feat[i].q_val; } else { qyac = s->yac_qi; } qydc = av_clip_uintp2(qyac + s->ydc_qdelta, 8); quvdc = av_clip_uintp2(qyac + s->uvdc_qdelta, 8); quvac = av_clip_uintp2(qyac + s->uvac_qdelta, 8); qyac = av_clip_uintp2(qyac, 8); s->segmentation.feat[i].qmul[0][0] = vp9_dc_qlookup[s->bpp_index][qydc]; s->segmentation.feat[i].qmul[0][1] = vp9_ac_qlookup[s->bpp_index][qyac]; s->segmentation.feat[i].qmul[1][0] = vp9_dc_qlookup[s->bpp_index][quvdc]; s->segmentation.feat[i].qmul[1][1] = vp9_ac_qlookup[s->bpp_index][quvac]; sh = s->filter.level >= 32; if (s->segmentation.feat[i].lf_enabled) { if (s->segmentation.absolute_vals) lflvl = s->segmentation.feat[i].lf_val; else lflvl = s->filter.level + s->segmentation.feat[i].lf_val; } else { lflvl = s->filter.level; } if (s->lf_delta.enabled) { s->segmentation.feat[i].lflvl[0][0] = s->segmentation.feat[i].lflvl[0][1] = av_clip_uintp2(lflvl + (s->lf_delta.ref[0] << sh), 6); for (j = 1; j < 4; j++) { s->segmentation.feat[i].lflvl[j][0] = av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] + s->lf_delta.mode[0]) * (1 << sh)), 6); s->segmentation.feat[i].lflvl[j][1] = av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] + s->lf_delta.mode[1]) * (1 << sh)), 6); } } else { memset(s->segmentation.feat[i].lflvl, lflvl, sizeof(s->segmentation.feat[i].lflvl)); } } /* tiling info */ if ((res = update_size(ctx, w, h, fmt)) < 0) { av_log(ctx, AV_LOG_ERROR, "Failed to initialize decoder for %dx%d @ %d\n", w, h, fmt); return res; } for (s->tiling.log2_tile_cols = 0; (s->sb_cols >> s->tiling.log2_tile_cols) > 64; s->tiling.log2_tile_cols++) ; for (max = 0; (s->sb_cols >> max) >= 4; max++) ; max = FFMAX(0, max - 1); while (max > s->tiling.log2_tile_cols) { if (get_bits1(&s->gb)) s->tiling.log2_tile_cols++; else break; } s->tiling.log2_tile_rows = decode012(&s->gb); s->tiling.tile_rows = 1 << s->tiling.log2_tile_rows; if (s->tiling.tile_cols != (1 << s->tiling.log2_tile_cols)) { s->tiling.tile_cols = 1 << s->tiling.log2_tile_cols; s->c_b = av_fast_realloc(s->c_b, &s->c_b_size, sizeof(VP56RangeCoder) * s->tiling.tile_cols); if (!s->c_b) { av_log(ctx, AV_LOG_ERROR, "Ran out of memory during range coder init\n"); return AVERROR(ENOMEM); } } if (s->keyframe || s->errorres || s->intraonly) { s->prob_ctx[0].p = s->prob_ctx[1].p = s->prob_ctx[2].p = s->prob_ctx[3].p = vp9_default_probs; memcpy(s->prob_ctx[0].coef, vp9_default_coef_probs, sizeof(vp9_default_coef_probs)); memcpy(s->prob_ctx[1].coef, vp9_default_coef_probs, sizeof(vp9_default_coef_probs)); memcpy(s->prob_ctx[2].coef, vp9_default_coef_probs, sizeof(vp9_default_coef_probs)); memcpy(s->prob_ctx[3].coef, vp9_default_coef_probs, sizeof(vp9_default_coef_probs)); } // next 16 bits is size of the rest of the header (arith-coded) size2 = get_bits(&s->gb, 16); data2 = align_get_bits(&s->gb); if (size2 > size - (data2 - data)) { av_log(ctx, AV_LOG_ERROR, "Invalid compressed header size\n"); return AVERROR_INVALIDDATA; } ff_vp56_init_range_decoder(&s->c, data2, size2); if (vp56_rac_get_prob_branchy(&s->c, 128)) { // marker bit av_log(ctx, AV_LOG_ERROR, "Marker bit was set\n"); return AVERROR_INVALIDDATA; } if (s->keyframe || s->intraonly) { memset(s->counts.coef, 0, sizeof(s->counts.coef) + sizeof(s->counts.eob)); } else { memset(&s->counts, 0, sizeof(s->counts)); } // FIXME is it faster to not copy here, but do it down in the fw updates // as explicit copies if the fw update is missing (and skip the copy upon // fw update)? s->prob.p = s->prob_ctx[c].p; // txfm updates if (s->lossless) { s->txfmmode = TX_4X4; } else { s->txfmmode = vp8_rac_get_uint(&s->c, 2); if (s->txfmmode == 3) s->txfmmode += vp8_rac_get(&s->c); if (s->txfmmode == TX_SWITCHABLE) { for (i = 0; i < 2; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.tx8p[i] = update_prob(&s->c, s->prob.p.tx8p[i]); for (i = 0; i < 2; i++) for (j = 0; j < 2; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.tx16p[i][j] = update_prob(&s->c, s->prob.p.tx16p[i][j]); for (i = 0; i < 2; i++) for (j = 0; j < 3; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.tx32p[i][j] = update_prob(&s->c, s->prob.p.tx32p[i][j]); } } // coef updates for (i = 0; i < 4; i++) { uint8_t (*ref)[2][6][6][3] = s->prob_ctx[c].coef[i]; if (vp8_rac_get(&s->c)) { for (j = 0; j < 2; j++) for (k = 0; k < 2; k++) for (l = 0; l < 6; l++) for (m = 0; m < 6; m++) { uint8_t *p = s->prob.coef[i][j][k][l][m]; uint8_t *r = ref[j][k][l][m]; if (m >= 3 && l == 0) // dc only has 3 pt break; for (n = 0; n < 3; n++) { if (vp56_rac_get_prob_branchy(&s->c, 252)) { p[n] = update_prob(&s->c, r[n]); } else { p[n] = r[n]; } } p[3] = 0; } } else { for (j = 0; j < 2; j++) for (k = 0; k < 2; k++) for (l = 0; l < 6; l++) for (m = 0; m < 6; m++) { uint8_t *p = s->prob.coef[i][j][k][l][m]; uint8_t *r = ref[j][k][l][m]; if (m > 3 && l == 0) // dc only has 3 pt break; memcpy(p, r, 3); p[3] = 0; } } if (s->txfmmode == i) break; } // mode updates for (i = 0; i < 3; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.skip[i] = update_prob(&s->c, s->prob.p.skip[i]); if (!s->keyframe && !s->intraonly) { for (i = 0; i < 7; i++) for (j = 0; j < 3; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_mode[i][j] = update_prob(&s->c, s->prob.p.mv_mode[i][j]); if (s->filtermode == FILTER_SWITCHABLE) for (i = 0; i < 4; i++) for (j = 0; j < 2; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.filter[i][j] = update_prob(&s->c, s->prob.p.filter[i][j]); for (i = 0; i < 4; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.intra[i] = update_prob(&s->c, s->prob.p.intra[i]); if (s->allowcompinter) { s->comppredmode = vp8_rac_get(&s->c); if (s->comppredmode) s->comppredmode += vp8_rac_get(&s->c); if (s->comppredmode == PRED_SWITCHABLE) for (i = 0; i < 5; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.comp[i] = update_prob(&s->c, s->prob.p.comp[i]); } else { s->comppredmode = PRED_SINGLEREF; } if (s->comppredmode != PRED_COMPREF) { for (i = 0; i < 5; i++) { if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.single_ref[i][0] = update_prob(&s->c, s->prob.p.single_ref[i][0]); if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.single_ref[i][1] = update_prob(&s->c, s->prob.p.single_ref[i][1]); } } if (s->comppredmode != PRED_SINGLEREF) { for (i = 0; i < 5; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.comp_ref[i] = update_prob(&s->c, s->prob.p.comp_ref[i]); } for (i = 0; i < 4; i++) for (j = 0; j < 9; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.y_mode[i][j] = update_prob(&s->c, s->prob.p.y_mode[i][j]); for (i = 0; i < 4; i++) for (j = 0; j < 4; j++) for (k = 0; k < 3; k++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.partition[3 - i][j][k] = update_prob(&s->c, s->prob.p.partition[3 - i][j][k]); // mv fields don't use the update_prob subexp model for some reason for (i = 0; i < 3; i++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_joint[i] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; for (i = 0; i < 2; i++) { if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].sign = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; for (j = 0; j < 10; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].classes[j] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].class0 = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; for (j = 0; j < 10; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].bits[j] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; } for (i = 0; i < 2; i++) { for (j = 0; j < 2; j++) for (k = 0; k < 3; k++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].class0_fp[j][k] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; for (j = 0; j < 3; j++) if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].fp[j] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; } if (s->highprecisionmvs) { for (i = 0; i < 2; i++) { if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].class0_hp = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; if (vp56_rac_get_prob_branchy(&s->c, 252)) s->prob.p.mv_comp[i].hp = (vp8_rac_get_uint(&s->c, 7) << 1) | 1; } } } return (data2 - data) + size2; } static av_always_inline void clamp_mv(VP56mv *dst, const VP56mv *src, VP9Context *s) { dst->x = av_clip(src->x, s->min_mv.x, s->max_mv.x); dst->y = av_clip(src->y, s->min_mv.y, s->max_mv.y); } static void find_ref_mvs(VP9Context *s, VP56mv *pmv, int ref, int z, int idx, int sb) { static const int8_t mv_ref_blk_off[N_BS_SIZES][8][2] = { [BS_64x64] = {{ 3, -1 }, { -1, 3 }, { 4, -1 }, { -1, 4 }, { -1, -1 }, { 0, -1 }, { -1, 0 }, { 6, -1 }}, [BS_64x32] = {{ 0, -1 }, { -1, 0 }, { 4, -1 }, { -1, 2 }, { -1, -1 }, { 0, -3 }, { -3, 0 }, { 2, -1 }}, [BS_32x64] = {{ -1, 0 }, { 0, -1 }, { -1, 4 }, { 2, -1 }, { -1, -1 }, { -3, 0 }, { 0, -3 }, { -1, 2 }}, [BS_32x32] = {{ 1, -1 }, { -1, 1 }, { 2, -1 }, { -1, 2 }, { -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }}, [BS_32x16] = {{ 0, -1 }, { -1, 0 }, { 2, -1 }, { -1, -1 }, { -1, 1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }}, [BS_16x32] = {{ -1, 0 }, { 0, -1 }, { -1, 2 }, { -1, -1 }, { 1, -1 }, { -3, 0 }, { 0, -3 }, { -3, -3 }}, [BS_16x16] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, 1 }, { -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }}, [BS_16x8] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, -1 }, { 0, -2 }, { -2, 0 }, { -2, -1 }, { -1, -2 }}, [BS_8x16] = {{ -1, 0 }, { 0, -1 }, { -1, 1 }, { -1, -1 }, { -2, 0 }, { 0, -2 }, { -1, -2 }, { -2, -1 }}, [BS_8x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 }, { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }}, [BS_8x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 }, { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }}, [BS_4x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 }, { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }}, [BS_4x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 }, { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }}, }; VP9Block *b = s->b; int row = s->row, col = s->col, row7 = s->row7; const int8_t (*p)[2] = mv_ref_blk_off[b->bs]; #define INVALID_MV 0x80008000U uint32_t mem = INVALID_MV; int i; #define RETURN_DIRECT_MV(mv) \ do { \ uint32_t m = AV_RN32A(&mv); \ if (!idx) { \ AV_WN32A(pmv, m); \ return; \ } else if (mem == INVALID_MV) { \ mem = m; \ } else if (m != mem) { \ AV_WN32A(pmv, m); \ return; \ } \ } while (0) if (sb >= 0) { if (sb == 2 || sb == 1) { RETURN_DIRECT_MV(b->mv[0][z]); } else if (sb == 3) { RETURN_DIRECT_MV(b->mv[2][z]); RETURN_DIRECT_MV(b->mv[1][z]); RETURN_DIRECT_MV(b->mv[0][z]); } #define RETURN_MV(mv) \ do { \ if (sb > 0) { \ VP56mv tmp; \ uint32_t m; \ clamp_mv(&tmp, &mv, s); \ m = AV_RN32A(&tmp); \ if (!idx) { \ AV_WN32A(pmv, m); \ return; \ } else if (mem == INVALID_MV) { \ mem = m; \ } else if (m != mem) { \ AV_WN32A(pmv, m); \ return; \ } \ } else { \ uint32_t m = AV_RN32A(&mv); \ if (!idx) { \ clamp_mv(pmv, &mv, s); \ return; \ } else if (mem == INVALID_MV) { \ mem = m; \ } else if (m != mem) { \ clamp_mv(pmv, &mv, s); \ return; \ } \ } \ } while (0) if (row > 0) { struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[(row - 1) * s->sb_cols * 8 + col]; if (mv->ref[0] == ref) { RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][0]); } else if (mv->ref[1] == ref) { RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][1]); } } if (col > s->tiling.tile_col_start) { struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[row * s->sb_cols * 8 + col - 1]; if (mv->ref[0] == ref) { RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][0]); } else if (mv->ref[1] == ref) { RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][1]); } } i = 2; } else { i = 0; } // previously coded MVs in this neighbourhood, using same reference frame for (; i < 8; i++) { int c = p[i][0] + col, r = p[i][1] + row; if (c >= s->tiling.tile_col_start && c < s->cols && r >= 0 && r < s->rows) { struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c]; if (mv->ref[0] == ref) { RETURN_MV(mv->mv[0]); } else if (mv->ref[1] == ref) { RETURN_MV(mv->mv[1]); } } } // MV at this position in previous frame, using same reference frame if (s->use_last_frame_mvs) { struct VP9mvrefPair *mv = &s->frames[REF_FRAME_MVPAIR].mv[row * s->sb_cols * 8 + col]; if (!s->frames[REF_FRAME_MVPAIR].uses_2pass) ff_thread_await_progress(&s->frames[REF_FRAME_MVPAIR].tf, row >> 3, 0); if (mv->ref[0] == ref) { RETURN_MV(mv->mv[0]); } else if (mv->ref[1] == ref) { RETURN_MV(mv->mv[1]); } } #define RETURN_SCALE_MV(mv, scale) \ do { \ if (scale) { \ VP56mv mv_temp = { -mv.x, -mv.y }; \ RETURN_MV(mv_temp); \ } else { \ RETURN_MV(mv); \ } \ } while (0) // previously coded MVs in this neighbourhood, using different reference frame for (i = 0; i < 8; i++) { int c = p[i][0] + col, r = p[i][1] + row; if (c >= s->tiling.tile_col_start && c < s->cols && r >= 0 && r < s->rows) { struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c]; if (mv->ref[0] != ref && mv->ref[0] >= 0) { RETURN_SCALE_MV(mv->mv[0], s->signbias[mv->ref[0]] != s->signbias[ref]); } if (mv->ref[1] != ref && mv->ref[1] >= 0 && // BUG - libvpx has this condition regardless of whether // we used the first ref MV and pre-scaling AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) { RETURN_SCALE_MV(mv->mv[1], s->signbias[mv->ref[1]] != s->signbias[ref]); } } } // MV at this position in previous frame, using different reference frame if (s->use_last_frame_mvs) { struct VP9mvrefPair *mv = &s->frames[REF_FRAME_MVPAIR].mv[row * s->sb_cols * 8 + col]; // no need to await_progress, because we already did that above if (mv->ref[0] != ref && mv->ref[0] >= 0) { RETURN_SCALE_MV(mv->mv[0], s->signbias[mv->ref[0]] != s->signbias[ref]); } if (mv->ref[1] != ref && mv->ref[1] >= 0 && // BUG - libvpx has this condition regardless of whether // we used the first ref MV and pre-scaling AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) { RETURN_SCALE_MV(mv->mv[1], s->signbias[mv->ref[1]] != s->signbias[ref]); } } AV_ZERO32(pmv); #undef INVALID_MV #undef RETURN_MV #undef RETURN_SCALE_MV } static av_always_inline int read_mv_component(VP9Context *s, int idx, int hp) { int bit, sign = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].sign); int n, c = vp8_rac_get_tree(&s->c, vp9_mv_class_tree, s->prob.p.mv_comp[idx].classes); s->counts.mv_comp[idx].sign[sign]++; s->counts.mv_comp[idx].classes[c]++; if (c) { int m; for (n = 0, m = 0; m < c; m++) { bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].bits[m]); n |= bit << m; s->counts.mv_comp[idx].bits[m][bit]++; } n <<= 3; bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree, s->prob.p.mv_comp[idx].fp); n |= bit << 1; s->counts.mv_comp[idx].fp[bit]++; if (hp) { bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].hp); s->counts.mv_comp[idx].hp[bit]++; n |= bit; } else { n |= 1; // bug in libvpx - we count for bw entropy purposes even if the // bit wasn't coded s->counts.mv_comp[idx].hp[1]++; } n += 8 << c; } else { n = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0); s->counts.mv_comp[idx].class0[n]++; bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree, s->prob.p.mv_comp[idx].class0_fp[n]); s->counts.mv_comp[idx].class0_fp[n][bit]++; n = (n << 3) | (bit << 1); if (hp) { bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0_hp); s->counts.mv_comp[idx].class0_hp[bit]++; n |= bit; } else { n |= 1; // bug in libvpx - we count for bw entropy purposes even if the // bit wasn't coded s->counts.mv_comp[idx].class0_hp[1]++; } } return sign ? -(n + 1) : (n + 1); } static void fill_mv(VP9Context *s, VP56mv *mv, int mode, int sb) { VP9Block *b = s->b; if (mode == ZEROMV) { AV_ZERO64(mv); } else { int hp; // FIXME cache this value and reuse for other subblocks find_ref_mvs(s, &mv[0], b->ref[0], 0, mode == NEARMV, mode == NEWMV ? -1 : sb); // FIXME maybe move this code into find_ref_mvs() if ((mode == NEWMV || sb == -1) && !(hp = s->highprecisionmvs && abs(mv[0].x) < 64 && abs(mv[0].y) < 64)) { if (mv[0].y & 1) { if (mv[0].y < 0) mv[0].y++; else mv[0].y--; } if (mv[0].x & 1) { if (mv[0].x < 0) mv[0].x++; else mv[0].x--; } } if (mode == NEWMV) { enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree, s->prob.p.mv_joint); s->counts.mv_joint[j]++; if (j >= MV_JOINT_V) mv[0].y += read_mv_component(s, 0, hp); if (j & 1) mv[0].x += read_mv_component(s, 1, hp); } if (b->comp) { // FIXME cache this value and reuse for other subblocks find_ref_mvs(s, &mv[1], b->ref[1], 1, mode == NEARMV, mode == NEWMV ? -1 : sb); if ((mode == NEWMV || sb == -1) && !(hp = s->highprecisionmvs && abs(mv[1].x) < 64 && abs(mv[1].y) < 64)) { if (mv[1].y & 1) { if (mv[1].y < 0) mv[1].y++; else mv[1].y--; } if (mv[1].x & 1) { if (mv[1].x < 0) mv[1].x++; else mv[1].x--; } } if (mode == NEWMV) { enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree, s->prob.p.mv_joint); s->counts.mv_joint[j]++; if (j >= MV_JOINT_V) mv[1].y += read_mv_component(s, 0, hp); if (j & 1) mv[1].x += read_mv_component(s, 1, hp); } } } } static av_always_inline void setctx_2d(uint8_t *ptr, int w, int h, ptrdiff_t stride, int v) { switch (w) { case 1: do { *ptr = v; ptr += stride; } while (--h); break; case 2: { int v16 = v * 0x0101; do { AV_WN16A(ptr, v16); ptr += stride; } while (--h); break; } case 4: { uint32_t v32 = v * 0x01010101; do { AV_WN32A(ptr, v32); ptr += stride; } while (--h); break; } case 8: { #if HAVE_FAST_64BIT uint64_t v64 = v * 0x0101010101010101ULL; do { AV_WN64A(ptr, v64); ptr += stride; } while (--h); #else uint32_t v32 = v * 0x01010101; do { AV_WN32A(ptr, v32); AV_WN32A(ptr + 4, v32); ptr += stride; } while (--h); #endif break; } } } static void decode_mode(AVCodecContext *ctx) { static const uint8_t left_ctx[N_BS_SIZES] = { 0x0, 0x8, 0x0, 0x8, 0xc, 0x8, 0xc, 0xe, 0xc, 0xe, 0xf, 0xe, 0xf }; static const uint8_t above_ctx[N_BS_SIZES] = { 0x0, 0x0, 0x8, 0x8, 0x8, 0xc, 0xc, 0xc, 0xe, 0xe, 0xe, 0xf, 0xf }; static const uint8_t max_tx_for_bl_bp[N_BS_SIZES] = { TX_32X32, TX_32X32, TX_32X32, TX_32X32, TX_16X16, TX_16X16, TX_16X16, TX_8X8, TX_8X8, TX_8X8, TX_4X4, TX_4X4, TX_4X4 }; VP9Context *s = ctx->priv_data; VP9Block *b = s->b; int row = s->row, col = s->col, row7 = s->row7; enum TxfmMode max_tx = max_tx_for_bl_bp[b->bs]; int bw4 = bwh_tab[1][b->bs][0], w4 = FFMIN(s->cols - col, bw4); int bh4 = bwh_tab[1][b->bs][1], h4 = FFMIN(s->rows - row, bh4), y; int have_a = row > 0, have_l = col > s->tiling.tile_col_start; int vref, filter_id; if (!s->segmentation.enabled) { b->seg_id = 0; } else if (s->keyframe || s->intraonly) { b->seg_id = vp8_rac_get_tree(&s->c, vp9_segmentation_tree, s->prob.seg); } else if (!s->segmentation.update_map || (s->segmentation.temporal && vp56_rac_get_prob_branchy(&s->c, s->prob.segpred[s->above_segpred_ctx[col] + s->left_segpred_ctx[row7]]))) { if (!s->errorres && !s->segmentation.ignore_refmap) { int pred = 8, x; uint8_t *refsegmap = s->frames[REF_FRAME_SEGMAP].segmentation_map; if (!s->frames[REF_FRAME_SEGMAP].uses_2pass) ff_thread_await_progress(&s->frames[REF_FRAME_SEGMAP].tf, row >> 3, 0); for (y = 0; y < h4; y++) { int idx_base = (y + row) * 8 * s->sb_cols + col; for (x = 0; x < w4; x++) pred = FFMIN(pred, refsegmap[idx_base + x]); } av_assert1(pred < 8); b->seg_id = pred; } else { b->seg_id = 0; } memset(&s->above_segpred_ctx[col], 1, w4); memset(&s->left_segpred_ctx[row7], 1, h4); } else { b->seg_id = vp8_rac_get_tree(&s->c, vp9_segmentation_tree, s->prob.seg); memset(&s->above_segpred_ctx[col], 0, w4); memset(&s->left_segpred_ctx[row7], 0, h4); } if (s->segmentation.enabled && (s->segmentation.update_map || s->keyframe || s->intraonly)) { setctx_2d(&s->frames[CUR_FRAME].segmentation_map[row * 8 * s->sb_cols + col], bw4, bh4, 8 * s->sb_cols, b->seg_id); } b->skip = s->segmentation.enabled && s->segmentation.feat[b->seg_id].skip_enabled; if (!b->skip) { int c = s->left_skip_ctx[row7] + s->above_skip_ctx[col]; b->skip = vp56_rac_get_prob(&s->c, s->prob.p.skip[c]); s->counts.skip[c][b->skip]++; } if (s->keyframe || s->intraonly) { b->intra = 1; } else if (s->segmentation.feat[b->seg_id].ref_enabled) { b->intra = !s->segmentation.feat[b->seg_id].ref_val; } else { int c, bit; if (have_a && have_l) { c = s->above_intra_ctx[col] + s->left_intra_ctx[row7]; c += (c == 2); } else { c = have_a ? 2 * s->above_intra_ctx[col] : have_l ? 2 * s->left_intra_ctx[row7] : 0; } bit = vp56_rac_get_prob(&s->c, s->prob.p.intra[c]); s->counts.intra[c][bit]++; b->intra = !bit; } if ((b->intra || !b->skip) && s->txfmmode == TX_SWITCHABLE) { int c; if (have_a) { if (have_l) { c = (s->above_skip_ctx[col] ? max_tx : s->above_txfm_ctx[col]) + (s->left_skip_ctx[row7] ? max_tx : s->left_txfm_ctx[row7]) > max_tx; } else { c = s->above_skip_ctx[col] ? 1 : (s->above_txfm_ctx[col] * 2 > max_tx); } } else if (have_l) { c = s->left_skip_ctx[row7] ? 1 : (s->left_txfm_ctx[row7] * 2 > max_tx); } else { c = 1; } switch (max_tx) { case TX_32X32: b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][0]); if (b->tx) { b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][1]); if (b->tx == 2) b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][2]); } s->counts.tx32p[c][b->tx]++; break; case TX_16X16: b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][0]); if (b->tx) b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][1]); s->counts.tx16p[c][b->tx]++; break; case TX_8X8: b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx8p[c]); s->counts.tx8p[c][b->tx]++; break; case TX_4X4: b->tx = TX_4X4; break; } } else { b->tx = FFMIN(max_tx, s->txfmmode); } if (s->keyframe || s->intraonly) { uint8_t *a = &s->above_mode_ctx[col * 2]; uint8_t *l = &s->left_mode_ctx[(row7) << 1]; b->comp = 0; if (b->bs > BS_8x8) { // FIXME the memory storage intermediates here aren't really // necessary, they're just there to make the code slightly // simpler for now b->mode[0] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree, vp9_default_kf_ymode_probs[a[0]][l[0]]); if (b->bs != BS_8x4) { b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree, vp9_default_kf_ymode_probs[a[1]][b->mode[0]]); l[0] = a[1] = b->mode[1]; } else { l[0] = a[1] = b->mode[1] = b->mode[0]; } if (b->bs != BS_4x8) { b->mode[2] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree, vp9_default_kf_ymode_probs[a[0]][l[1]]); if (b->bs != BS_8x4) { b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree, vp9_default_kf_ymode_probs[a[1]][b->mode[2]]); l[1] = a[1] = b->mode[3]; } else { l[1] = a[1] = b->mode[3] = b->mode[2]; } } else { b->mode[2] = b->mode[0]; l[1] = a[1] = b->mode[3] = b->mode[1]; } } else { b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree, vp9_default_kf_ymode_probs[*a][*l]); b->mode[3] = b->mode[2] = b->mode[1] = b->mode[0]; // FIXME this can probably be optimized memset(a, b->mode[0], bwh_tab[0][b->bs][0]); memset(l, b->mode[0], bwh_tab[0][b->bs][1]); } b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree, vp9_default_kf_uvmode_probs[b->mode[3]]); } else if (b->intra) { b->comp = 0; if (b->bs > BS_8x8) { b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree, s->prob.p.y_mode[0]); s->counts.y_mode[0][b->mode[0]]++; if (b->bs != BS_8x4) { b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree, s->prob.p.y_mode[0]); s->counts.y_mode[0][b->mode[1]]++; } else { b->mode[1] = b->mode[0]; } if (b->bs != BS_4x8) { b->mode[2] = vp8_rac_get_tree(&s->c, vp9_intramode_tree, s->prob.p.y_mode[0]); s->counts.y_mode[0][b->mode[2]]++; if (b->bs != BS_8x4) { b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree, s->prob.p.y_mode[0]); s->counts.y_mode[0][b->mode[3]]++; } else { b->mode[3] = b->mode[2]; } } else { b->mode[2] = b->mode[0]; b->mode[3] = b->mode[1]; } } else { static const uint8_t size_group[10] = { 3, 3, 3, 3, 2, 2, 2, 1, 1, 1 }; int sz = size_group[b->bs]; b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree, s->prob.p.y_mode[sz]); b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0]; s->counts.y_mode[sz][b->mode[3]]++; } b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree, s->prob.p.uv_mode[b->mode[3]]); s->counts.uv_mode[b->mode[3]][b->uvmode]++; } else { static const uint8_t inter_mode_ctx_lut[14][14] = { { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 }, { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 }, { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 }, { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 0, 3 }, { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 4 }, }; if (s->segmentation.feat[b->seg_id].ref_enabled) { av_assert2(s->segmentation.feat[b->seg_id].ref_val != 0); b->comp = 0; b->ref[0] = s->segmentation.feat[b->seg_id].ref_val - 1; } else { // read comp_pred flag if (s->comppredmode != PRED_SWITCHABLE) { b->comp = s->comppredmode == PRED_COMPREF; } else { int c; // FIXME add intra as ref=0xff (or -1) to make these easier? if (have_a) { if (have_l) { if (s->above_comp_ctx[col] && s->left_comp_ctx[row7]) { c = 4; } else if (s->above_comp_ctx[col]) { c = 2 + (s->left_intra_ctx[row7] || s->left_ref_ctx[row7] == s->fixcompref); } else if (s->left_comp_ctx[row7]) { c = 2 + (s->above_intra_ctx[col] || s->above_ref_ctx[col] == s->fixcompref); } else { c = (!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->fixcompref) ^ (!s->left_intra_ctx[row7] && s->left_ref_ctx[row & 7] == s->fixcompref); } } else { c = s->above_comp_ctx[col] ? 3 : (!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->fixcompref); } } else if (have_l) { c = s->left_comp_ctx[row7] ? 3 : (!s->left_intra_ctx[row7] && s->left_ref_ctx[row7] == s->fixcompref); } else { c = 1; } b->comp = vp56_rac_get_prob(&s->c, s->prob.p.comp[c]); s->counts.comp[c][b->comp]++; } // read actual references // FIXME probably cache a few variables here to prevent repetitive // memory accesses below if (b->comp) /* two references */ { int fix_idx = s->signbias[s->fixcompref], var_idx = !fix_idx, c, bit; b->ref[fix_idx] = s->fixcompref; // FIXME can this codeblob be replaced by some sort of LUT? if (have_a) { if (have_l) { if (s->above_intra_ctx[col]) { if (s->left_intra_ctx[row7]) { c = 2; } else { c = 1 + 2 * (s->left_ref_ctx[row7] != s->varcompref[1]); } } else if (s->left_intra_ctx[row7]) { c = 1 + 2 * (s->above_ref_ctx[col] != s->varcompref[1]); } else { int refl = s->left_ref_ctx[row7], refa = s->above_ref_ctx[col]; if (refl == refa && refa == s->varcompref[1]) { c = 0; } else if (!s->left_comp_ctx[row7] && !s->above_comp_ctx[col]) { if ((refa == s->fixcompref && refl == s->varcompref[0]) || (refl == s->fixcompref && refa == s->varcompref[0])) { c = 4; } else { c = (refa == refl) ? 3 : 1; } } else if (!s->left_comp_ctx[row7]) { if (refa == s->varcompref[1] && refl != s->varcompref[1]) { c = 1; } else { c = (refl == s->varcompref[1] && refa != s->varcompref[1]) ? 2 : 4; } } else if (!s->above_comp_ctx[col]) { if (refl == s->varcompref[1] && refa != s->varcompref[1]) { c = 1; } else { c = (refa == s->varcompref[1] && refl != s->varcompref[1]) ? 2 : 4; } } else { c = (refl == refa) ? 4 : 2; } } } else { if (s->above_intra_ctx[col]) { c = 2; } else if (s->above_comp_ctx[col]) { c = 4 * (s->above_ref_ctx[col] != s->varcompref[1]); } else { c = 3 * (s->above_ref_ctx[col] != s->varcompref[1]); } } } else if (have_l) { if (s->left_intra_ctx[row7]) { c = 2; } else if (s->left_comp_ctx[row7]) { c = 4 * (s->left_ref_ctx[row7] != s->varcompref[1]); } else { c = 3 * (s->left_ref_ctx[row7] != s->varcompref[1]); } } else { c = 2; } bit = vp56_rac_get_prob(&s->c, s->prob.p.comp_ref[c]); b->ref[var_idx] = s->varcompref[bit]; s->counts.comp_ref[c][bit]++; } else /* single reference */ { int bit, c; if (have_a && !s->above_intra_ctx[col]) { if (have_l && !s->left_intra_ctx[row7]) { if (s->left_comp_ctx[row7]) { if (s->above_comp_ctx[col]) { c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7] || !s->above_ref_ctx[col]); } else { c = (3 * !s->above_ref_ctx[col]) + (!s->fixcompref || !s->left_ref_ctx[row7]); } } else if (s->above_comp_ctx[col]) { c = (3 * !s->left_ref_ctx[row7]) + (!s->fixcompref || !s->above_ref_ctx[col]); } else { c = 2 * !s->left_ref_ctx[row7] + 2 * !s->above_ref_ctx[col]; } } else if (s->above_intra_ctx[col]) { c = 2; } else if (s->above_comp_ctx[col]) { c = 1 + (!s->fixcompref || !s->above_ref_ctx[col]); } else { c = 4 * (!s->above_ref_ctx[col]); } } else if (have_l && !s->left_intra_ctx[row7]) { if (s->left_intra_ctx[row7]) { c = 2; } else if (s->left_comp_ctx[row7]) { c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7]); } else { c = 4 * (!s->left_ref_ctx[row7]); } } else { c = 2; } bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][0]); s->counts.single_ref[c][0][bit]++; if (!bit) { b->ref[0] = 0; } else { // FIXME can this codeblob be replaced by some sort of LUT? if (have_a) { if (have_l) { if (s->left_intra_ctx[row7]) { if (s->above_intra_ctx[col]) { c = 2; } else if (s->above_comp_ctx[col]) { c = 1 + 2 * (s->fixcompref == 1 || s->above_ref_ctx[col] == 1); } else if (!s->above_ref_ctx[col]) { c = 3; } else { c = 4 * (s->above_ref_ctx[col] == 1); } } else if (s->above_intra_ctx[col]) { if (s->left_intra_ctx[row7]) { c = 2; } else if (s->left_comp_ctx[row7]) { c = 1 + 2 * (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1); } else if (!s->left_ref_ctx[row7]) { c = 3; } else { c = 4 * (s->left_ref_ctx[row7] == 1); } } else if (s->above_comp_ctx[col]) { if (s->left_comp_ctx[row7]) { if (s->left_ref_ctx[row7] == s->above_ref_ctx[col]) { c = 3 * (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1); } else { c = 2; } } else if (!s->left_ref_ctx[row7]) { c = 1 + 2 * (s->fixcompref == 1 || s->above_ref_ctx[col] == 1); } else { c = 3 * (s->left_ref_ctx[row7] == 1) + (s->fixcompref == 1 || s->above_ref_ctx[col] == 1); } } else if (s->left_comp_ctx[row7]) { if (!s->above_ref_ctx[col]) { c = 1 + 2 * (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1); } else { c = 3 * (s->above_ref_ctx[col] == 1) + (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1); } } else if (!s->above_ref_ctx[col]) { if (!s->left_ref_ctx[row7]) { c = 3; } else { c = 4 * (s->left_ref_ctx[row7] == 1); } } else if (!s->left_ref_ctx[row7]) { c = 4 * (s->above_ref_ctx[col] == 1); } else { c = 2 * (s->left_ref_ctx[row7] == 1) + 2 * (s->above_ref_ctx[col] == 1); } } else { if (s->above_intra_ctx[col] || (!s->above_comp_ctx[col] && !s->above_ref_ctx[col])) { c = 2; } else if (s->above_comp_ctx[col]) { c = 3 * (s->fixcompref == 1 || s->above_ref_ctx[col] == 1); } else { c = 4 * (s->above_ref_ctx[col] == 1); } } } else if (have_l) { if (s->left_intra_ctx[row7] || (!s->left_comp_ctx[row7] && !s->left_ref_ctx[row7])) { c = 2; } else if (s->left_comp_ctx[row7]) { c = 3 * (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1); } else { c = 4 * (s->left_ref_ctx[row7] == 1); } } else { c = 2; } bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][1]); s->counts.single_ref[c][1][bit]++; b->ref[0] = 1 + bit; } } } if (b->bs <= BS_8x8) { if (s->segmentation.feat[b->seg_id].skip_enabled) { b->mode[0] = b->mode[1] = b->mode[2] = b->mode[3] = ZEROMV; } else { static const uint8_t off[10] = { 3, 0, 0, 1, 0, 0, 0, 0, 0, 0 }; // FIXME this needs to use the LUT tables from find_ref_mvs // because not all are -1,0/0,-1 int c = inter_mode_ctx_lut[s->above_mode_ctx[col + off[b->bs]]] [s->left_mode_ctx[row7 + off[b->bs]]]; b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree, s->prob.p.mv_mode[c]); b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0]; s->counts.mv_mode[c][b->mode[0] - 10]++; } } if (s->filtermode == FILTER_SWITCHABLE) { int c; if (have_a && s->above_mode_ctx[col] >= NEARESTMV) { if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) { c = s->above_filter_ctx[col] == s->left_filter_ctx[row7] ? s->left_filter_ctx[row7] : 3; } else { c = s->above_filter_ctx[col]; } } else if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) { c = s->left_filter_ctx[row7]; } else { c = 3; } filter_id = vp8_rac_get_tree(&s->c, vp9_filter_tree, s->prob.p.filter[c]); s->counts.filter[c][filter_id]++; b->filter = vp9_filter_lut[filter_id]; } else { b->filter = s->filtermode; } if (b->bs > BS_8x8) { int c = inter_mode_ctx_lut[s->above_mode_ctx[col]][s->left_mode_ctx[row7]]; b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree, s->prob.p.mv_mode[c]); s->counts.mv_mode[c][b->mode[0] - 10]++; fill_mv(s, b->mv[0], b->mode[0], 0); if (b->bs != BS_8x4) { b->mode[1] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree, s->prob.p.mv_mode[c]); s->counts.mv_mode[c][b->mode[1] - 10]++; fill_mv(s, b->mv[1], b->mode[1], 1); } else { b->mode[1] = b->mode[0]; AV_COPY32(&b->mv[1][0], &b->mv[0][0]); AV_COPY32(&b->mv[1][1], &b->mv[0][1]); } if (b->bs != BS_4x8) { b->mode[2] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree, s->prob.p.mv_mode[c]); s->counts.mv_mode[c][b->mode[2] - 10]++; fill_mv(s, b->mv[2], b->mode[2], 2); if (b->bs != BS_8x4) { b->mode[3] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree, s->prob.p.mv_mode[c]); s->counts.mv_mode[c][b->mode[3] - 10]++; fill_mv(s, b->mv[3], b->mode[3], 3); } else { b->mode[3] = b->mode[2]; AV_COPY32(&b->mv[3][0], &b->mv[2][0]); AV_COPY32(&b->mv[3][1], &b->mv[2][1]); } } else { b->mode[2] = b->mode[0]; AV_COPY32(&b->mv[2][0], &b->mv[0][0]); AV_COPY32(&b->mv[2][1], &b->mv[0][1]); b->mode[3] = b->mode[1]; AV_COPY32(&b->mv[3][0], &b->mv[1][0]); AV_COPY32(&b->mv[3][1], &b->mv[1][1]); } } else { fill_mv(s, b->mv[0], b->mode[0], -1); AV_COPY32(&b->mv[1][0], &b->mv[0][0]); AV_COPY32(&b->mv[2][0], &b->mv[0][0]); AV_COPY32(&b->mv[3][0], &b->mv[0][0]); AV_COPY32(&b->mv[1][1], &b->mv[0][1]); AV_COPY32(&b->mv[2][1], &b->mv[0][1]); AV_COPY32(&b->mv[3][1], &b->mv[0][1]); } vref = b->ref[b->comp ? s->signbias[s->varcompref[0]] : 0]; } #if HAVE_FAST_64BIT #define SPLAT_CTX(var, val, n) \ switch (n) { \ case 1: var = val; break; \ case 2: AV_WN16A(&var, val * 0x0101); break; \ case 4: AV_WN32A(&var, val * 0x01010101); break; \ case 8: AV_WN64A(&var, val * 0x0101010101010101ULL); break; \ case 16: { \ uint64_t v64 = val * 0x0101010101010101ULL; \ AV_WN64A( &var, v64); \ AV_WN64A(&((uint8_t *) &var)[8], v64); \ break; \ } \ } #else #define SPLAT_CTX(var, val, n) \ switch (n) { \ case 1: var = val; break; \ case 2: AV_WN16A(&var, val * 0x0101); break; \ case 4: AV_WN32A(&var, val * 0x01010101); break; \ case 8: { \ uint32_t v32 = val * 0x01010101; \ AV_WN32A( &var, v32); \ AV_WN32A(&((uint8_t *) &var)[4], v32); \ break; \ } \ case 16: { \ uint32_t v32 = val * 0x01010101; \ AV_WN32A( &var, v32); \ AV_WN32A(&((uint8_t *) &var)[4], v32); \ AV_WN32A(&((uint8_t *) &var)[8], v32); \ AV_WN32A(&((uint8_t *) &var)[12], v32); \ break; \ } \ } #endif switch (bwh_tab[1][b->bs][0]) { #define SET_CTXS(dir, off, n) \ do { \ SPLAT_CTX(s->dir##_skip_ctx[off], b->skip, n); \ SPLAT_CTX(s->dir##_txfm_ctx[off], b->tx, n); \ SPLAT_CTX(s->dir##_partition_ctx[off], dir##_ctx[b->bs], n); \ if (!s->keyframe && !s->intraonly) { \ SPLAT_CTX(s->dir##_intra_ctx[off], b->intra, n); \ SPLAT_CTX(s->dir##_comp_ctx[off], b->comp, n); \ SPLAT_CTX(s->dir##_mode_ctx[off], b->mode[3], n); \ if (!b->intra) { \ SPLAT_CTX(s->dir##_ref_ctx[off], vref, n); \ if (s->filtermode == FILTER_SWITCHABLE) { \ SPLAT_CTX(s->dir##_filter_ctx[off], filter_id, n); \ } \ } \ } \ } while (0) case 1: SET_CTXS(above, col, 1); break; case 2: SET_CTXS(above, col, 2); break; case 4: SET_CTXS(above, col, 4); break; case 8: SET_CTXS(above, col, 8); break; } switch (bwh_tab[1][b->bs][1]) { case 1: SET_CTXS(left, row7, 1); break; case 2: SET_CTXS(left, row7, 2); break; case 4: SET_CTXS(left, row7, 4); break; case 8: SET_CTXS(left, row7, 8); break; } #undef SPLAT_CTX #undef SET_CTXS if (!s->keyframe && !s->intraonly) { if (b->bs > BS_8x8) { int mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]); AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][0], &b->mv[1][0]); AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][1], &b->mv[1][1]); AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][0], mv0); AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][1], mv1); AV_COPY32(&s->above_mv_ctx[col * 2 + 0][0], &b->mv[2][0]); AV_COPY32(&s->above_mv_ctx[col * 2 + 0][1], &b->mv[2][1]); AV_WN32A(&s->above_mv_ctx[col * 2 + 1][0], mv0); AV_WN32A(&s->above_mv_ctx[col * 2 + 1][1], mv1); } else { int n, mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]); for (n = 0; n < w4 * 2; n++) { AV_WN32A(&s->above_mv_ctx[col * 2 + n][0], mv0); AV_WN32A(&s->above_mv_ctx[col * 2 + n][1], mv1); } for (n = 0; n < h4 * 2; n++) { AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][0], mv0); AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][1], mv1); } } } // FIXME kinda ugly for (y = 0; y < h4; y++) { int x, o = (row + y) * s->sb_cols * 8 + col; struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[o]; if (b->intra) { for (x = 0; x < w4; x++) { mv[x].ref[0] = mv[x].ref[1] = -1; } } else if (b->comp) { for (x = 0; x < w4; x++) { mv[x].ref[0] = b->ref[0]; mv[x].ref[1] = b->ref[1]; AV_COPY32(&mv[x].mv[0], &b->mv[3][0]); AV_COPY32(&mv[x].mv[1], &b->mv[3][1]); } } else { for (x = 0; x < w4; x++) { mv[x].ref[0] = b->ref[0]; mv[x].ref[1] = -1; AV_COPY32(&mv[x].mv[0], &b->mv[3][0]); } } } } // FIXME merge cnt/eob arguments? static av_always_inline int decode_coeffs_b_generic(VP56RangeCoder *c, int16_t *coef, int n_coeffs, int is_tx32x32, int is8bitsperpixel, int bpp, unsigned (*cnt)[6][3], unsigned (*eob)[6][2], uint8_t (*p)[6][11], int nnz, const int16_t *scan, const int16_t (*nb)[2], const int16_t *band_counts, const int16_t *qmul) { int i = 0, band = 0, band_left = band_counts[band]; uint8_t *tp = p[0][nnz]; uint8_t cache[1024]; do { int val, rc; val = vp56_rac_get_prob_branchy(c, tp[0]); // eob eob[band][nnz][val]++; if (!val) break; skip_eob: if (!vp56_rac_get_prob_branchy(c, tp[1])) { // zero cnt[band][nnz][0]++; if (!--band_left) band_left = band_counts[++band]; cache[scan[i]] = 0; nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1; tp = p[band][nnz]; if (++i == n_coeffs) break; //invalid input; blocks should end with EOB goto skip_eob; } rc = scan[i]; if (!vp56_rac_get_prob_branchy(c, tp[2])) { // one cnt[band][nnz][1]++; val = 1; cache[rc] = 1; } else { // fill in p[3-10] (model fill) - only once per frame for each pos if (!tp[3]) memcpy(&tp[3], vp9_model_pareto8[tp[2]], 8); cnt[band][nnz][2]++; if (!vp56_rac_get_prob_branchy(c, tp[3])) { // 2, 3, 4 if (!vp56_rac_get_prob_branchy(c, tp[4])) { cache[rc] = val = 2; } else { val = 3 + vp56_rac_get_prob(c, tp[5]); cache[rc] = 3; } } else if (!vp56_rac_get_prob_branchy(c, tp[6])) { // cat1/2 cache[rc] = 4; if (!vp56_rac_get_prob_branchy(c, tp[7])) { val = 5 + vp56_rac_get_prob(c, 159); } else { val = 7 + (vp56_rac_get_prob(c, 165) << 1); val += vp56_rac_get_prob(c, 145); } } else { // cat 3-6 cache[rc] = 5; if (!vp56_rac_get_prob_branchy(c, tp[8])) { if (!vp56_rac_get_prob_branchy(c, tp[9])) { val = 11 + (vp56_rac_get_prob(c, 173) << 2); val += (vp56_rac_get_prob(c, 148) << 1); val += vp56_rac_get_prob(c, 140); } else { val = 19 + (vp56_rac_get_prob(c, 176) << 3); val += (vp56_rac_get_prob(c, 155) << 2); val += (vp56_rac_get_prob(c, 140) << 1); val += vp56_rac_get_prob(c, 135); } } else if (!vp56_rac_get_prob_branchy(c, tp[10])) { val = 35 + (vp56_rac_get_prob(c, 180) << 4); val += (vp56_rac_get_prob(c, 157) << 3); val += (vp56_rac_get_prob(c, 141) << 2); val += (vp56_rac_get_prob(c, 134) << 1); val += vp56_rac_get_prob(c, 130); } else { val = 67; if (!is8bitsperpixel) { if (bpp == 12) { val += vp56_rac_get_prob(c, 255) << 17; val += vp56_rac_get_prob(c, 255) << 16; } val += (vp56_rac_get_prob(c, 255) << 15); val += (vp56_rac_get_prob(c, 255) << 14); } val += (vp56_rac_get_prob(c, 254) << 13); val += (vp56_rac_get_prob(c, 254) << 12); val += (vp56_rac_get_prob(c, 254) << 11); val += (vp56_rac_get_prob(c, 252) << 10); val += (vp56_rac_get_prob(c, 249) << 9); val += (vp56_rac_get_prob(c, 243) << 8); val += (vp56_rac_get_prob(c, 230) << 7); val += (vp56_rac_get_prob(c, 196) << 6); val += (vp56_rac_get_prob(c, 177) << 5); val += (vp56_rac_get_prob(c, 153) << 4); val += (vp56_rac_get_prob(c, 140) << 3); val += (vp56_rac_get_prob(c, 133) << 2); val += (vp56_rac_get_prob(c, 130) << 1); val += vp56_rac_get_prob(c, 129); } } } #define STORE_COEF(c, i, v) do { \ if (is8bitsperpixel) { \ c[i] = v; \ } else { \ AV_WN32A(&c[i * 2], v); \ } \ } while (0) if (!--band_left) band_left = band_counts[++band]; if (is_tx32x32) STORE_COEF(coef, rc, ((vp8_rac_get(c) ? -val : val) * qmul[!!i]) / 2); else STORE_COEF(coef, rc, (vp8_rac_get(c) ? -val : val) * qmul[!!i]); nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1; tp = p[band][nnz]; } while (++i < n_coeffs); return i; } static int decode_coeffs_b_8bpp(VP9Context *s, int16_t *coef, int n_coeffs, unsigned (*cnt)[6][3], unsigned (*eob)[6][2], uint8_t (*p)[6][11], int nnz, const int16_t *scan, const int16_t (*nb)[2], const int16_t *band_counts, const int16_t *qmul) { return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 1, 8, cnt, eob, p, nnz, scan, nb, band_counts, qmul); } static int decode_coeffs_b32_8bpp(VP9Context *s, int16_t *coef, int n_coeffs, unsigned (*cnt)[6][3], unsigned (*eob)[6][2], uint8_t (*p)[6][11], int nnz, const int16_t *scan, const int16_t (*nb)[2], const int16_t *band_counts, const int16_t *qmul) { return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 1, 8, cnt, eob, p, nnz, scan, nb, band_counts, qmul); } static int decode_coeffs_b_16bpp(VP9Context *s, int16_t *coef, int n_coeffs, unsigned (*cnt)[6][3], unsigned (*eob)[6][2], uint8_t (*p)[6][11], int nnz, const int16_t *scan, const int16_t (*nb)[2], const int16_t *band_counts, const int16_t *qmul) { return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 0, s->bpp, cnt, eob, p, nnz, scan, nb, band_counts, qmul); } static int decode_coeffs_b32_16bpp(VP9Context *s, int16_t *coef, int n_coeffs, unsigned (*cnt)[6][3], unsigned (*eob)[6][2], uint8_t (*p)[6][11], int nnz, const int16_t *scan, const int16_t (*nb)[2], const int16_t *band_counts, const int16_t *qmul) { return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 0, s->bpp, cnt, eob, p, nnz, scan, nb, band_counts, qmul); } static av_always_inline void decode_coeffs(AVCodecContext *ctx, int is8bitsperpixel) { VP9Context *s = ctx->priv_data; VP9Block *b = s->b; int row = s->row, col = s->col; uint8_t (*p)[6][11] = s->prob.coef[b->tx][0 /* y */][!b->intra]; unsigned (*c)[6][3] = s->counts.coef[b->tx][0 /* y */][!b->intra]; unsigned (*e)[6][2] = s->counts.eob[b->tx][0 /* y */][!b->intra]; int w4 = bwh_tab[1][b->bs][0] << 1, h4 = bwh_tab[1][b->bs][1] << 1; int end_x = FFMIN(2 * (s->cols - col), w4); int end_y = FFMIN(2 * (s->rows - row), h4); int n, pl, x, y, res; int16_t (*qmul)[2] = s->segmentation.feat[b->seg_id].qmul; int tx = 4 * s->lossless + b->tx; const int16_t * const *yscans = vp9_scans[tx]; const int16_t (* const *ynbs)[2] = vp9_scans_nb[tx]; const int16_t *uvscan = vp9_scans[b->uvtx][DCT_DCT]; const int16_t (*uvnb)[2] = vp9_scans_nb[b->uvtx][DCT_DCT]; uint8_t *a = &s->above_y_nnz_ctx[col * 2]; uint8_t *l = &s->left_y_nnz_ctx[(row & 7) << 1]; static const int16_t band_counts[4][8] = { { 1, 2, 3, 4, 3, 16 - 13 }, { 1, 2, 3, 4, 11, 64 - 21 }, { 1, 2, 3, 4, 11, 256 - 21 }, { 1, 2, 3, 4, 11, 1024 - 21 }, }; const int16_t *y_band_counts = band_counts[b->tx]; const int16_t *uv_band_counts = band_counts[b->uvtx]; int bytesperpixel = is8bitsperpixel ? 1 : 2; #define MERGE(la, end, step, rd) \ for (n = 0; n < end; n += step) \ la[n] = !!rd(&la[n]) #define MERGE_CTX(step, rd) \ do { \ MERGE(l, end_y, step, rd); \ MERGE(a, end_x, step, rd); \ } while (0) #define DECODE_Y_COEF_LOOP(step, mode_index, v) \ for (n = 0, y = 0; y < end_y; y += step) { \ for (x = 0; x < end_x; x += step, n += step * step) { \ enum TxfmType txtp = vp9_intra_txfm_type[b->mode[mode_index]]; \ res = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \ (s, s->block + 16 * n * bytesperpixel, 16 * step * step, \ c, e, p, a[x] + l[y], yscans[txtp], \ ynbs[txtp], y_band_counts, qmul[0]); \ a[x] = l[y] = !!res; \ if (step >= 4) { \ AV_WN16A(&s->eob[n], res); \ } else { \ s->eob[n] = res; \ } \ } \ } #define SPLAT(la, end, step, cond) \ if (step == 2) { \ for (n = 1; n < end; n += step) \ la[n] = la[n - 1]; \ } else if (step == 4) { \ if (cond) { \ for (n = 0; n < end; n += step) \ AV_WN32A(&la[n], la[n] * 0x01010101); \ } else { \ for (n = 0; n < end; n += step) \ memset(&la[n + 1], la[n], FFMIN(end - n - 1, 3)); \ } \ } else /* step == 8 */ { \ if (cond) { \ if (HAVE_FAST_64BIT) { \ for (n = 0; n < end; n += step) \ AV_WN64A(&la[n], la[n] * 0x0101010101010101ULL); \ } else { \ for (n = 0; n < end; n += step) { \ uint32_t v32 = la[n] * 0x01010101; \ AV_WN32A(&la[n], v32); \ AV_WN32A(&la[n + 4], v32); \ } \ } \ } else { \ for (n = 0; n < end; n += step) \ memset(&la[n + 1], la[n], FFMIN(end - n - 1, 7)); \ } \ } #define SPLAT_CTX(step) \ do { \ SPLAT(a, end_x, step, end_x == w4); \ SPLAT(l, end_y, step, end_y == h4); \ } while (0) /* y tokens */ switch (b->tx) { case TX_4X4: DECODE_Y_COEF_LOOP(1, b->bs > BS_8x8 ? n : 0,); break; case TX_8X8: MERGE_CTX(2, AV_RN16A); DECODE_Y_COEF_LOOP(2, 0,); SPLAT_CTX(2); break; case TX_16X16: MERGE_CTX(4, AV_RN32A); DECODE_Y_COEF_LOOP(4, 0,); SPLAT_CTX(4); break; case TX_32X32: MERGE_CTX(8, AV_RN64A); DECODE_Y_COEF_LOOP(8, 0, 32); SPLAT_CTX(8); break; } #define DECODE_UV_COEF_LOOP(step, v) \ for (n = 0, y = 0; y < end_y; y += step) { \ for (x = 0; x < end_x; x += step, n += step * step) { \ res = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \ (s, s->uvblock[pl] + 16 * n * bytesperpixel, \ 16 * step * step, c, e, p, a[x] + l[y], \ uvscan, uvnb, uv_band_counts, qmul[1]); \ a[x] = l[y] = !!res; \ if (step >= 4) { \ AV_WN16A(&s->uveob[pl][n], res); \ } else { \ s->uveob[pl][n] = res; \ } \ } \ } p = s->prob.coef[b->uvtx][1 /* uv */][!b->intra]; c = s->counts.coef[b->uvtx][1 /* uv */][!b->intra]; e = s->counts.eob[b->uvtx][1 /* uv */][!b->intra]; w4 >>= s->ss_h; end_x >>= s->ss_h; h4 >>= s->ss_v; end_y >>= s->ss_v; for (pl = 0; pl < 2; pl++) { a = &s->above_uv_nnz_ctx[pl][col << !s->ss_h]; l = &s->left_uv_nnz_ctx[pl][(row & 7) << !s->ss_v]; switch (b->uvtx) { case TX_4X4: DECODE_UV_COEF_LOOP(1,); break; case TX_8X8: MERGE_CTX(2, AV_RN16A); DECODE_UV_COEF_LOOP(2,); SPLAT_CTX(2); break; case TX_16X16: MERGE_CTX(4, AV_RN32A); DECODE_UV_COEF_LOOP(4,); SPLAT_CTX(4); break; case TX_32X32: MERGE_CTX(8, AV_RN64A); DECODE_UV_COEF_LOOP(8, 32); SPLAT_CTX(8); break; } } } static void decode_coeffs_8bpp(AVCodecContext *ctx) { decode_coeffs(ctx, 1); } static void decode_coeffs_16bpp(AVCodecContext *ctx) { decode_coeffs(ctx, 0); } static av_always_inline int check_intra_mode(VP9Context *s, int mode, uint8_t **a, uint8_t *dst_edge, ptrdiff_t stride_edge, uint8_t *dst_inner, ptrdiff_t stride_inner, uint8_t *l, int col, int x, int w, int row, int y, enum TxfmMode tx, int p, int ss_h, int ss_v, int bytesperpixel) { int have_top = row > 0 || y > 0; int have_left = col > s->tiling.tile_col_start || x > 0; int have_right = x < w - 1; int bpp = s->bpp; static const uint8_t mode_conv[10][2 /* have_left */][2 /* have_top */] = { [VERT_PRED] = { { DC_127_PRED, VERT_PRED }, { DC_127_PRED, VERT_PRED } }, [HOR_PRED] = { { DC_129_PRED, DC_129_PRED }, { HOR_PRED, HOR_PRED } }, [DC_PRED] = { { DC_128_PRED, TOP_DC_PRED }, { LEFT_DC_PRED, DC_PRED } }, [DIAG_DOWN_LEFT_PRED] = { { DC_127_PRED, DIAG_DOWN_LEFT_PRED }, { DC_127_PRED, DIAG_DOWN_LEFT_PRED } }, [DIAG_DOWN_RIGHT_PRED] = { { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED }, { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED } }, [VERT_RIGHT_PRED] = { { VERT_RIGHT_PRED, VERT_RIGHT_PRED }, { VERT_RIGHT_PRED, VERT_RIGHT_PRED } }, [HOR_DOWN_PRED] = { { HOR_DOWN_PRED, HOR_DOWN_PRED }, { HOR_DOWN_PRED, HOR_DOWN_PRED } }, [VERT_LEFT_PRED] = { { DC_127_PRED, VERT_LEFT_PRED }, { DC_127_PRED, VERT_LEFT_PRED } }, [HOR_UP_PRED] = { { DC_129_PRED, DC_129_PRED }, { HOR_UP_PRED, HOR_UP_PRED } }, [TM_VP8_PRED] = { { DC_129_PRED, VERT_PRED }, { HOR_PRED, TM_VP8_PRED } }, }; static const struct { uint8_t needs_left:1; uint8_t needs_top:1; uint8_t needs_topleft:1; uint8_t needs_topright:1; uint8_t invert_left:1; } edges[N_INTRA_PRED_MODES] = { [VERT_PRED] = { .needs_top = 1 }, [HOR_PRED] = { .needs_left = 1 }, [DC_PRED] = { .needs_top = 1, .needs_left = 1 }, [DIAG_DOWN_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 }, [DIAG_DOWN_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 }, [VERT_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 }, [HOR_DOWN_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 }, [VERT_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 }, [HOR_UP_PRED] = { .needs_left = 1, .invert_left = 1 }, [TM_VP8_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 }, [LEFT_DC_PRED] = { .needs_left = 1 }, [TOP_DC_PRED] = { .needs_top = 1 }, [DC_128_PRED] = { 0 }, [DC_127_PRED] = { 0 }, [DC_129_PRED] = { 0 } }; av_assert2(mode >= 0 && mode < 10); mode = mode_conv[mode][have_left][have_top]; if (edges[mode].needs_top) { uint8_t *top, *topleft; int n_px_need = 4 << tx, n_px_have = (((s->cols - col) << !ss_h) - x) * 4; int n_px_need_tr = 0; if (tx == TX_4X4 && edges[mode].needs_topright && have_right) n_px_need_tr = 4; // if top of sb64-row, use s->intra_pred_data[] instead of // dst[-stride] for intra prediction (it contains pre- instead of // post-loopfilter data) if (have_top) { top = !(row & 7) && !y ? s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel : y == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner]; if (have_left) topleft = !(row & 7) && !y ? s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel : y == 0 || x == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner]; } if (have_top && (!edges[mode].needs_topleft || (have_left && top == topleft)) && (tx != TX_4X4 || !edges[mode].needs_topright || have_right) && n_px_need + n_px_need_tr <= n_px_have) { *a = top; } else { if (have_top) { if (n_px_need <= n_px_have) { memcpy(*a, top, n_px_need * bytesperpixel); } else { #define memset_bpp(c, i1, v, i2, num) do { \ if (bytesperpixel == 1) { \ memset(&(c)[(i1)], (v)[(i2)], (num)); \ } else { \ int n, val = AV_RN16A(&(v)[(i2) * 2]); \ for (n = 0; n < (num); n++) { \ AV_WN16A(&(c)[((i1) + n) * 2], val); \ } \ } \ } while (0) memcpy(*a, top, n_px_have * bytesperpixel); memset_bpp(*a, n_px_have, (*a), n_px_have - 1, n_px_need - n_px_have); } } else { #define memset_val(c, val, num) do { \ if (bytesperpixel == 1) { \ memset((c), (val), (num)); \ } else { \ int n; \ for (n = 0; n < (num); n++) { \ AV_WN16A(&(c)[n * 2], (val)); \ } \ } \ } while (0) memset_val(*a, (128 << (bpp - 8)) - 1, n_px_need); } if (edges[mode].needs_topleft) { if (have_left && have_top) { #define assign_bpp(c, i1, v, i2) do { \ if (bytesperpixel == 1) { \ (c)[(i1)] = (v)[(i2)]; \ } else { \ AV_COPY16(&(c)[(i1) * 2], &(v)[(i2) * 2]); \ } \ } while (0) assign_bpp(*a, -1, topleft, -1); } else { #define assign_val(c, i, v) do { \ if (bytesperpixel == 1) { \ (c)[(i)] = (v); \ } else { \ AV_WN16A(&(c)[(i) * 2], (v)); \ } \ } while (0) assign_val((*a), -1, (128 << (bpp - 8)) + (have_top ? +1 : -1)); } } if (tx == TX_4X4 && edges[mode].needs_topright) { if (have_top && have_right && n_px_need + n_px_need_tr <= n_px_have) { memcpy(&(*a)[4 * bytesperpixel], &top[4 * bytesperpixel], 4 * bytesperpixel); } else { memset_bpp(*a, 4, *a, 3, 4); } } } } if (edges[mode].needs_left) { if (have_left) { int n_px_need = 4 << tx, i, n_px_have = (((s->rows - row) << !ss_v) - y) * 4; uint8_t *dst = x == 0 ? dst_edge : dst_inner; ptrdiff_t stride = x == 0 ? stride_edge : stride_inner; if (edges[mode].invert_left) { if (n_px_need <= n_px_have) { for (i = 0; i < n_px_need; i++) assign_bpp(l, i, &dst[i * stride], -1); } else { for (i = 0; i < n_px_have; i++) assign_bpp(l, i, &dst[i * stride], -1); memset_bpp(l, n_px_have, l, n_px_have - 1, n_px_need - n_px_have); } } else { if (n_px_need <= n_px_have) { for (i = 0; i < n_px_need; i++) assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1); } else { for (i = 0; i < n_px_have; i++) assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1); memset_bpp(l, 0, l, n_px_need - n_px_have, n_px_need - n_px_have); } } } else { memset_val(l, (128 << (bpp - 8)) + 1, 4 << tx); } } return mode; } static av_always_inline void intra_recon(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off, int bytesperpixel) { VP9Context *s = ctx->priv_data; VP9Block *b = s->b; int row = s->row, col = s->col; int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n; int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2); int end_x = FFMIN(2 * (s->cols - col), w4); int end_y = FFMIN(2 * (s->rows - row), h4); int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless; int uvstep1d = 1 << b->uvtx, p; uint8_t *dst = s->dst[0], *dst_r = s->frames[CUR_FRAME].tf.f->data[0] + y_off; LOCAL_ALIGNED_32(uint8_t, a_buf, [96]); LOCAL_ALIGNED_32(uint8_t, l, [64]); for (n = 0, y = 0; y < end_y; y += step1d) { uint8_t *ptr = dst, *ptr_r = dst_r; for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d * bytesperpixel, ptr_r += 4 * step1d * bytesperpixel, n += step) { int mode = b->mode[b->bs > BS_8x8 && b->tx == TX_4X4 ? y * 2 + x : 0]; uint8_t *a = &a_buf[32]; enum TxfmType txtp = vp9_intra_txfm_type[mode]; int eob = b->skip ? 0 : b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n]; mode = check_intra_mode(s, mode, &a, ptr_r, s->frames[CUR_FRAME].tf.f->linesize[0], ptr, s->y_stride, l, col, x, w4, row, y, b->tx, 0, 0, 0, bytesperpixel); s->dsp.intra_pred[b->tx][mode](ptr, s->y_stride, l, a); if (eob) s->dsp.itxfm_add[tx][txtp](ptr, s->y_stride, s->block + 16 * n * bytesperpixel, eob); } dst_r += 4 * step1d * s->frames[CUR_FRAME].tf.f->linesize[0]; dst += 4 * step1d * s->y_stride; } // U/V w4 >>= s->ss_h; end_x >>= s->ss_h; end_y >>= s->ss_v; step = 1 << (b->uvtx * 2); for (p = 0; p < 2; p++) { dst = s->dst[1 + p]; dst_r = s->frames[CUR_FRAME].tf.f->data[1 + p] + uv_off; for (n = 0, y = 0; y < end_y; y += uvstep1d) { uint8_t *ptr = dst, *ptr_r = dst_r; for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d * bytesperpixel, ptr_r += 4 * uvstep1d * bytesperpixel, n += step) { int mode = b->uvmode; uint8_t *a = &a_buf[32]; int eob = b->skip ? 0 : b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n]; mode = check_intra_mode(s, mode, &a, ptr_r, s->frames[CUR_FRAME].tf.f->linesize[1], ptr, s->uv_stride, l, col, x, w4, row, y, b->uvtx, p + 1, s->ss_h, s->ss_v, bytesperpixel); s->dsp.intra_pred[b->uvtx][mode](ptr, s->uv_stride, l, a); if (eob) s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride, s->uvblock[p] + 16 * n * bytesperpixel, eob); } dst_r += 4 * uvstep1d * s->frames[CUR_FRAME].tf.f->linesize[1]; dst += 4 * uvstep1d * s->uv_stride; } } } static void intra_recon_8bpp(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off) { intra_recon(ctx, y_off, uv_off, 1); } static void intra_recon_16bpp(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off) { intra_recon(ctx, y_off, uv_off, 2); } static av_always_inline void mc_luma_scaled(VP9Context *s, vp9_scaled_mc_func smc, uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *ref, ptrdiff_t ref_stride, ThreadFrame *ref_frame, ptrdiff_t y, ptrdiff_t x, const VP56mv *mv, int bw, int bh, int w, int h, int bytesperpixel, const uint16_t *scale, const uint8_t *step) { #define scale_mv(n, dim) (((int64_t)(n) * scale[dim]) >> 14) // BUG libvpx seems to scale the two components separately. This introduces // rounding errors but we have to reproduce them to be exactly compatible // with the output from libvpx... int mx = scale_mv(mv->x * 2, 0) + scale_mv(x * 16, 0); int my = scale_mv(mv->y * 2, 1) + scale_mv(y * 16, 1); int refbw_m1, refbh_m1; int th; y = my >> 4; x = mx >> 4; ref += y * ref_stride + x * bytesperpixel; mx &= 15; my &= 15; refbw_m1 = ((bw - 1) * step[0] + mx) >> 4; refbh_m1 = ((bh - 1) * step[1] + my) >> 4; // FIXME bilinear filter only needs 0/1 pixels, not 3/4 // we use +7 because the last 7 pixels of each sbrow can be changed in // the longest loopfilter of the next sbrow th = (y + refbh_m1 + 4 + 7) >> 6; ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0); if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 4 >= h - refbh_m1) { s->vdsp.emulated_edge_mc(s->edge_emu_buffer, ref - 3 * ref_stride - 3 * bytesperpixel, 288, ref_stride, refbw_m1 + 8, refbh_m1 + 8, x - 3, y - 3, w, h); ref = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel; ref_stride = 288; } smc(dst, dst_stride, ref, ref_stride, bh, mx, my, step[0], step[1]); } static av_always_inline void mc_chroma_scaled(VP9Context *s, vp9_scaled_mc_func smc, uint8_t *dst_u, uint8_t *dst_v, ptrdiff_t dst_stride, const uint8_t *ref_u, ptrdiff_t src_stride_u, const uint8_t *ref_v, ptrdiff_t src_stride_v, ThreadFrame *ref_frame, ptrdiff_t y, ptrdiff_t x, const VP56mv *mv, int bw, int bh, int w, int h, int bytesperpixel, const uint16_t *scale, const uint8_t *step) { // BUG https://code.google.com/p/webm/issues/detail?id=820 int mx = scale_mv(mv->x << !s->ss_h, 0) + (scale_mv(x * 16, 0) & ~15) + (scale_mv(x * 32, 0) & 15); int my = scale_mv(mv->y << !s->ss_v, 1) + (scale_mv(y * 16, 1) & ~15) + (scale_mv(y * 32, 1) & 15); #undef scale_mv int refbw_m1, refbh_m1; int th; y = my >> 4; x = mx >> 4; ref_u += y * src_stride_u + x * bytesperpixel; ref_v += y * src_stride_v + x * bytesperpixel; mx &= 15; my &= 15; refbw_m1 = ((bw - 1) * step[0] + mx) >> 4; refbh_m1 = ((bh - 1) * step[1] + my) >> 4; // FIXME bilinear filter only needs 0/1 pixels, not 3/4 // we use +7 because the last 7 pixels of each sbrow can be changed in // the longest loopfilter of the next sbrow th = (y + refbh_m1 + 4 + 7) >> (6 - s->ss_v); ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0); if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 4 >= h - refbh_m1) { s->vdsp.emulated_edge_mc(s->edge_emu_buffer, ref_u - 3 * src_stride_u - 3 * bytesperpixel, 288, src_stride_u, refbw_m1 + 8, refbh_m1 + 8, x - 3, y - 3, w, h); ref_u = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel; smc(dst_u, dst_stride, ref_u, 288, bh, mx, my, step[0], step[1]); s->vdsp.emulated_edge_mc(s->edge_emu_buffer, ref_v - 3 * src_stride_v - 3 * bytesperpixel, 288, src_stride_v, refbw_m1 + 8, refbh_m1 + 8, x - 3, y - 3, w, h); ref_v = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel; smc(dst_v, dst_stride, ref_v, 288, bh, mx, my, step[0], step[1]); } else { smc(dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my, step[0], step[1]); smc(dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my, step[0], step[1]); } } #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, bw, bh, w, h, i) \ mc_luma_scaled(s, s->dsp.s##mc, dst, dst_ls, src, src_ls, tref, row, col, \ mv, bw, bh, w, h, bytesperpixel, \ s->mvscale[b->ref[i]], s->mvstep[b->ref[i]]) #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \ row, col, mv, bw, bh, w, h, i) \ mc_chroma_scaled(s, s->dsp.s##mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \ row, col, mv, bw, bh, w, h, bytesperpixel, \ s->mvscale[b->ref[i]], s->mvstep[b->ref[i]]) #define SCALED 1 #define FN(x) x##_scaled_8bpp #define BYTES_PER_PIXEL 1 #include "vp9_mc_template.c" #undef FN #undef BYTES_PER_PIXEL #define FN(x) x##_scaled_16bpp #define BYTES_PER_PIXEL 2 #include "vp9_mc_template.c" #undef mc_luma_dir #undef mc_chroma_dir #undef FN #undef BYTES_PER_PIXEL #undef SCALED static av_always_inline void mc_luma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2], uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *ref, ptrdiff_t ref_stride, ThreadFrame *ref_frame, ptrdiff_t y, ptrdiff_t x, const VP56mv *mv, int bw, int bh, int w, int h, int bytesperpixel) { int mx = mv->x, my = mv->y, th; y += my >> 3; x += mx >> 3; ref += y * ref_stride + x * bytesperpixel; mx &= 7; my &= 7; // FIXME bilinear filter only needs 0/1 pixels, not 3/4 // we use +7 because the last 7 pixels of each sbrow can be changed in // the longest loopfilter of the next sbrow th = (y + bh + 4 * !!my + 7) >> 6; ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0); if (x < !!mx * 3 || y < !!my * 3 || x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) { s->vdsp.emulated_edge_mc(s->edge_emu_buffer, ref - !!my * 3 * ref_stride - !!mx * 3 * bytesperpixel, 160, ref_stride, bw + !!mx * 7, bh + !!my * 7, x - !!mx * 3, y - !!my * 3, w, h); ref = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel; ref_stride = 160; } mc[!!mx][!!my](dst, dst_stride, ref, ref_stride, bh, mx << 1, my << 1); } static av_always_inline void mc_chroma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2], uint8_t *dst_u, uint8_t *dst_v, ptrdiff_t dst_stride, const uint8_t *ref_u, ptrdiff_t src_stride_u, const uint8_t *ref_v, ptrdiff_t src_stride_v, ThreadFrame *ref_frame, ptrdiff_t y, ptrdiff_t x, const VP56mv *mv, int bw, int bh, int w, int h, int bytesperpixel) { int mx = mv->x << !s->ss_h, my = mv->y << !s->ss_v, th; y += my >> 4; x += mx >> 4; ref_u += y * src_stride_u + x * bytesperpixel; ref_v += y * src_stride_v + x * bytesperpixel; mx &= 15; my &= 15; // FIXME bilinear filter only needs 0/1 pixels, not 3/4 // we use +7 because the last 7 pixels of each sbrow can be changed in // the longest loopfilter of the next sbrow th = (y + bh + 4 * !!my + 7) >> (6 - s->ss_v); ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0); if (x < !!mx * 3 || y < !!my * 3 || x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) { s->vdsp.emulated_edge_mc(s->edge_emu_buffer, ref_u - !!my * 3 * src_stride_u - !!mx * 3 * bytesperpixel, 160, src_stride_u, bw + !!mx * 7, bh + !!my * 7, x - !!mx * 3, y - !!my * 3, w, h); ref_u = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel; mc[!!mx][!!my](dst_u, dst_stride, ref_u, 160, bh, mx, my); s->vdsp.emulated_edge_mc(s->edge_emu_buffer, ref_v - !!my * 3 * src_stride_v - !!mx * 3 * bytesperpixel, 160, src_stride_v, bw + !!mx * 7, bh + !!my * 7, x - !!mx * 3, y - !!my * 3, w, h); ref_v = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel; mc[!!mx][!!my](dst_v, dst_stride, ref_v, 160, bh, mx, my); } else { mc[!!mx][!!my](dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my); mc[!!mx][!!my](dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my); } } #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, bw, bh, w, h, i) \ mc_luma_unscaled(s, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \ mv, bw, bh, w, h, bytesperpixel) #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \ row, col, mv, bw, bh, w, h, i) \ mc_chroma_unscaled(s, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \ row, col, mv, bw, bh, w, h, bytesperpixel) #define SCALED 0 #define FN(x) x##_8bpp #define BYTES_PER_PIXEL 1 #include "vp9_mc_template.c" #undef FN #undef BYTES_PER_PIXEL #define FN(x) x##_16bpp #define BYTES_PER_PIXEL 2 #include "vp9_mc_template.c" #undef mc_luma_dir_dir #undef mc_chroma_dir_dir #undef FN #undef BYTES_PER_PIXEL #undef SCALED static av_always_inline void inter_recon(AVCodecContext *ctx, int bytesperpixel) { VP9Context *s = ctx->priv_data; VP9Block *b = s->b; int row = s->row, col = s->col; if (s->mvscale[b->ref[0]][0] || (b->comp && s->mvscale[b->ref[1]][0])) { if (bytesperpixel == 1) { inter_pred_scaled_8bpp(ctx); } else { inter_pred_scaled_16bpp(ctx); } } else { if (bytesperpixel == 1) { inter_pred_8bpp(ctx); } else { inter_pred_16bpp(ctx); } } if (!b->skip) { /* mostly copied intra_recon() */ int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n; int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2); int end_x = FFMIN(2 * (s->cols - col), w4); int end_y = FFMIN(2 * (s->rows - row), h4); int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless; int uvstep1d = 1 << b->uvtx, p; uint8_t *dst = s->dst[0]; // y itxfm add for (n = 0, y = 0; y < end_y; y += step1d) { uint8_t *ptr = dst; for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d * bytesperpixel, n += step) { int eob = b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n]; if (eob) s->dsp.itxfm_add[tx][DCT_DCT](ptr, s->y_stride, s->block + 16 * n * bytesperpixel, eob); } dst += 4 * s->y_stride * step1d; } // uv itxfm add end_x >>= s->ss_h; end_y >>= s->ss_v; step = 1 << (b->uvtx * 2); for (p = 0; p < 2; p++) { dst = s->dst[p + 1]; for (n = 0, y = 0; y < end_y; y += uvstep1d) { uint8_t *ptr = dst; for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d * bytesperpixel, n += step) { int eob = b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n]; if (eob) s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride, s->uvblock[p] + 16 * n * bytesperpixel, eob); } dst += 4 * uvstep1d * s->uv_stride; } } } } static void inter_recon_8bpp(AVCodecContext *ctx) { inter_recon(ctx, 1); } static void inter_recon_16bpp(AVCodecContext *ctx) { inter_recon(ctx, 2); } static av_always_inline void mask_edges(uint8_t (*mask)[8][4], int ss_h, int ss_v, int row_and_7, int col_and_7, int w, int h, int col_end, int row_end, enum TxfmMode tx, int skip_inter) { static const unsigned wide_filter_col_mask[2] = { 0x11, 0x01 }; static const unsigned wide_filter_row_mask[2] = { 0x03, 0x07 }; // FIXME I'm pretty sure all loops can be replaced by a single LUT if // we make VP9Filter.mask uint64_t (i.e. row/col all single variable) // and make the LUT 5-indexed (bl, bp, is_uv, tx and row/col), and then // use row_and_7/col_and_7 as shifts (1*col_and_7+8*row_and_7) // the intended behaviour of the vp9 loopfilter is to work on 8-pixel // edges. This means that for UV, we work on two subsampled blocks at // a time, and we only use the topleft block's mode information to set // things like block strength. Thus, for any block size smaller than // 16x16, ignore the odd portion of the block. if (tx == TX_4X4 && (ss_v | ss_h)) { if (h == ss_v) { if (row_and_7 & 1) return; if (!row_end) h += 1; } if (w == ss_h) { if (col_and_7 & 1) return; if (!col_end) w += 1; } } if (tx == TX_4X4 && !skip_inter) { int t = 1 << col_and_7, m_col = (t << w) - t, y; // on 32-px edges, use the 8-px wide loopfilter; else, use 4-px wide int m_row_8 = m_col & wide_filter_col_mask[ss_h], m_row_4 = m_col - m_row_8; for (y = row_and_7; y < h + row_and_7; y++) { int col_mask_id = 2 - !(y & wide_filter_row_mask[ss_v]); mask[0][y][1] |= m_row_8; mask[0][y][2] |= m_row_4; // for odd lines, if the odd col is not being filtered, // skip odd row also: // .---. <-- a // | | // |___| <-- b // ^ ^ // c d // // if a/c are even row/col and b/d are odd, and d is skipped, // e.g. right edge of size-66x66.webm, then skip b also (bug) if ((ss_h & ss_v) && (col_end & 1) && (y & 1)) { mask[1][y][col_mask_id] |= (t << (w - 1)) - t; } else { mask[1][y][col_mask_id] |= m_col; } if (!ss_h) mask[0][y][3] |= m_col; if (!ss_v) mask[1][y][3] |= m_col; } } else { int y, t = 1 << col_and_7, m_col = (t << w) - t; if (!skip_inter) { int mask_id = (tx == TX_8X8); static const unsigned masks[4] = { 0xff, 0x55, 0x11, 0x01 }; int l2 = tx + ss_h - 1, step1d; int m_row = m_col & masks[l2]; // at odd UV col/row edges tx16/tx32 loopfilter edges, force // 8wd loopfilter to prevent going off the visible edge. if (ss_h && tx > TX_8X8 && (w ^ (w - 1)) == 1) { int m_row_16 = ((t << (w - 1)) - t) & masks[l2]; int m_row_8 = m_row - m_row_16; for (y = row_and_7; y < h + row_and_7; y++) { mask[0][y][0] |= m_row_16; mask[0][y][1] |= m_row_8; } } else { for (y = row_and_7; y < h + row_and_7; y++) mask[0][y][mask_id] |= m_row; } l2 = tx + ss_v - 1; step1d = 1 << l2; if (ss_v && tx > TX_8X8 && (h ^ (h - 1)) == 1) { for (y = row_and_7; y < h + row_and_7 - 1; y += step1d) mask[1][y][0] |= m_col; if (y - row_and_7 == h - 1) mask[1][y][1] |= m_col; } else { for (y = row_and_7; y < h + row_and_7; y += step1d) mask[1][y][mask_id] |= m_col; } } else if (tx != TX_4X4) { int mask_id; mask_id = (tx == TX_8X8) || (h == ss_v); mask[1][row_and_7][mask_id] |= m_col; mask_id = (tx == TX_8X8) || (w == ss_h); for (y = row_and_7; y < h + row_and_7; y++) mask[0][y][mask_id] |= t; } else { int t8 = t & wide_filter_col_mask[ss_h], t4 = t - t8; for (y = row_and_7; y < h + row_and_7; y++) { mask[0][y][2] |= t4; mask[0][y][1] |= t8; } mask[1][row_and_7][2 - !(row_and_7 & wide_filter_row_mask[ss_v])] |= m_col; } } } static void decode_b(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl, enum BlockPartition bp) { VP9Context *s = ctx->priv_data; VP9Block *b = s->b; enum BlockSize bs = bl * 3 + bp; int bytesperpixel = s->bytesperpixel; int w4 = bwh_tab[1][bs][0], h4 = bwh_tab[1][bs][1], lvl; int emu[2]; AVFrame *f = s->frames[CUR_FRAME].tf.f; s->row = row; s->row7 = row & 7; s->col = col; s->col7 = col & 7; s->min_mv.x = -(128 + col * 64); s->min_mv.y = -(128 + row * 64); s->max_mv.x = 128 + (s->cols - col - w4) * 64; s->max_mv.y = 128 + (s->rows - row - h4) * 64; if (s->pass < 2) { b->bs = bs; b->bl = bl; b->bp = bp; decode_mode(ctx); b->uvtx = b->tx - ((s->ss_h && w4 * 2 == (1 << b->tx)) || (s->ss_v && h4 * 2 == (1 << b->tx))); if (!b->skip) { if (bytesperpixel == 1) { decode_coeffs_8bpp(ctx); } else { decode_coeffs_16bpp(ctx); } } else { int row7 = s->row7; #define SPLAT_ZERO_CTX(v, n) \ switch (n) { \ case 1: v = 0; break; \ case 2: AV_ZERO16(&v); break; \ case 4: AV_ZERO32(&v); break; \ case 8: AV_ZERO64(&v); break; \ case 16: AV_ZERO128(&v); break; \ } #define SPLAT_ZERO_YUV(dir, var, off, n, dir2) \ do { \ SPLAT_ZERO_CTX(s->dir##_y_##var[off * 2], n * 2); \ if (s->ss_##dir2) { \ SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off], n); \ SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off], n); \ } else { \ SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off * 2], n * 2); \ SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off * 2], n * 2); \ } \ } while (0) switch (w4) { case 1: SPLAT_ZERO_YUV(above, nnz_ctx, col, 1, h); break; case 2: SPLAT_ZERO_YUV(above, nnz_ctx, col, 2, h); break; case 4: SPLAT_ZERO_YUV(above, nnz_ctx, col, 4, h); break; case 8: SPLAT_ZERO_YUV(above, nnz_ctx, col, 8, h); break; } switch (h4) { case 1: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 1, v); break; case 2: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 2, v); break; case 4: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 4, v); break; case 8: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 8, v); break; } } if (s->pass == 1) { s->b++; s->block += w4 * h4 * 64 * bytesperpixel; s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v); s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v); s->eob += 4 * w4 * h4; s->uveob[0] += 4 * w4 * h4 >> (s->ss_h + s->ss_v); s->uveob[1] += 4 * w4 * h4 >> (s->ss_h + s->ss_v); return; } } // emulated overhangs if the stride of the target buffer can't hold. This // allows to support emu-edge and so on even if we have large block // overhangs emu[0] = (col + w4) * 8 > f->linesize[0] || (row + h4) > s->rows; emu[1] = (col + w4) * 4 > f->linesize[1] || (row + h4) > s->rows; if (emu[0]) { s->dst[0] = s->tmp_y; s->y_stride = 128; } else { s->dst[0] = f->data[0] + yoff; s->y_stride = f->linesize[0]; } if (emu[1]) { s->dst[1] = s->tmp_uv[0]; s->dst[2] = s->tmp_uv[1]; s->uv_stride = 128; } else { s->dst[1] = f->data[1] + uvoff; s->dst[2] = f->data[2] + uvoff; s->uv_stride = f->linesize[1]; } if (b->intra) { if (s->bpp > 8) { intra_recon_16bpp(ctx, yoff, uvoff); } else { intra_recon_8bpp(ctx, yoff, uvoff); } } else { if (s->bpp > 8) { inter_recon_16bpp(ctx); } else { inter_recon_8bpp(ctx); } } if (emu[0]) { int w = FFMIN(s->cols - col, w4) * 8, h = FFMIN(s->rows - row, h4) * 8, n, o = 0; for (n = 0; o < w; n++) { int bw = 64 >> n; av_assert2(n <= 4); if (w & bw) { s->dsp.mc[n][0][0][0][0](f->data[0] + yoff + o, f->linesize[0], s->tmp_y + o, 128, h, 0, 0); o += bw * bytesperpixel; } } } if (emu[1]) { int w = FFMIN(s->cols - col, w4) * 8 >> s->ss_h; int h = FFMIN(s->rows - row, h4) * 8 >> s->ss_v, n, o = 0; for (n = 1; o < w; n++) { int bw = 64 >> n; av_assert2(n <= 4); if (w & bw) { s->dsp.mc[n][0][0][0][0](f->data[1] + uvoff + o, f->linesize[1], s->tmp_uv[0] + o, 128, h, 0, 0); s->dsp.mc[n][0][0][0][0](f->data[2] + uvoff + o, f->linesize[2], s->tmp_uv[1] + o, 128, h, 0, 0); o += bw * bytesperpixel; } } } // pick filter level and find edges to apply filter to if (s->filter.level && (lvl = s->segmentation.feat[b->seg_id].lflvl[b->intra ? 0 : b->ref[0] + 1] [b->mode[3] != ZEROMV]) > 0) { int x_end = FFMIN(s->cols - col, w4), y_end = FFMIN(s->rows - row, h4); int skip_inter = !b->intra && b->skip, col7 = s->col7, row7 = s->row7; setctx_2d(&lflvl->level[row7 * 8 + col7], w4, h4, 8, lvl); mask_edges(lflvl->mask[0], 0, 0, row7, col7, x_end, y_end, 0, 0, b->tx, skip_inter); if (s->ss_h || s->ss_v) mask_edges(lflvl->mask[1], s->ss_h, s->ss_v, row7, col7, x_end, y_end, s->cols & 1 && col + w4 >= s->cols ? s->cols & 7 : 0, s->rows & 1 && row + h4 >= s->rows ? s->rows & 7 : 0, b->uvtx, skip_inter); if (!s->filter.lim_lut[lvl]) { int sharp = s->filter.sharpness; int limit = lvl; if (sharp > 0) { limit >>= (sharp + 3) >> 2; limit = FFMIN(limit, 9 - sharp); } limit = FFMAX(limit, 1); s->filter.lim_lut[lvl] = limit; s->filter.mblim_lut[lvl] = 2 * (lvl + 2) + limit; } } if (s->pass == 2) { s->b++; s->block += w4 * h4 * 64 * bytesperpixel; s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h); s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h); s->eob += 4 * w4 * h4; s->uveob[0] += 4 * w4 * h4 >> (s->ss_v + s->ss_h); s->uveob[1] += 4 * w4 * h4 >> (s->ss_v + s->ss_h); } } static void decode_sb(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl) { VP9Context *s = ctx->priv_data; int c = ((s->above_partition_ctx[col] >> (3 - bl)) & 1) | (((s->left_partition_ctx[row & 0x7] >> (3 - bl)) & 1) << 1); const uint8_t *p = s->keyframe || s->intraonly ? vp9_default_kf_partition_probs[bl][c] : s->prob.p.partition[bl][c]; enum BlockPartition bp; ptrdiff_t hbs = 4 >> bl; AVFrame *f = s->frames[CUR_FRAME].tf.f; ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1]; int bytesperpixel = s->bytesperpixel; if (bl == BL_8X8) { bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p); decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp); } else if (col + hbs < s->cols) { // FIXME why not <=? if (row + hbs < s->rows) { // FIXME why not <=? bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p); switch (bp) { case PARTITION_NONE: decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp); break; case PARTITION_H: decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp); yoff += hbs * 8 * y_stride; uvoff += hbs * 8 * uv_stride >> s->ss_v; decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, bl, bp); break; case PARTITION_V: decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp); yoff += hbs * 8 * bytesperpixel; uvoff += hbs * 8 * bytesperpixel >> s->ss_h; decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, bl, bp); break; case PARTITION_SPLIT: decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1); decode_sb(ctx, row, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel, uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1); yoff += hbs * 8 * y_stride; uvoff += hbs * 8 * uv_stride >> s->ss_v; decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1); decode_sb(ctx, row + hbs, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel, uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1); break; default: av_assert0(0); } } else if (vp56_rac_get_prob_branchy(&s->c, p[1])) { bp = PARTITION_SPLIT; decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1); decode_sb(ctx, row, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel, uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1); } else { bp = PARTITION_H; decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp); } } else if (row + hbs < s->rows) { // FIXME why not <=? if (vp56_rac_get_prob_branchy(&s->c, p[2])) { bp = PARTITION_SPLIT; decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1); yoff += hbs * 8 * y_stride; uvoff += hbs * 8 * uv_stride >> s->ss_v; decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1); } else { bp = PARTITION_V; decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp); } } else { bp = PARTITION_SPLIT; decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1); } s->counts.partition[bl][c][bp]++; } static void decode_sb_mem(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl) { VP9Context *s = ctx->priv_data; VP9Block *b = s->b; ptrdiff_t hbs = 4 >> bl; AVFrame *f = s->frames[CUR_FRAME].tf.f; ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1]; int bytesperpixel = s->bytesperpixel; if (bl == BL_8X8) { av_assert2(b->bl == BL_8X8); decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp); } else if (s->b->bl == bl) { decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp); if (b->bp == PARTITION_H && row + hbs < s->rows) { yoff += hbs * 8 * y_stride; uvoff += hbs * 8 * uv_stride >> s->ss_v; decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, b->bl, b->bp); } else if (b->bp == PARTITION_V && col + hbs < s->cols) { yoff += hbs * 8 * bytesperpixel; uvoff += hbs * 8 * bytesperpixel >> s->ss_h; decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, b->bl, b->bp); } } else { decode_sb_mem(ctx, row, col, lflvl, yoff, uvoff, bl + 1); if (col + hbs < s->cols) { // FIXME why not <=? if (row + hbs < s->rows) { decode_sb_mem(ctx, row, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel, uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1); yoff += hbs * 8 * y_stride; uvoff += hbs * 8 * uv_stride >> s->ss_v; decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1); decode_sb_mem(ctx, row + hbs, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel, uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1); } else { yoff += hbs * 8 * bytesperpixel; uvoff += hbs * 8 * bytesperpixel >> s->ss_h; decode_sb_mem(ctx, row, col + hbs, lflvl, yoff, uvoff, bl + 1); } } else if (row + hbs < s->rows) { yoff += hbs * 8 * y_stride; uvoff += hbs * 8 * uv_stride >> s->ss_v; decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1); } } } static av_always_inline void filter_plane_cols(VP9Context *s, int col, int ss_h, int ss_v, uint8_t *lvl, uint8_t (*mask)[4], uint8_t *dst, ptrdiff_t ls) { int y, x, bytesperpixel = s->bytesperpixel; // filter edges between columns (e.g. block1 | block2) for (y = 0; y < 8; y += 2 << ss_v, dst += 16 * ls, lvl += 16 << ss_v) { uint8_t *ptr = dst, *l = lvl, *hmask1 = mask[y], *hmask2 = mask[y + 1 + ss_v]; unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2], hm13 = hmask1[3]; unsigned hm2 = hmask2[1] | hmask2[2], hm23 = hmask2[3]; unsigned hm = hm1 | hm2 | hm13 | hm23; for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 8 * bytesperpixel >> ss_h) { if (col || x > 1) { if (hm1 & x) { int L = *l, H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; if (hmask1[0] & x) { if (hmask2[0] & x) { av_assert2(l[8 << ss_v] == L); s->dsp.loop_filter_16[0](ptr, ls, E, I, H); } else { s->dsp.loop_filter_8[2][0](ptr, ls, E, I, H); } } else if (hm2 & x) { L = l[8 << ss_v]; H |= (L >> 4) << 8; E |= s->filter.mblim_lut[L] << 8; I |= s->filter.lim_lut[L] << 8; s->dsp.loop_filter_mix2[!!(hmask1[1] & x)] [!!(hmask2[1] & x)] [0](ptr, ls, E, I, H); } else { s->dsp.loop_filter_8[!!(hmask1[1] & x)] [0](ptr, ls, E, I, H); } } else if (hm2 & x) { int L = l[8 << ss_v], H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; s->dsp.loop_filter_8[!!(hmask2[1] & x)] [0](ptr + 8 * ls, ls, E, I, H); } } if (ss_h) { if (x & 0xAA) l += 2; } else { if (hm13 & x) { int L = *l, H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; if (hm23 & x) { L = l[8 << ss_v]; H |= (L >> 4) << 8; E |= s->filter.mblim_lut[L] << 8; I |= s->filter.lim_lut[L] << 8; s->dsp.loop_filter_mix2[0][0][0](ptr + 4 * bytesperpixel, ls, E, I, H); } else { s->dsp.loop_filter_8[0][0](ptr + 4 * bytesperpixel, ls, E, I, H); } } else if (hm23 & x) { int L = l[8 << ss_v], H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; s->dsp.loop_filter_8[0][0](ptr + 8 * ls + 4 * bytesperpixel, ls, E, I, H); } l++; } } } } static av_always_inline void filter_plane_rows(VP9Context *s, int row, int ss_h, int ss_v, uint8_t *lvl, uint8_t (*mask)[4], uint8_t *dst, ptrdiff_t ls) { int y, x, bytesperpixel = s->bytesperpixel; // block1 // filter edges between rows (e.g. ------) // block2 for (y = 0; y < 8; y++, dst += 8 * ls >> ss_v) { uint8_t *ptr = dst, *l = lvl, *vmask = mask[y]; unsigned vm = vmask[0] | vmask[1] | vmask[2], vm3 = vmask[3]; for (x = 1; vm & ~(x - 1); x <<= (2 << ss_h), ptr += 16 * bytesperpixel, l += 2 << ss_h) { if (row || y) { if (vm & x) { int L = *l, H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; if (vmask[0] & x) { if (vmask[0] & (x << (1 + ss_h))) { av_assert2(l[1 + ss_h] == L); s->dsp.loop_filter_16[1](ptr, ls, E, I, H); } else { s->dsp.loop_filter_8[2][1](ptr, ls, E, I, H); } } else if (vm & (x << (1 + ss_h))) { L = l[1 + ss_h]; H |= (L >> 4) << 8; E |= s->filter.mblim_lut[L] << 8; I |= s->filter.lim_lut[L] << 8; s->dsp.loop_filter_mix2[!!(vmask[1] & x)] [!!(vmask[1] & (x << (1 + ss_h)))] [1](ptr, ls, E, I, H); } else { s->dsp.loop_filter_8[!!(vmask[1] & x)] [1](ptr, ls, E, I, H); } } else if (vm & (x << (1 + ss_h))) { int L = l[1 + ss_h], H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; s->dsp.loop_filter_8[!!(vmask[1] & (x << (1 + ss_h)))] [1](ptr + 8 * bytesperpixel, ls, E, I, H); } } if (!ss_v) { if (vm3 & x) { int L = *l, H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; if (vm3 & (x << (1 + ss_h))) { L = l[1 + ss_h]; H |= (L >> 4) << 8; E |= s->filter.mblim_lut[L] << 8; I |= s->filter.lim_lut[L] << 8; s->dsp.loop_filter_mix2[0][0][1](ptr + ls * 4, ls, E, I, H); } else { s->dsp.loop_filter_8[0][1](ptr + ls * 4, ls, E, I, H); } } else if (vm3 & (x << (1 + ss_h))) { int L = l[1 + ss_h], H = L >> 4; int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L]; s->dsp.loop_filter_8[0][1](ptr + ls * 4 + 8 * bytesperpixel, ls, E, I, H); } } } if (ss_v) { if (y & 1) lvl += 16; } else { lvl += 8; } } } static void loopfilter_sb(AVCodecContext *ctx, struct VP9Filter *lflvl, int row, int col, ptrdiff_t yoff, ptrdiff_t uvoff) { VP9Context *s = ctx->priv_data; AVFrame *f = s->frames[CUR_FRAME].tf.f; uint8_t *dst = f->data[0] + yoff; ptrdiff_t ls_y = f->linesize[0], ls_uv = f->linesize[1]; uint8_t (*uv_masks)[8][4] = lflvl->mask[s->ss_h | s->ss_v]; int p; // FIXME in how far can we interleave the v/h loopfilter calls? E.g. // if you think of them as acting on a 8x8 block max, we can interleave // each v/h within the single x loop, but that only works if we work on // 8 pixel blocks, and we won't always do that (we want at least 16px // to use SSE2 optimizations, perhaps 32 for AVX2) filter_plane_cols(s, col, 0, 0, lflvl->level, lflvl->mask[0][0], dst, ls_y); filter_plane_rows(s, row, 0, 0, lflvl->level, lflvl->mask[0][1], dst, ls_y); for (p = 0; p < 2; p++) { dst = f->data[1 + p] + uvoff; filter_plane_cols(s, col, s->ss_h, s->ss_v, lflvl->level, uv_masks[0], dst, ls_uv); filter_plane_rows(s, row, s->ss_h, s->ss_v, lflvl->level, uv_masks[1], dst, ls_uv); } } static void set_tile_offset(int *start, int *end, int idx, int log2_n, int n) { int sb_start = ( idx * n) >> log2_n; int sb_end = ((idx + 1) * n) >> log2_n; *start = FFMIN(sb_start, n) << 3; *end = FFMIN(sb_end, n) << 3; } static av_always_inline void adapt_prob(uint8_t *p, unsigned ct0, unsigned ct1, int max_count, int update_factor) { unsigned ct = ct0 + ct1, p2, p1; if (!ct) return; p1 = *p; p2 = ((ct0 << 8) + (ct >> 1)) / ct; p2 = av_clip(p2, 1, 255); ct = FFMIN(ct, max_count); update_factor = FASTDIV(update_factor * ct, max_count); // (p1 * (256 - update_factor) + p2 * update_factor + 128) >> 8 *p = p1 + (((p2 - p1) * update_factor + 128) >> 8); } static void adapt_probs(VP9Context *s) { int i, j, k, l, m; prob_context *p = &s->prob_ctx[s->framectxid].p; int uf = (s->keyframe || s->intraonly || !s->last_keyframe) ? 112 : 128; // coefficients for (i = 0; i < 4; i++) for (j = 0; j < 2; j++) for (k = 0; k < 2; k++) for (l = 0; l < 6; l++) for (m = 0; m < 6; m++) { uint8_t *pp = s->prob_ctx[s->framectxid].coef[i][j][k][l][m]; unsigned *e = s->counts.eob[i][j][k][l][m]; unsigned *c = s->counts.coef[i][j][k][l][m]; if (l == 0 && m >= 3) // dc only has 3 pt break; adapt_prob(&pp[0], e[0], e[1], 24, uf); adapt_prob(&pp[1], c[0], c[1] + c[2], 24, uf); adapt_prob(&pp[2], c[1], c[2], 24, uf); } if (s->keyframe || s->intraonly) { memcpy(p->skip, s->prob.p.skip, sizeof(p->skip)); memcpy(p->tx32p, s->prob.p.tx32p, sizeof(p->tx32p)); memcpy(p->tx16p, s->prob.p.tx16p, sizeof(p->tx16p)); memcpy(p->tx8p, s->prob.p.tx8p, sizeof(p->tx8p)); return; } // skip flag for (i = 0; i < 3; i++) adapt_prob(&p->skip[i], s->counts.skip[i][0], s->counts.skip[i][1], 20, 128); // intra/inter flag for (i = 0; i < 4; i++) adapt_prob(&p->intra[i], s->counts.intra[i][0], s->counts.intra[i][1], 20, 128); // comppred flag if (s->comppredmode == PRED_SWITCHABLE) { for (i = 0; i < 5; i++) adapt_prob(&p->comp[i], s->counts.comp[i][0], s->counts.comp[i][1], 20, 128); } // reference frames if (s->comppredmode != PRED_SINGLEREF) { for (i = 0; i < 5; i++) adapt_prob(&p->comp_ref[i], s->counts.comp_ref[i][0], s->counts.comp_ref[i][1], 20, 128); } if (s->comppredmode != PRED_COMPREF) { for (i = 0; i < 5; i++) { uint8_t *pp = p->single_ref[i]; unsigned (*c)[2] = s->counts.single_ref[i]; adapt_prob(&pp[0], c[0][0], c[0][1], 20, 128); adapt_prob(&pp[1], c[1][0], c[1][1], 20, 128); } } // block partitioning for (i = 0; i < 4; i++) for (j = 0; j < 4; j++) { uint8_t *pp = p->partition[i][j]; unsigned *c = s->counts.partition[i][j]; adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128); adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128); adapt_prob(&pp[2], c[2], c[3], 20, 128); } // tx size if (s->txfmmode == TX_SWITCHABLE) { for (i = 0; i < 2; i++) { unsigned *c16 = s->counts.tx16p[i], *c32 = s->counts.tx32p[i]; adapt_prob(&p->tx8p[i], s->counts.tx8p[i][0], s->counts.tx8p[i][1], 20, 128); adapt_prob(&p->tx16p[i][0], c16[0], c16[1] + c16[2], 20, 128); adapt_prob(&p->tx16p[i][1], c16[1], c16[2], 20, 128); adapt_prob(&p->tx32p[i][0], c32[0], c32[1] + c32[2] + c32[3], 20, 128); adapt_prob(&p->tx32p[i][1], c32[1], c32[2] + c32[3], 20, 128); adapt_prob(&p->tx32p[i][2], c32[2], c32[3], 20, 128); } } // interpolation filter if (s->filtermode == FILTER_SWITCHABLE) { for (i = 0; i < 4; i++) { uint8_t *pp = p->filter[i]; unsigned *c = s->counts.filter[i]; adapt_prob(&pp[0], c[0], c[1] + c[2], 20, 128); adapt_prob(&pp[1], c[1], c[2], 20, 128); } } // inter modes for (i = 0; i < 7; i++) { uint8_t *pp = p->mv_mode[i]; unsigned *c = s->counts.mv_mode[i]; adapt_prob(&pp[0], c[2], c[1] + c[0] + c[3], 20, 128); adapt_prob(&pp[1], c[0], c[1] + c[3], 20, 128); adapt_prob(&pp[2], c[1], c[3], 20, 128); } // mv joints { uint8_t *pp = p->mv_joint; unsigned *c = s->counts.mv_joint; adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128); adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128); adapt_prob(&pp[2], c[2], c[3], 20, 128); } // mv components for (i = 0; i < 2; i++) { uint8_t *pp; unsigned *c, (*c2)[2], sum; adapt_prob(&p->mv_comp[i].sign, s->counts.mv_comp[i].sign[0], s->counts.mv_comp[i].sign[1], 20, 128); pp = p->mv_comp[i].classes; c = s->counts.mv_comp[i].classes; sum = c[1] + c[2] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9] + c[10]; adapt_prob(&pp[0], c[0], sum, 20, 128); sum -= c[1]; adapt_prob(&pp[1], c[1], sum, 20, 128); sum -= c[2] + c[3]; adapt_prob(&pp[2], c[2] + c[3], sum, 20, 128); adapt_prob(&pp[3], c[2], c[3], 20, 128); sum -= c[4] + c[5]; adapt_prob(&pp[4], c[4] + c[5], sum, 20, 128); adapt_prob(&pp[5], c[4], c[5], 20, 128); sum -= c[6]; adapt_prob(&pp[6], c[6], sum, 20, 128); adapt_prob(&pp[7], c[7] + c[8], c[9] + c[10], 20, 128); adapt_prob(&pp[8], c[7], c[8], 20, 128); adapt_prob(&pp[9], c[9], c[10], 20, 128); adapt_prob(&p->mv_comp[i].class0, s->counts.mv_comp[i].class0[0], s->counts.mv_comp[i].class0[1], 20, 128); pp = p->mv_comp[i].bits; c2 = s->counts.mv_comp[i].bits; for (j = 0; j < 10; j++) adapt_prob(&pp[j], c2[j][0], c2[j][1], 20, 128); for (j = 0; j < 2; j++) { pp = p->mv_comp[i].class0_fp[j]; c = s->counts.mv_comp[i].class0_fp[j]; adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128); adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128); adapt_prob(&pp[2], c[2], c[3], 20, 128); } pp = p->mv_comp[i].fp; c = s->counts.mv_comp[i].fp; adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128); adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128); adapt_prob(&pp[2], c[2], c[3], 20, 128); if (s->highprecisionmvs) { adapt_prob(&p->mv_comp[i].class0_hp, s->counts.mv_comp[i].class0_hp[0], s->counts.mv_comp[i].class0_hp[1], 20, 128); adapt_prob(&p->mv_comp[i].hp, s->counts.mv_comp[i].hp[0], s->counts.mv_comp[i].hp[1], 20, 128); } } // y intra modes for (i = 0; i < 4; i++) { uint8_t *pp = p->y_mode[i]; unsigned *c = s->counts.y_mode[i], sum, s2; sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9]; adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128); sum -= c[TM_VP8_PRED]; adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128); sum -= c[VERT_PRED]; adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128); s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED]; sum -= s2; adapt_prob(&pp[3], s2, sum, 20, 128); s2 -= c[HOR_PRED]; adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128); adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128); sum -= c[DIAG_DOWN_LEFT_PRED]; adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128); sum -= c[VERT_LEFT_PRED]; adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128); adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128); } // uv intra modes for (i = 0; i < 10; i++) { uint8_t *pp = p->uv_mode[i]; unsigned *c = s->counts.uv_mode[i], sum, s2; sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9]; adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128); sum -= c[TM_VP8_PRED]; adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128); sum -= c[VERT_PRED]; adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128); s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED]; sum -= s2; adapt_prob(&pp[3], s2, sum, 20, 128); s2 -= c[HOR_PRED]; adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128); adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128); sum -= c[DIAG_DOWN_LEFT_PRED]; adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128); sum -= c[VERT_LEFT_PRED]; adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128); adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128); } } static void free_buffers(VP9Context *s) { av_freep(&s->intra_pred_data[0]); av_freep(&s->b_base); av_freep(&s->block_base); } static av_cold int vp9_decode_free(AVCodecContext *ctx) { VP9Context *s = ctx->priv_data; int i; for (i = 0; i < 3; i++) { if (s->frames[i].tf.f->data[0]) vp9_unref_frame(ctx, &s->frames[i]); av_frame_free(&s->frames[i].tf.f); } for (i = 0; i < 8; i++) { if (s->refs[i].f->data[0]) ff_thread_release_buffer(ctx, &s->refs[i]); av_frame_free(&s->refs[i].f); if (s->next_refs[i].f->data[0]) ff_thread_release_buffer(ctx, &s->next_refs[i]); av_frame_free(&s->next_refs[i].f); } free_buffers(s); av_freep(&s->c_b); s->c_b_size = 0; return 0; } static int vp9_decode_frame(AVCodecContext *ctx, void *frame, int *got_frame, AVPacket *pkt) { const uint8_t *data = pkt->data; int size = pkt->size; VP9Context *s = ctx->priv_data; int res, tile_row, tile_col, i, ref, row, col; int retain_segmap_ref = s->segmentation.enabled && !s->segmentation.update_map; ptrdiff_t yoff, uvoff, ls_y, ls_uv; AVFrame *f; int bytesperpixel; if ((res = decode_frame_header(ctx, data, size, &ref)) < 0) { return res; } else if (res == 0) { if (!s->refs[ref].f->data[0]) { av_log(ctx, AV_LOG_ERROR, "Requested reference %d not available\n", ref); return AVERROR_INVALIDDATA; } if ((res = av_frame_ref(frame, s->refs[ref].f)) < 0) return res; ((AVFrame *)frame)->pkt_pts = pkt->pts; ((AVFrame *)frame)->pkt_dts = pkt->dts; for (i = 0; i < 8; i++) { if (s->next_refs[i].f->data[0]) ff_thread_release_buffer(ctx, &s->next_refs[i]); if (s->refs[i].f->data[0] && (res = ff_thread_ref_frame(&s->next_refs[i], &s->refs[i])) < 0) return res; } *got_frame = 1; return pkt->size; } data += res; size -= res; if (!retain_segmap_ref) { if (s->frames[REF_FRAME_SEGMAP].tf.f->data[0]) vp9_unref_frame(ctx, &s->frames[REF_FRAME_SEGMAP]); if (!s->keyframe && !s->intraonly && !s->errorres && s->frames[CUR_FRAME].tf.f->data[0] && (res = vp9_ref_frame(ctx, &s->frames[REF_FRAME_SEGMAP], &s->frames[CUR_FRAME])) < 0) return res; } if (s->frames[REF_FRAME_MVPAIR].tf.f->data[0]) vp9_unref_frame(ctx, &s->frames[REF_FRAME_MVPAIR]); if (!s->intraonly && !s->keyframe && !s->errorres && s->frames[CUR_FRAME].tf.f->data[0] && (res = vp9_ref_frame(ctx, &s->frames[REF_FRAME_MVPAIR], &s->frames[CUR_FRAME])) < 0) return res; if (s->frames[CUR_FRAME].tf.f->data[0]) vp9_unref_frame(ctx, &s->frames[CUR_FRAME]); if ((res = vp9_alloc_frame(ctx, &s->frames[CUR_FRAME])) < 0) return res; f = s->frames[CUR_FRAME].tf.f; f->key_frame = s->keyframe; f->pict_type = (s->keyframe || s->intraonly) ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; ls_y = f->linesize[0]; ls_uv =f->linesize[1]; // ref frame setup for (i = 0; i < 8; i++) { if (s->next_refs[i].f->data[0]) ff_thread_release_buffer(ctx, &s->next_refs[i]); if (s->refreshrefmask & (1 << i)) { res = ff_thread_ref_frame(&s->next_refs[i], &s->frames[CUR_FRAME].tf); } else if (s->refs[i].f->data[0]) { res = ff_thread_ref_frame(&s->next_refs[i], &s->refs[i]); } if (res < 0) return res; } // main tile decode loop bytesperpixel = s->bytesperpixel; memset(s->above_partition_ctx, 0, s->cols); memset(s->above_skip_ctx, 0, s->cols); if (s->keyframe || s->intraonly) { memset(s->above_mode_ctx, DC_PRED, s->cols * 2); } else { memset(s->above_mode_ctx, NEARESTMV, s->cols); } memset(s->above_y_nnz_ctx, 0, s->sb_cols * 16); memset(s->above_uv_nnz_ctx[0], 0, s->sb_cols * 16 >> s->ss_h); memset(s->above_uv_nnz_ctx[1], 0, s->sb_cols * 16 >> s->ss_h); memset(s->above_segpred_ctx, 0, s->cols); s->pass = s->frames[CUR_FRAME].uses_2pass = ctx->active_thread_type == FF_THREAD_FRAME && s->refreshctx && !s->parallelmode; if ((res = update_block_buffers(ctx)) < 0) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate block buffers\n"); return res; } if (s->refreshctx && s->parallelmode) { int j, k, l, m; for (i = 0; i < 4; i++) { for (j = 0; j < 2; j++) for (k = 0; k < 2; k++) for (l = 0; l < 6; l++) for (m = 0; m < 6; m++) memcpy(s->prob_ctx[s->framectxid].coef[i][j][k][l][m], s->prob.coef[i][j][k][l][m], 3); if (s->txfmmode == i) break; } s->prob_ctx[s->framectxid].p = s->prob.p; ff_thread_finish_setup(ctx); } else if (!s->refreshctx) { ff_thread_finish_setup(ctx); } do { yoff = uvoff = 0; s->b = s->b_base; s->block = s->block_base; s->uvblock[0] = s->uvblock_base[0]; s->uvblock[1] = s->uvblock_base[1]; s->eob = s->eob_base; s->uveob[0] = s->uveob_base[0]; s->uveob[1] = s->uveob_base[1]; for (tile_row = 0; tile_row < s->tiling.tile_rows; tile_row++) { set_tile_offset(&s->tiling.tile_row_start, &s->tiling.tile_row_end, tile_row, s->tiling.log2_tile_rows, s->sb_rows); if (s->pass != 2) { for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) { unsigned tile_size; if (tile_col == s->tiling.tile_cols - 1 && tile_row == s->tiling.tile_rows - 1) { tile_size = size; } else { tile_size = AV_RB32(data); data += 4; size -= 4; } if (tile_size > size) { ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0); return AVERROR_INVALIDDATA; } ff_vp56_init_range_decoder(&s->c_b[tile_col], data, tile_size); if (vp56_rac_get_prob_branchy(&s->c_b[tile_col], 128)) { // marker bit ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0); return AVERROR_INVALIDDATA; } data += tile_size; size -= tile_size; } } for (row = s->tiling.tile_row_start; row < s->tiling.tile_row_end; row += 8, yoff += ls_y * 64, uvoff += ls_uv * 64 >> s->ss_v) { struct VP9Filter *lflvl_ptr = s->lflvl; ptrdiff_t yoff2 = yoff, uvoff2 = uvoff; for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) { set_tile_offset(&s->tiling.tile_col_start, &s->tiling.tile_col_end, tile_col, s->tiling.log2_tile_cols, s->sb_cols); if (s->pass != 2) { memset(s->left_partition_ctx, 0, 8); memset(s->left_skip_ctx, 0, 8); if (s->keyframe || s->intraonly) { memset(s->left_mode_ctx, DC_PRED, 16); } else { memset(s->left_mode_ctx, NEARESTMV, 8); } memset(s->left_y_nnz_ctx, 0, 16); memset(s->left_uv_nnz_ctx, 0, 32); memset(s->left_segpred_ctx, 0, 8); memcpy(&s->c, &s->c_b[tile_col], sizeof(s->c)); } for (col = s->tiling.tile_col_start; col < s->tiling.tile_col_end; col += 8, yoff2 += 64 * bytesperpixel, uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) { // FIXME integrate with lf code (i.e. zero after each // use, similar to invtxfm coefficients, or similar) if (s->pass != 1) { memset(lflvl_ptr->mask, 0, sizeof(lflvl_ptr->mask)); } if (s->pass == 2) { decode_sb_mem(ctx, row, col, lflvl_ptr, yoff2, uvoff2, BL_64X64); } else { decode_sb(ctx, row, col, lflvl_ptr, yoff2, uvoff2, BL_64X64); } } if (s->pass != 2) { memcpy(&s->c_b[tile_col], &s->c, sizeof(s->c)); } } if (s->pass == 1) { continue; } // backup pre-loopfilter reconstruction data for intra // prediction of next row of sb64s if (row + 8 < s->rows) { memcpy(s->intra_pred_data[0], f->data[0] + yoff + 63 * ls_y, 8 * s->cols * bytesperpixel); memcpy(s->intra_pred_data[1], f->data[1] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv, 8 * s->cols * bytesperpixel >> s->ss_h); memcpy(s->intra_pred_data[2], f->data[2] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv, 8 * s->cols * bytesperpixel >> s->ss_h); } // loopfilter one row if (s->filter.level) { yoff2 = yoff; uvoff2 = uvoff; lflvl_ptr = s->lflvl; for (col = 0; col < s->cols; col += 8, yoff2 += 64 * bytesperpixel, uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) { loopfilter_sb(ctx, lflvl_ptr, row, col, yoff2, uvoff2); } } // FIXME maybe we can make this more finegrained by running the // loopfilter per-block instead of after each sbrow // In fact that would also make intra pred left preparation easier? ff_thread_report_progress(&s->frames[CUR_FRAME].tf, row >> 3, 0); } } if (s->pass < 2 && s->refreshctx && !s->parallelmode) { adapt_probs(s); ff_thread_finish_setup(ctx); } } while (s->pass++ == 1); ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0); // ref frame setup for (i = 0; i < 8; i++) { if (s->refs[i].f->data[0]) ff_thread_release_buffer(ctx, &s->refs[i]); ff_thread_ref_frame(&s->refs[i], &s->next_refs[i]); } if (!s->invisible) { if ((res = av_frame_ref(frame, s->frames[CUR_FRAME].tf.f)) < 0) return res; *got_frame = 1; } return pkt->size; } static void vp9_decode_flush(AVCodecContext *ctx) { VP9Context *s = ctx->priv_data; int i; for (i = 0; i < 3; i++) vp9_unref_frame(ctx, &s->frames[i]); for (i = 0; i < 8; i++) ff_thread_release_buffer(ctx, &s->refs[i]); } static int init_frames(AVCodecContext *ctx) { VP9Context *s = ctx->priv_data; int i; for (i = 0; i < 3; i++) { s->frames[i].tf.f = av_frame_alloc(); if (!s->frames[i].tf.f) { vp9_decode_free(ctx); av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i); return AVERROR(ENOMEM); } } for (i = 0; i < 8; i++) { s->refs[i].f = av_frame_alloc(); s->next_refs[i].f = av_frame_alloc(); if (!s->refs[i].f || !s->next_refs[i].f) { vp9_decode_free(ctx); av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i); return AVERROR(ENOMEM); } } return 0; } static av_cold int vp9_decode_init(AVCodecContext *ctx) { VP9Context *s = ctx->priv_data; ctx->internal->allocate_progress = 1; s->last_bpp = 0; s->filter.sharpness = -1; return init_frames(ctx); } static av_cold int vp9_decode_init_thread_copy(AVCodecContext *avctx) { return init_frames(avctx); } static int vp9_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { int i, res; VP9Context *s = dst->priv_data, *ssrc = src->priv_data; // detect size changes in other threads if (s->intra_pred_data[0] && (!ssrc->intra_pred_data[0] || s->cols != ssrc->cols || s->rows != ssrc->rows)) { free_buffers(s); } for (i = 0; i < 3; i++) { if (s->frames[i].tf.f->data[0]) vp9_unref_frame(dst, &s->frames[i]); if (ssrc->frames[i].tf.f->data[0]) { if ((res = vp9_ref_frame(dst, &s->frames[i], &ssrc->frames[i])) < 0) return res; } } for (i = 0; i < 8; i++) { if (s->refs[i].f->data[0]) ff_thread_release_buffer(dst, &s->refs[i]); if (ssrc->next_refs[i].f->data[0]) { if ((res = ff_thread_ref_frame(&s->refs[i], &ssrc->next_refs[i])) < 0) return res; } } s->invisible = ssrc->invisible; s->keyframe = ssrc->keyframe; s->ss_v = ssrc->ss_v; s->ss_h = ssrc->ss_h; s->segmentation.enabled = ssrc->segmentation.enabled; s->segmentation.update_map = ssrc->segmentation.update_map; s->bytesperpixel = ssrc->bytesperpixel; s->bpp = ssrc->bpp; s->bpp_index = ssrc->bpp_index; memcpy(&s->prob_ctx, &ssrc->prob_ctx, sizeof(s->prob_ctx)); memcpy(&s->lf_delta, &ssrc->lf_delta, sizeof(s->lf_delta)); if (ssrc->segmentation.enabled) { memcpy(&s->segmentation.feat, &ssrc->segmentation.feat, sizeof(s->segmentation.feat)); } return 0; } static const AVProfile profiles[] = { { FF_PROFILE_VP9_0, "Profile 0" }, { FF_PROFILE_VP9_1, "Profile 1" }, { FF_PROFILE_VP9_2, "Profile 2" }, { FF_PROFILE_VP9_3, "Profile 3" }, { FF_PROFILE_UNKNOWN }, }; AVCodec ff_vp9_decoder = { .name = "vp9", .long_name = NULL_IF_CONFIG_SMALL("Google VP9"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_VP9, .priv_data_size = sizeof(VP9Context), .init = vp9_decode_init, .close = vp9_decode_free, .decode = vp9_decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS, .flush = vp9_decode_flush, .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp9_decode_init_thread_copy), .update_thread_context = ONLY_IF_THREADS_ENABLED(vp9_decode_update_thread_context), .profiles = NULL_IF_CONFIG_SMALL(profiles), };