/* * Original copyright (c) 2002 Remi Guyomarch * Port copyright (c) 2010 Daniel G. Taylor * Relicensed to the LGPL with permission from Remi Guyomarch. * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * blur / sharpen filter, ported to FFmpeg from MPlayer * libmpcodecs/unsharp.c. * * This code is based on: * * An Efficient algorithm for Gaussian blur using finite-state machines * Frederick M. Waltz and John W. V. Miller * * SPIE Conf. on Machine Vision Systems for Inspection and Metrology VII * Originally published Boston, Nov 98 * * http://www.engin.umd.umich.edu/~jwvm/ece581/21_GBlur.pdf */ #include "avfilter.h" #include "formats.h" #include "internal.h" #include "video.h" #include "libavutil/common.h" #include "libavutil/imgutils.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "unsharp.h" typedef struct TheadData { UnsharpFilterParam *fp; uint8_t *dst; const uint8_t *src; int dst_stride; int src_stride; int width; int height; } ThreadData; #define DEF_UNSHARP_SLICE_FUNC(name, nbits) \ static int name##_##nbits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ { \ ThreadData *td = arg; \ UnsharpFilterParam *fp = td->fp; \ UnsharpContext *s = ctx->priv; \ uint32_t **sc = fp->sc; \ uint32_t *sr = fp->sr; \ const uint##nbits##_t *src2 = NULL; \ const int amount = fp->amount; \ const int steps_x = fp->steps_x; \ const int steps_y = fp->steps_y; \ const int scalebits = fp->scalebits; \ const int32_t halfscale = fp->halfscale; \ \ uint##nbits##_t *dst = (uint##nbits##_t*)td->dst; \ const uint##nbits##_t *src = (const uint##nbits##_t *)td->src; \ int dst_stride = td->dst_stride; \ int src_stride = td->src_stride; \ const int width = td->width; \ const int height = td->height; \ const int sc_offset = jobnr * 2 * steps_y; \ const int sr_offset = jobnr * (MAX_MATRIX_SIZE - 1); \ const int slice_start = (height * jobnr) / nb_jobs; \ const int slice_end = (height * (jobnr+1)) / nb_jobs; \ \ int32_t res; \ int x, y, z; \ uint32_t tmp1, tmp2; \ \ if (!amount) { \ av_image_copy_plane(td->dst + slice_start * dst_stride, dst_stride, \ td->src + slice_start * src_stride, src_stride, \ width * s->bps, slice_end - slice_start); \ return 0; \ } \ \ for (y = 0; y < 2 * steps_y; y++) \ memset(sc[sc_offset + y], 0, sizeof(sc[y][0]) * (width + 2 * steps_x)); \ \ dst_stride = dst_stride / s->bps; \ src_stride = src_stride / s->bps; \ /* if this is not the first tile, we start from (slice_start - steps_y) */ \ /* so we can get smooth result at slice boundary */ \ if (slice_start > steps_y) { \ src += (slice_start - steps_y) * src_stride; \ dst += (slice_start - steps_y) * dst_stride; \ } \ \ for (y = -steps_y + slice_start; y < steps_y + slice_end; y++) { \ if (y < height) \ src2 = src; \ \ memset(sr + sr_offset, 0, sizeof(sr[0]) * (2 * steps_x - 1)); \ for (x = -steps_x; x < width + steps_x; x++) { \ tmp1 = x <= 0 ? src2[0] : x >= width ? src2[width-1] : src2[x]; \ for (z = 0; z < steps_x * 2; z += 2) { \ tmp2 = sr[sr_offset + z + 0] + tmp1; sr[sr_offset + z + 0] = tmp1; \ tmp1 = sr[sr_offset + z + 1] + tmp2; sr[sr_offset + z + 1] = tmp2; \ } \ for (z = 0; z < steps_y * 2; z += 2) { \ tmp2 = sc[sc_offset + z + 0][x + steps_x] + tmp1; \ sc[sc_offset + z + 0][x + steps_x] = tmp1; \ tmp1 = sc[sc_offset + z + 1][x + steps_x] + tmp2; \ sc[sc_offset + z + 1][x + steps_x] = tmp2; \ } \ if (x >= steps_x && y >= (steps_y + slice_start)) { \ const uint##nbits##_t *srx = src - steps_y * src_stride + x - steps_x; \ uint##nbits##_t *dsx = dst - steps_y * dst_stride + x - steps_x; \ \ res = (int32_t)*srx + ((((int32_t) * srx - \ (int32_t)((tmp1 + halfscale) >> scalebits)) * amount) >> (8+nbits)); \ *dsx = av_clip_uint##nbits(res); \ } \ } \ if (y >= 0) { \ dst += dst_stride; \ src += src_stride; \ } \ } \ return 0; \ } DEF_UNSHARP_SLICE_FUNC(unsharp_slice, 16); DEF_UNSHARP_SLICE_FUNC(unsharp_slice, 8); static int apply_unsharp_c(AVFilterContext *ctx, AVFrame *in, AVFrame *out) { AVFilterLink *inlink = ctx->inputs[0]; UnsharpContext *s = ctx->priv; int i, plane_w[3], plane_h[3]; UnsharpFilterParam *fp[3]; ThreadData td; plane_w[0] = inlink->w; plane_w[1] = plane_w[2] = AV_CEIL_RSHIFT(inlink->w, s->hsub); plane_h[0] = inlink->h; plane_h[1] = plane_h[2] = AV_CEIL_RSHIFT(inlink->h, s->vsub); fp[0] = &s->luma; fp[1] = fp[2] = &s->chroma; for (i = 0; i < 3; i++) { td.fp = fp[i]; td.dst = out->data[i]; td.src = in->data[i]; td.width = plane_w[i]; td.height = plane_h[i]; td.dst_stride = out->linesize[i]; td.src_stride = in->linesize[i]; ctx->internal->execute(ctx, s->unsharp_slice, &td, NULL, FFMIN(plane_h[i], s->nb_threads)); } return 0; } static void set_filter_param(UnsharpFilterParam *fp, int msize_x, int msize_y, float amount) { fp->msize_x = msize_x; fp->msize_y = msize_y; fp->amount = amount * 65536.0; fp->steps_x = msize_x / 2; fp->steps_y = msize_y / 2; fp->scalebits = (fp->steps_x + fp->steps_y) * 2; fp->halfscale = 1 << (fp->scalebits - 1); } static av_cold int init(AVFilterContext *ctx) { UnsharpContext *s = ctx->priv; set_filter_param(&s->luma, s->lmsize_x, s->lmsize_y, s->lamount); set_filter_param(&s->chroma, s->cmsize_x, s->cmsize_y, s->camount); if (s->luma.scalebits >= 26 || s->chroma.scalebits >= 26) { av_log(ctx, AV_LOG_ERROR, "luma or chroma matrix size too big\n"); return AVERROR(EINVAL); } s->apply_unsharp = apply_unsharp_c; return 0; } static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } static int init_filter_param(AVFilterContext *ctx, UnsharpFilterParam *fp, const char *effect_type, int width) { int z; UnsharpContext *s = ctx->priv; const char *effect = fp->amount == 0 ? "none" : fp->amount < 0 ? "blur" : "sharpen"; if (!(fp->msize_x & fp->msize_y & 1)) { av_log(ctx, AV_LOG_ERROR, "Invalid even size for %s matrix size %dx%d\n", effect_type, fp->msize_x, fp->msize_y); return AVERROR(EINVAL); } av_log(ctx, AV_LOG_VERBOSE, "effect:%s type:%s msize_x:%d msize_y:%d amount:%0.2f\n", effect, effect_type, fp->msize_x, fp->msize_y, fp->amount / 65535.0); fp->sr = av_malloc_array((MAX_MATRIX_SIZE - 1) * s->nb_threads, sizeof(uint32_t)); fp->sc = av_mallocz_array(2 * fp->steps_y * s->nb_threads, sizeof(uint32_t *)); if (!fp->sr || !fp->sc) return AVERROR(ENOMEM); for (z = 0; z < 2 * fp->steps_y * s->nb_threads; z++) if (!(fp->sc[z] = av_malloc_array(width + 2 * fp->steps_x, sizeof(*(fp->sc[z]))))) return AVERROR(ENOMEM); return 0; } static int config_input(AVFilterLink *inlink) { UnsharpContext *s = inlink->dst->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); int ret; s->hsub = desc->log2_chroma_w; s->vsub = desc->log2_chroma_h; s->bitdepth = desc->comp[0].depth; s->bps = s->bitdepth > 8 ? 2 : 1; s->unsharp_slice = s->bitdepth > 8 ? unsharp_slice_16 : unsharp_slice_8; // ensure (height / nb_threads) > 4 * steps_y, // so that we don't have too much overlap between two threads s->nb_threads = FFMIN(ff_filter_get_nb_threads(inlink->dst), inlink->h / (4 * s->luma.steps_y)); ret = init_filter_param(inlink->dst, &s->luma, "luma", inlink->w); if (ret < 0) return ret; ret = init_filter_param(inlink->dst, &s->chroma, "chroma", AV_CEIL_RSHIFT(inlink->w, s->hsub)); if (ret < 0) return ret; return 0; } static void free_filter_param(UnsharpFilterParam *fp, int nb_threads) { int z; if (fp->sc) { for (z = 0; z < 2 * fp->steps_y * nb_threads; z++) av_freep(&fp->sc[z]); av_freep(&fp->sc); } av_freep(&fp->sr); } static av_cold void uninit(AVFilterContext *ctx) { UnsharpContext *s = ctx->priv; free_filter_param(&s->luma, s->nb_threads); free_filter_param(&s->chroma, s->nb_threads); } static int filter_frame(AVFilterLink *link, AVFrame *in) { UnsharpContext *s = link->dst->priv; AVFilterLink *outlink = link->dst->outputs[0]; AVFrame *out; int ret = 0; out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); ret = s->apply_unsharp(link->dst, in, out); av_frame_free(&in); if (ret < 0) { av_frame_free(&out); return ret; } return ff_filter_frame(outlink, out); } #define OFFSET(x) offsetof(UnsharpContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM #define MIN_SIZE 3 #define MAX_SIZE 23 static const AVOption unsharp_options[] = { { "luma_msize_x", "set luma matrix horizontal size", OFFSET(lmsize_x), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS }, { "lx", "set luma matrix horizontal size", OFFSET(lmsize_x), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS }, { "luma_msize_y", "set luma matrix vertical size", OFFSET(lmsize_y), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS }, { "ly", "set luma matrix vertical size", OFFSET(lmsize_y), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS }, { "luma_amount", "set luma effect strength", OFFSET(lamount), AV_OPT_TYPE_FLOAT, { .dbl = 1 }, -2, 5, FLAGS }, { "la", "set luma effect strength", OFFSET(lamount), AV_OPT_TYPE_FLOAT, { .dbl = 1 }, -2, 5, FLAGS }, { "chroma_msize_x", "set chroma matrix horizontal size", OFFSET(cmsize_x), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS }, { "cx", "set chroma matrix horizontal size", OFFSET(cmsize_x), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS }, { "chroma_msize_y", "set chroma matrix vertical size", OFFSET(cmsize_y), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS }, { "cy", "set chroma matrix vertical size", OFFSET(cmsize_y), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS }, { "chroma_amount", "set chroma effect strength", OFFSET(camount), AV_OPT_TYPE_FLOAT, { .dbl = 0 }, -2, 5, FLAGS }, { "ca", "set chroma effect strength", OFFSET(camount), AV_OPT_TYPE_FLOAT, { .dbl = 0 }, -2, 5, FLAGS }, { "opencl", "ignored", OFFSET(opencl), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(unsharp); static const AVFilterPad avfilter_vf_unsharp_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, .config_props = config_input, }, { NULL } }; static const AVFilterPad avfilter_vf_unsharp_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, }, { NULL } }; AVFilter ff_vf_unsharp = { .name = "unsharp", .description = NULL_IF_CONFIG_SMALL("Sharpen or blur the input video."), .priv_size = sizeof(UnsharpContext), .priv_class = &unsharp_class, .init = init, .uninit = uninit, .query_formats = query_formats, .inputs = avfilter_vf_unsharp_inputs, .outputs = avfilter_vf_unsharp_outputs, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, };