/* * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at) * * This file is part of libswresample * * libswresample is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * libswresample is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with libswresample; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "swresample_internal.h" #include "libavutil/avassert.h" #include "libavutil/channel_layout.h" #define TEMPLATE_REMATRIX_FLT #include "rematrix_template.c" #undef TEMPLATE_REMATRIX_FLT #define TEMPLATE_REMATRIX_DBL #include "rematrix_template.c" #undef TEMPLATE_REMATRIX_DBL #define TEMPLATE_REMATRIX_S16 #include "rematrix_template.c" #define TEMPLATE_CLIP #include "rematrix_template.c" #undef TEMPLATE_CLIP #undef TEMPLATE_REMATRIX_S16 #define TEMPLATE_REMATRIX_S32 #include "rematrix_template.c" #undef TEMPLATE_REMATRIX_S32 #define FRONT_LEFT 0 #define FRONT_RIGHT 1 #define FRONT_CENTER 2 #define LOW_FREQUENCY 3 #define BACK_LEFT 4 #define BACK_RIGHT 5 #define FRONT_LEFT_OF_CENTER 6 #define FRONT_RIGHT_OF_CENTER 7 #define BACK_CENTER 8 #define SIDE_LEFT 9 #define SIDE_RIGHT 10 #define TOP_CENTER 11 #define TOP_FRONT_LEFT 12 #define TOP_FRONT_CENTER 13 #define TOP_FRONT_RIGHT 14 #define TOP_BACK_LEFT 15 #define TOP_BACK_CENTER 16 #define TOP_BACK_RIGHT 17 #define NUM_NAMED_CHANNELS 18 int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride) { int nb_in, nb_out, in, out; if (!s || s->in_convert) // s needs to be allocated but not initialized return AVERROR(EINVAL); memset(s->matrix, 0, sizeof(s->matrix)); memset(s->matrix_flt, 0, sizeof(s->matrix_flt)); nb_in = (s->user_in_ch_count > 0) ? s->user_in_ch_count : av_get_channel_layout_nb_channels(s->user_in_ch_layout); nb_out = (s->user_out_ch_count > 0) ? s->user_out_ch_count : av_get_channel_layout_nb_channels(s->user_out_ch_layout); for (out = 0; out < nb_out; out++) { for (in = 0; in < nb_in; in++) s->matrix_flt[out][in] = s->matrix[out][in] = matrix[in]; matrix += stride; } s->rematrix_custom = 1; return 0; } static int even(int64_t layout){ if(!layout) return 1; if(layout&(layout-1)) return 1; return 0; } static int clean_layout(void *s, int64_t layout){ if(layout && layout != AV_CH_FRONT_CENTER && !(layout&(layout-1))) { char buf[128]; av_get_channel_layout_string(buf, sizeof(buf), -1, layout); av_log(s, AV_LOG_VERBOSE, "Treating %s as mono\n", buf); return AV_CH_FRONT_CENTER; } return layout; } static int sane_layout(int64_t layout){ if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker return 0; if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front return 0; if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT))) // no asymetric side return 0; if(!even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT))) return 0; if(!even(layout & (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER))) return 0; if(av_get_channel_layout_nb_channels(layout) >= SWR_CH_MAX) return 0; return 1; } av_cold int swr_build_matrix(uint64_t in_ch_layout_param, uint64_t out_ch_layout_param, double center_mix_level, double surround_mix_level, double lfe_mix_level, double maxval, double rematrix_volume, double *matrix_param, int stride, enum AVMatrixEncoding matrix_encoding, void *log_context) { int i, j, out_i; double matrix[NUM_NAMED_CHANNELS][NUM_NAMED_CHANNELS]={{0}}; int64_t unaccounted, in_ch_layout, out_ch_layout; double maxcoef=0; char buf[128]; in_ch_layout = clean_layout(log_context, in_ch_layout_param); out_ch_layout = clean_layout(log_context, out_ch_layout_param); if( out_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX && (in_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0 ) out_ch_layout = AV_CH_LAYOUT_STEREO; if( in_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX && (out_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0 ) in_ch_layout = AV_CH_LAYOUT_STEREO; if(!sane_layout(in_ch_layout)){ av_get_channel_layout_string(buf, sizeof(buf), -1, in_ch_layout_param); av_log(log_context, AV_LOG_ERROR, "Input channel layout '%s' is not supported\n", buf); return AVERROR(EINVAL); } if(!sane_layout(out_ch_layout)){ av_get_channel_layout_string(buf, sizeof(buf), -1, out_ch_layout_param); av_log(log_context, AV_LOG_ERROR, "Output channel layout '%s' is not supported\n", buf); return AVERROR(EINVAL); } for(i=0; i maxval || rematrix_volume < 0){ maxcoef /= maxval; for(i=0; i 0){ for(i=0; irematrix_maxval > 0) { maxval = s->rematrix_maxval; } else if ( av_get_packed_sample_fmt(s->out_sample_fmt) < AV_SAMPLE_FMT_FLT || av_get_packed_sample_fmt(s->int_sample_fmt) < AV_SAMPLE_FMT_FLT) { maxval = 1.0; } else maxval = INT_MAX; memset(s->matrix, 0, sizeof(s->matrix)); ret = swr_build_matrix(s->in_ch_layout, s->out_ch_layout, s->clev, s->slev, s->lfe_mix_level, maxval, s->rematrix_volume, (double*)s->matrix, s->matrix[1] - s->matrix[0], s->matrix_encoding, s); if (ret >= 0 && s->int_sample_fmt == AV_SAMPLE_FMT_FLTP) { int i, j; for (i = 0; i < FF_ARRAY_ELEMS(s->matrix[0]); i++) for (j = 0; j < FF_ARRAY_ELEMS(s->matrix[0]); j++) s->matrix_flt[i][j] = s->matrix[i][j]; } return ret; } av_cold int swri_rematrix_init(SwrContext *s){ int i, j; int nb_in = av_get_channel_layout_nb_channels(s->in_ch_layout); int nb_out = av_get_channel_layout_nb_channels(s->out_ch_layout); s->mix_any_f = NULL; if (!s->rematrix_custom) { int r = auto_matrix(s); if (r) return r; } if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){ int maxsum = 0; s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int)); s->native_one = av_mallocz(sizeof(int)); if (!s->native_matrix || !s->native_one) return AVERROR(ENOMEM); for (i = 0; i < nb_out; i++) { double rem = 0; int sum = 0; for (j = 0; j < nb_in; j++) { double target = s->matrix[i][j] * 32768 + rem; ((int*)s->native_matrix)[i * nb_in + j] = lrintf(target); rem += target - ((int*)s->native_matrix)[i * nb_in + j]; sum += FFABS(((int*)s->native_matrix)[i * nb_in + j]); } maxsum = FFMAX(maxsum, sum); } *((int*)s->native_one) = 32768; if (maxsum <= 32768) { s->mix_1_1_f = (mix_1_1_func_type*)copy_s16; s->mix_2_1_f = (mix_2_1_func_type*)sum2_s16; s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s16(s); } else { s->mix_1_1_f = (mix_1_1_func_type*)copy_clip_s16; s->mix_2_1_f = (mix_2_1_func_type*)sum2_clip_s16; s->mix_any_f = (mix_any_func_type*)get_mix_any_func_clip_s16(s); } }else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){ s->native_matrix = av_calloc(nb_in * nb_out, sizeof(float)); s->native_one = av_mallocz(sizeof(float)); if (!s->native_matrix || !s->native_one) return AVERROR(ENOMEM); for (i = 0; i < nb_out; i++) for (j = 0; j < nb_in; j++) ((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j]; *((float*)s->native_one) = 1.0; s->mix_1_1_f = (mix_1_1_func_type*)copy_float; s->mix_2_1_f = (mix_2_1_func_type*)sum2_float; s->mix_any_f = (mix_any_func_type*)get_mix_any_func_float(s); }else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){ s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double)); s->native_one = av_mallocz(sizeof(double)); if (!s->native_matrix || !s->native_one) return AVERROR(ENOMEM); for (i = 0; i < nb_out; i++) for (j = 0; j < nb_in; j++) ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j]; *((double*)s->native_one) = 1.0; s->mix_1_1_f = (mix_1_1_func_type*)copy_double; s->mix_2_1_f = (mix_2_1_func_type*)sum2_double; s->mix_any_f = (mix_any_func_type*)get_mix_any_func_double(s); }else if(s->midbuf.fmt == AV_SAMPLE_FMT_S32P){ // Only for dithering currently // s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double)); s->native_one = av_mallocz(sizeof(int)); if (!s->native_one) return AVERROR(ENOMEM); // for (i = 0; i < nb_out; i++) // for (j = 0; j < nb_in; j++) // ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j]; *((int*)s->native_one) = 32768; s->mix_1_1_f = (mix_1_1_func_type*)copy_s32; s->mix_2_1_f = (mix_2_1_func_type*)sum2_s32; s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s32(s); }else av_assert0(0); //FIXME quantize for integeres for (i = 0; i < SWR_CH_MAX; i++) { int ch_in=0; for (j = 0; j < SWR_CH_MAX; j++) { s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768); if(s->matrix[i][j]) s->matrix_ch[i][++ch_in]= j; } s->matrix_ch[i][0]= ch_in; } if(HAVE_YASM && HAVE_MMX) return swri_rematrix_init_x86(s); return 0; } av_cold void swri_rematrix_free(SwrContext *s){ av_freep(&s->native_matrix); av_freep(&s->native_one); av_freep(&s->native_simd_matrix); av_freep(&s->native_simd_one); } int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){ int out_i, in_i, i, j; int len1 = 0; int off = 0; if(s->mix_any_f) { s->mix_any_f(out->ch, (const uint8_t **)in->ch, s->native_matrix, len); return 0; } if(s->mix_2_1_simd || s->mix_1_1_simd){ len1= len&~15; off = len1 * out->bps; } av_assert0(!s->out_ch_layout || out->ch_count == av_get_channel_layout_nb_channels(s->out_ch_layout)); av_assert0(!s-> in_ch_layout || in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout)); for(out_i=0; out_ich_count; out_i++){ switch(s->matrix_ch[out_i][0]){ case 0: if(mustcopy) memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt)); break; case 1: in_i= s->matrix_ch[out_i][1]; if(s->matrix[out_i][in_i]!=1.0){ if(s->mix_1_1_simd && len1) s->mix_1_1_simd(out->ch[out_i] , in->ch[in_i] , s->native_simd_matrix, in->ch_count*out_i + in_i, len1); if(len != len1) s->mix_1_1_f (out->ch[out_i]+off, in->ch[in_i]+off, s->native_matrix, in->ch_count*out_i + in_i, len-len1); }else if(mustcopy){ memcpy(out->ch[out_i], in->ch[in_i], len*out->bps); }else{ out->ch[out_i]= in->ch[in_i]; } break; case 2: { int in_i1 = s->matrix_ch[out_i][1]; int in_i2 = s->matrix_ch[out_i][2]; if(s->mix_2_1_simd && len1) s->mix_2_1_simd(out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_simd_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1); else s->mix_2_1_f (out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1); if(len != len1) s->mix_2_1_f (out->ch[out_i]+off, in->ch[in_i1]+off, in->ch[in_i2]+off, s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len-len1); break;} default: if(s->int_sample_fmt == AV_SAMPLE_FMT_FLTP){ for(i=0; imatrix_ch[out_i][0]; j++){ in_i= s->matrix_ch[out_i][1+j]; v+= ((float*)in->ch[in_i])[i] * s->matrix_flt[out_i][in_i]; } ((float*)out->ch[out_i])[i]= v; } }else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){ for(i=0; imatrix_ch[out_i][0]; j++){ in_i= s->matrix_ch[out_i][1+j]; v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i]; } ((double*)out->ch[out_i])[i]= v; } }else{ for(i=0; imatrix_ch[out_i][0]; j++){ in_i= s->matrix_ch[out_i][1+j]; v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i]; } ((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15; } } } } return 0; }