/* * Copyright (c) 2016 Martin Storsjo * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with Libav; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include "libavcodec/avcodec.h" #include "libavcodec/vp8dsp.h" #include "libavutil/common.h" #include "libavutil/intreadwrite.h" #include "checkasm.h" #define PIXEL_STRIDE 16 #define randomize_buffers(src, dst, stride, coef) \ do { \ int x, y; \ for (y = 0; y < 4; y++) { \ AV_WN32A((src) + y * (stride), rnd()); \ AV_WN32A((dst) + y * (stride), rnd()); \ for (x = 0; x < 4; x++) \ (coef)[y * 4 + x] = (src)[y * (stride) + x] - \ (dst)[y * (stride) + x]; \ } \ } while (0) static void dct4x4(int16_t *coef) { int i; for (i = 0; i < 4; i++) { const int a1 = (coef[i*4 + 0] + coef[i*4 + 3]) * 8; const int b1 = (coef[i*4 + 1] + coef[i*4 + 2]) * 8; const int c1 = (coef[i*4 + 1] - coef[i*4 + 2]) * 8; const int d1 = (coef[i*4 + 0] - coef[i*4 + 3]) * 8; coef[i*4 + 0] = a1 + b1; coef[i*4 + 1] = (c1 * 2217 + d1 * 5352 + 14500) >> 12; coef[i*4 + 2] = a1 - b1; coef[i*4 + 3] = (d1 * 2217 - c1 * 5352 + 7500) >> 12; } for (i = 0; i < 4; i++) { const int a1 = coef[i + 0*4] + coef[i + 3*4]; const int b1 = coef[i + 1*4] + coef[i + 2*4]; const int c1 = coef[i + 1*4] - coef[i + 2*4]; const int d1 = coef[i + 0*4] - coef[i + 3*4]; coef[i + 0*4] = (a1 + b1 + 7) >> 4; coef[i + 1*4] = ((c1 * 2217 + d1 * 5352 + 12000) >> 16) + !!d1; coef[i + 2*4] = (a1 - b1 + 7) >> 4; coef[i + 3*4] = (d1 * 2217 - c1 * 5352 + 51000) >> 16; } } static void wht4x4(int16_t *coef) { int i; for (i = 0; i < 4; i++) { int a1 = coef[0 * 4 + i]; int b1 = coef[1 * 4 + i]; int c1 = coef[2 * 4 + i]; int d1 = coef[3 * 4 + i]; int e1; a1 += b1; d1 -= c1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= c1; d1 += b1; coef[0 * 4 + i] = a1; coef[1 * 4 + i] = c1; coef[2 * 4 + i] = d1; coef[3 * 4 + i] = b1; } for (i = 0; i < 4; i++) { int a1 = coef[i * 4 + 0]; int b1 = coef[i * 4 + 1]; int c1 = coef[i * 4 + 2]; int d1 = coef[i * 4 + 3]; int e1; a1 += b1; d1 -= c1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= c1; d1 += b1; coef[i * 4 + 0] = a1 * 2; coef[i * 4 + 1] = c1 * 2; coef[i * 4 + 2] = d1 * 2; coef[i * 4 + 3] = b1 * 2; } } static void check_idct(void) { LOCAL_ALIGNED_16(uint8_t, src, [4 * 4]); LOCAL_ALIGNED_16(uint8_t, dst, [4 * 4]); LOCAL_ALIGNED_16(uint8_t, dst0, [4 * 4]); LOCAL_ALIGNED_16(uint8_t, dst1, [4 * 4]); LOCAL_ALIGNED_16(int16_t, coef, [4 * 4]); LOCAL_ALIGNED_16(int16_t, subcoef0, [4 * 4]); LOCAL_ALIGNED_16(int16_t, subcoef1, [4 * 4]); VP8DSPContext d; int dc; declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *dst, int16_t *block, ptrdiff_t stride); ff_vp8dsp_init(&d); randomize_buffers(src, dst, 4, coef); dct4x4(coef); for (dc = 0; dc <= 1; dc++) { void (*idct)(uint8_t *, int16_t *, ptrdiff_t) = dc ? d.vp8_idct_dc_add : d.vp8_idct_add; if (check_func(idct, "vp8_idct_%sadd", dc ? "dc_" : "")) { if (dc) { memset(subcoef0, 0, 4 * 4 * sizeof(int16_t)); subcoef0[0] = coef[0]; } else { memcpy(subcoef0, coef, 4 * 4 * sizeof(int16_t)); } memcpy(dst0, dst, 4 * 4); memcpy(dst1, dst, 4 * 4); memcpy(subcoef1, subcoef0, 4 * 4 * sizeof(int16_t)); // Note, this uses a pixel stride of 4, even though the real decoder uses a stride as a // multiple of 16. If optimizations want to take advantage of that, this test needs to be // updated to make it more like the h264dsp tests. call_ref(dst0, subcoef0, 4); call_new(dst1, subcoef1, 4); if (memcmp(dst0, dst1, 4 * 4) || memcmp(subcoef0, subcoef1, 4 * 4 * sizeof(int16_t))) fail(); bench_new(dst1, subcoef1, 4); } } } static void check_idct_dc4(void) { LOCAL_ALIGNED_16(uint8_t, src, [4 * 4 * 4]); LOCAL_ALIGNED_16(uint8_t, dst, [4 * 4 * 4]); LOCAL_ALIGNED_16(uint8_t, dst0, [4 * 4 * 4]); LOCAL_ALIGNED_16(uint8_t, dst1, [4 * 4 * 4]); LOCAL_ALIGNED_16(int16_t, coef, [4], [4 * 4]); LOCAL_ALIGNED_16(int16_t, subcoef0, [4], [4 * 4]); LOCAL_ALIGNED_16(int16_t, subcoef1, [4], [4 * 4]); VP8DSPContext d; int i, chroma; declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *dst, int16_t block[4][16], ptrdiff_t stride); ff_vp8dsp_init(&d); for (chroma = 0; chroma <= 1; chroma++) { void (*idct4dc)(uint8_t *, int16_t[4][16], ptrdiff_t) = chroma ? d.vp8_idct_dc_add4uv : d.vp8_idct_dc_add4y; if (check_func(idct4dc, "vp8_idct_dc_add4%s", chroma ? "uv" : "y")) { int stride = chroma ? 8 : 16; int w = chroma ? 2 : 4; for (i = 0; i < 4; i++) { int blockx = 4 * (i % w); int blocky = 4 * (i / w); randomize_buffers(src + stride * blocky + blockx, dst + stride * blocky + blockx, stride, coef[i]); dct4x4(coef[i]); memset(&coef[i][1], 0, 15 * sizeof(int16_t)); } memcpy(dst0, dst, 4 * 4 * 4); memcpy(dst1, dst, 4 * 4 * 4); memcpy(subcoef0, coef, 4 * 4 * 4 * sizeof(int16_t)); memcpy(subcoef1, coef, 4 * 4 * 4 * sizeof(int16_t)); call_ref(dst0, subcoef0, stride); call_new(dst1, subcoef1, stride); if (memcmp(dst0, dst1, 4 * 4 * 4) || memcmp(subcoef0, subcoef1, 4 * 4 * 4 * sizeof(int16_t))) fail(); bench_new(dst1, subcoef1, stride); } } } static void check_luma_dc_wht(void) { LOCAL_ALIGNED_16(int16_t, dc, [4 * 4]); LOCAL_ALIGNED_16(int16_t, dc0, [4 * 4]); LOCAL_ALIGNED_16(int16_t, dc1, [4 * 4]); int16_t block[4][4][16]; LOCAL_ALIGNED_16(int16_t, block0, [4], [4][16]); LOCAL_ALIGNED_16(int16_t, block1, [4], [4][16]); VP8DSPContext d; int dc_only; int blockx, blocky; declare_func_emms(AV_CPU_FLAG_MMX, void, int16_t block[4][4][16], int16_t dc[16]); ff_vp8dsp_init(&d); for (blocky = 0; blocky < 4; blocky++) { for (blockx = 0; blockx < 4; blockx++) { uint8_t src[16], dst[16]; randomize_buffers(src, dst, 4, block[blocky][blockx]); dct4x4(block[blocky][blockx]); dc[blocky * 4 + blockx] = block[blocky][blockx][0]; block[blocky][blockx][0] = rnd(); } } wht4x4(dc); for (dc_only = 0; dc_only <= 1; dc_only++) { void (*idct)(int16_t [4][4][16], int16_t [16]) = dc_only ? d.vp8_luma_dc_wht_dc : d.vp8_luma_dc_wht; if (check_func(idct, "vp8_luma_dc_wht%s", dc_only ? "_dc" : "")) { if (dc_only) { memset(dc0, 0, 16 * sizeof(int16_t)); dc0[0] = dc[0]; } else { memcpy(dc0, dc, 16 * sizeof(int16_t)); } memcpy(dc1, dc0, 16 * sizeof(int16_t)); memcpy(block0, block, 4 * 4 * 16 * sizeof(int16_t)); memcpy(block1, block, 4 * 4 * 16 * sizeof(int16_t)); call_ref(block0, dc0); call_new(block1, dc1); if (memcmp(block0, block1, 4 * 4 * 16 * sizeof(int16_t)) || memcmp(dc0, dc1, 16 * sizeof(int16_t))) fail(); bench_new(block1, dc1); } } } #define SRC_BUF_STRIDE 32 #define SRC_BUF_SIZE ((size + 5) * SRC_BUF_STRIDE) // The mc subpixel interpolation filter needs the 2 previous pixels in either // direction, the +1 is to make sure the actual load addresses always are // unaligned. #define src (buf + 2 * SRC_BUF_STRIDE + 2 + 1) #undef randomize_buffers #define randomize_buffers() \ do { \ int k; \ for (k = 0; k < SRC_BUF_SIZE; k += 4) { \ AV_WN32A(buf + k, rnd()); \ } \ } while (0) static void check_mc(void) { LOCAL_ALIGNED_16(uint8_t, buf, [32 * 32]); LOCAL_ALIGNED_16(uint8_t, dst0, [16 * 16]); LOCAL_ALIGNED_16(uint8_t, dst1, [16 * 16]); VP8DSPContext d; int type, k, dx, dy; declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *, ptrdiff_t, uint8_t *, ptrdiff_t, int, int, int); ff_vp78dsp_init(&d); for (type = 0; type < 2; type++) { vp8_mc_func (*tab)[3][3] = type ? d.put_vp8_bilinear_pixels_tab : d.put_vp8_epel_pixels_tab; for (k = 1; k < 8; k++) { int hsize = k / 3; int size = 16 >> hsize; int height = (size << 1) >> (k % 3); for (dy = 0; dy < 3; dy++) { for (dx = 0; dx < 3; dx++) { char str[100]; if (dx || dy) { if (type == 0) { static const char *dx_names[] = { "", "h4", "h6" }; static const char *dy_names[] = { "", "v4", "v6" }; snprintf(str, sizeof(str), "epel%d_%s%s", size, dx_names[dx], dy_names[dy]); } else { snprintf(str, sizeof(str), "bilin%d_%s%s", size, dx ? "h" : "", dy ? "v" : ""); } } else { snprintf(str, sizeof(str), "pixels%d", size); } if (check_func(tab[hsize][dy][dx], "vp8_put_%s", str)) { int mx, my; int i; if (type == 0) { mx = dx == 2 ? 2 + 2 * (rnd() % 3) : dx == 1 ? 1 + 2 * (rnd() % 4) : 0; my = dy == 2 ? 2 + 2 * (rnd() % 3) : dy == 1 ? 1 + 2 * (rnd() % 4) : 0; } else { mx = dx ? 1 + (rnd() % 7) : 0; my = dy ? 1 + (rnd() % 7) : 0; } randomize_buffers(); for (i = -2; i <= 3; i++) { int val = (i == -1 || i == 2) ? 0 : 0xff; // Set pixels in the first row and column to the maximum pattern, // to test for potential overflows in the filter. src[i ] = val; src[i * SRC_BUF_STRIDE] = val; } call_ref(dst0, size, src, SRC_BUF_STRIDE, height, mx, my); call_new(dst1, size, src, SRC_BUF_STRIDE, height, mx, my); if (memcmp(dst0, dst1, size * height)) fail(); bench_new(dst1, size, src, SRC_BUF_STRIDE, height, mx, my); } } } } } } #undef randomize_buffers #define setpx(a, b, c) buf[(a) + (b) * jstride] = av_clip_uint8(c) // Set the pixel to c +/- [0,d] #define setdx(a, b, c, d) setpx(a, b, c - (d) + (rnd() % ((d) * 2 + 1))) // Set the pixel to c +/- [d,d+e] (making sure it won't be clipped) #define setdx2(a, b, o, c, d, e) setpx(a, b, o = c + ((d) + (rnd() % (e))) * (c >= 128 ? -1 : 1)) static void randomize_loopfilter_buffers(int lineoff, int str, int dir, int flim_E, int flim_I, int hev_thresh, uint8_t *buf, int force_hev) { uint32_t mask = 0xff; int off = dir ? lineoff : lineoff * str; int istride = dir ? 1 : str; int jstride = dir ? str : 1; int i; for (i = 0; i < 8; i += 2) { // Row 0 will trigger hev for q0/q1, row 2 will trigger hev for p0/p1, // rows 4 and 6 will not trigger hev. // force_hev 1 will make sure all rows trigger hev, while force_hev -1 // makes none of them trigger it. int idx = off + i * istride, p2, p1, p0, q0, q1, q2; setpx(idx, 0, q0 = rnd() & mask); if (i == 0 && force_hev >= 0 || force_hev > 0) setdx2(idx, 1, q1, q0, hev_thresh + 1, flim_I - hev_thresh - 1); else setdx(idx, 1, q1 = q0, hev_thresh); setdx(idx, 2, q2 = q1, flim_I); setdx(idx, 3, q2, flim_I); setdx(idx, -1, p0 = q0, flim_E >> 2); if (i == 2 && force_hev >= 0 || force_hev > 0) setdx2(idx, -2, p1, p0, hev_thresh + 1, flim_I - hev_thresh - 1); else setdx(idx, -2, p1 = p0, hev_thresh); setdx(idx, -3, p2 = p1, flim_I); setdx(idx, -4, p2, flim_I); } } // Fill the buffer with random pixels static void fill_loopfilter_buffers(uint8_t *buf, int stride, int w, int h) { int x, y; for (y = 0; y < h; y++) for (x = 0; x < w; x++) buf[y * stride + x] = rnd() & 0xff; } #define randomize_buffers(buf, lineoff, str, force_hev) \ randomize_loopfilter_buffers(lineoff, str, dir, flim_E, flim_I, hev_thresh, buf, force_hev) static void check_loopfilter_16y(void) { LOCAL_ALIGNED_16(uint8_t, base0, [32 + 16 * 16]); LOCAL_ALIGNED_16(uint8_t, base1, [32 + 16 * 16]); VP8DSPContext d; int dir, edge, force_hev; int flim_E = 20, flim_I = 10, hev_thresh = 7; declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *, ptrdiff_t, int, int, int); ff_vp8dsp_init(&d); for (dir = 0; dir < 2; dir++) { int midoff = dir ? 4 * 16 : 4; int midoff_aligned = dir ? 4 * 16 : 16; uint8_t *buf0 = base0 + midoff_aligned; uint8_t *buf1 = base1 + midoff_aligned; for (edge = 0; edge < 2; edge++) { void (*func)(uint8_t *, ptrdiff_t, int, int, int) = NULL; switch (dir << 1 | edge) { case (0 << 1) | 0: func = d.vp8_h_loop_filter16y; break; case (1 << 1) | 0: func = d.vp8_v_loop_filter16y; break; case (0 << 1) | 1: func = d.vp8_h_loop_filter16y_inner; break; case (1 << 1) | 1: func = d.vp8_v_loop_filter16y_inner; break; } if (check_func(func, "vp8_loop_filter16y%s_%s", edge ? "_inner" : "", dir ? "v" : "h")) { for (force_hev = -1; force_hev <= 1; force_hev++) { fill_loopfilter_buffers(buf0 - midoff, 16, 16, 16); randomize_buffers(buf0, 0, 16, force_hev); randomize_buffers(buf0, 8, 16, force_hev); memcpy(buf1 - midoff, buf0 - midoff, 16 * 16); call_ref(buf0, 16, flim_E, flim_I, hev_thresh); call_new(buf1, 16, flim_E, flim_I, hev_thresh); if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16)) fail(); } fill_loopfilter_buffers(buf0 - midoff, 16, 16, 16); randomize_buffers(buf0, 0, 16, 0); randomize_buffers(buf0, 8, 16, 0); bench_new(buf0, 16, flim_E, flim_I, hev_thresh); } } } } static void check_loopfilter_8uv(void) { LOCAL_ALIGNED_16(uint8_t, base0u, [32 + 16 * 16]); LOCAL_ALIGNED_16(uint8_t, base0v, [32 + 16 * 16]); LOCAL_ALIGNED_16(uint8_t, base1u, [32 + 16 * 16]); LOCAL_ALIGNED_16(uint8_t, base1v, [32 + 16 * 16]); VP8DSPContext d; int dir, edge, force_hev; int flim_E = 20, flim_I = 10, hev_thresh = 7; declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *, uint8_t *, ptrdiff_t, int, int, int); ff_vp8dsp_init(&d); for (dir = 0; dir < 2; dir++) { int midoff = dir ? 4 * 16 : 4; int midoff_aligned = dir ? 4 * 16 : 16; uint8_t *buf0u = base0u + midoff_aligned; uint8_t *buf0v = base0v + midoff_aligned; uint8_t *buf1u = base1u + midoff_aligned; uint8_t *buf1v = base1v + midoff_aligned; for (edge = 0; edge < 2; edge++) { void (*func)(uint8_t *, uint8_t *, ptrdiff_t, int, int, int) = NULL; switch (dir << 1 | edge) { case (0 << 1) | 0: func = d.vp8_h_loop_filter8uv; break; case (1 << 1) | 0: func = d.vp8_v_loop_filter8uv; break; case (0 << 1) | 1: func = d.vp8_h_loop_filter8uv_inner; break; case (1 << 1) | 1: func = d.vp8_v_loop_filter8uv_inner; break; } if (check_func(func, "vp8_loop_filter8uv%s_%s", edge ? "_inner" : "", dir ? "v" : "h")) { for (force_hev = -1; force_hev <= 1; force_hev++) { fill_loopfilter_buffers(buf0u - midoff, 16, 16, 16); fill_loopfilter_buffers(buf0v - midoff, 16, 16, 16); randomize_buffers(buf0u, 0, 16, force_hev); randomize_buffers(buf0v, 0, 16, force_hev); memcpy(buf1u - midoff, buf0u - midoff, 16 * 16); memcpy(buf1v - midoff, buf0v - midoff, 16 * 16); call_ref(buf0u, buf0v, 16, flim_E, flim_I, hev_thresh); call_new(buf1u, buf1v, 16, flim_E, flim_I, hev_thresh); if (memcmp(buf0u - midoff, buf1u - midoff, 16 * 16) || memcmp(buf0v - midoff, buf1v - midoff, 16 * 16)) fail(); } fill_loopfilter_buffers(buf0u - midoff, 16, 16, 16); fill_loopfilter_buffers(buf0v - midoff, 16, 16, 16); randomize_buffers(buf0u, 0, 16, 0); randomize_buffers(buf0v, 0, 16, 0); bench_new(buf0u, buf0v, 16, flim_E, flim_I, hev_thresh); } } } } static void check_loopfilter_simple(void) { LOCAL_ALIGNED_16(uint8_t, base0, [32 + 16 * 16]); LOCAL_ALIGNED_16(uint8_t, base1, [32 + 16 * 16]); VP8DSPContext d; int dir; int flim_E = 20, flim_I = 30, hev_thresh = 0; declare_func_emms(AV_CPU_FLAG_MMX, void, uint8_t *, ptrdiff_t, int); ff_vp8dsp_init(&d); for (dir = 0; dir < 2; dir++) { int midoff = dir ? 4 * 16 : 4; int midoff_aligned = dir ? 4 * 16 : 16; uint8_t *buf0 = base0 + midoff_aligned; uint8_t *buf1 = base1 + midoff_aligned; void (*func)(uint8_t *, ptrdiff_t, int) = dir ? d.vp8_v_loop_filter_simple : d.vp8_h_loop_filter_simple; if (check_func(func, "vp8_loop_filter_simple_%s", dir ? "v" : "h")) { fill_loopfilter_buffers(buf0 - midoff, 16, 16, 16); randomize_buffers(buf0, 0, 16, -1); randomize_buffers(buf0, 8, 16, -1); memcpy(buf1 - midoff, buf0 - midoff, 16 * 16); call_ref(buf0, 16, flim_E); call_new(buf1, 16, flim_E); if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16)) fail(); bench_new(buf0, 16, flim_E); } } } void checkasm_check_vp8dsp(void) { check_idct(); check_idct_dc4(); check_luma_dc_wht(); report("idct"); check_mc(); report("mc"); check_loopfilter_16y(); check_loopfilter_8uv(); check_loopfilter_simple(); report("loopfilter"); }