/* * Copyright (C) 2006 Michael Niedermayer * Copyright (C) 2012 Clément Bœsch * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Generic equation change filter * Originally written by Michael Niedermayer for the MPlayer project, and * ported by Clément Bœsch for FFmpeg. */ #include "libavutil/avassert.h" #include "libavutil/avstring.h" #include "libavutil/eval.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "filters.h" #include "formats.h" #include "internal.h" #include "video.h" #define MAX_NB_THREADS 32 #define NB_PLANES 4 enum InterpolationMethods { INTERP_NEAREST, INTERP_BILINEAR, NB_INTERP }; static const char *const var_names[] = { "X", "Y", "W", "H", "N", "SW", "SH", "T", NULL }; enum { VAR_X, VAR_Y, VAR_W, VAR_H, VAR_N, VAR_SW, VAR_SH, VAR_T, VAR_VARS_NB }; typedef struct GEQContext { const AVClass *class; AVExpr *e[NB_PLANES][MAX_NB_THREADS]; ///< expressions for each plane and thread char *expr_str[4+3]; ///< expression strings for each plane AVFrame *picref; ///< current input buffer uint8_t *dst; ///< reference pointer to the 8bits output uint16_t *dst16; ///< reference pointer to the 16bits output float *dst32; ///< reference pointer to the 32bits output double values[VAR_VARS_NB]; ///< expression values int hsub, vsub; ///< chroma subsampling int planes; ///< number of planes int interpolation; int is_rgb; int bps; double *pixel_sums[NB_PLANES]; int needs_sum[NB_PLANES]; } GEQContext; enum { Y = 0, U, V, A, G, B, R }; #define OFFSET(x) offsetof(GEQContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption geq_options[] = { { "lum_expr", "set luminance expression", OFFSET(expr_str[Y]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "lum", "set luminance expression", OFFSET(expr_str[Y]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "cb_expr", "set chroma blue expression", OFFSET(expr_str[U]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "cb", "set chroma blue expression", OFFSET(expr_str[U]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "cr_expr", "set chroma red expression", OFFSET(expr_str[V]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "cr", "set chroma red expression", OFFSET(expr_str[V]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "alpha_expr", "set alpha expression", OFFSET(expr_str[A]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "a", "set alpha expression", OFFSET(expr_str[A]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "red_expr", "set red expression", OFFSET(expr_str[R]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "r", "set red expression", OFFSET(expr_str[R]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "green_expr", "set green expression", OFFSET(expr_str[G]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "g", "set green expression", OFFSET(expr_str[G]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "blue_expr", "set blue expression", OFFSET(expr_str[B]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "b", "set blue expression", OFFSET(expr_str[B]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { "interpolation","set interpolation method", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERP_BILINEAR}, 0, NB_INTERP-1, FLAGS, .unit = "interp" }, { "i", "set interpolation method", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERP_BILINEAR}, 0, NB_INTERP-1, FLAGS, .unit = "interp" }, { "nearest", "nearest interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_NEAREST}, 0, 0, FLAGS, .unit = "interp" }, { "n", "nearest interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_NEAREST}, 0, 0, FLAGS, .unit = "interp" }, { "bilinear", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_BILINEAR}, 0, 0, FLAGS, .unit = "interp" }, { "b", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_BILINEAR}, 0, 0, FLAGS, .unit = "interp" }, {NULL}, }; AVFILTER_DEFINE_CLASS(geq); static inline double getpix(void *priv, double x, double y, int plane) { int xi, yi; GEQContext *geq = priv; AVFrame *picref = geq->picref; const uint8_t *src = picref->data[plane]; int linesize = picref->linesize[plane]; const int w = (plane == 1 || plane == 2) ? AV_CEIL_RSHIFT(picref->width, geq->hsub) : picref->width; const int h = (plane == 1 || plane == 2) ? AV_CEIL_RSHIFT(picref->height, geq->vsub) : picref->height; if (!src) return 0; if (geq->interpolation == INTERP_BILINEAR) { int xn, yn; xi = x = av_clipd(x, 0, w - 1); yi = y = av_clipd(y, 0, h - 1); xn = FFMIN(xi + 1, w - 1); yn = FFMIN(yi + 1, h - 1); x -= xi; y -= yi; if (geq->bps > 8 && geq->bps <= 16) { const uint16_t *src16 = (const uint16_t*)src; linesize /= 2; return (1-y)*((1-x)*src16[xi + yi * linesize] + x*src16[xn + yi * linesize]) + y *((1-x)*src16[xi + yn * linesize] + x*src16[xn + yn * linesize]); } else if (geq->bps == 32) { const float *src32 = (const float*)src; linesize /= 4; return (1-y)*((1-x)*src32[xi + yi * linesize] + x*src32[xn + yi * linesize]) + y *((1-x)*src32[xi + yn * linesize] + x*src32[xn + yn * linesize]); } else if (geq->bps == 8) { return (1-y)*((1-x)*src[xi + yi * linesize] + x*src[xn + yi * linesize]) + y *((1-x)*src[xi + yn * linesize] + x*src[xn + yn * linesize]); } } else { xi = av_clipd(x, 0, w - 1); yi = av_clipd(y, 0, h - 1); if (geq->bps > 8 && geq->bps <= 16) { const uint16_t *src16 = (const uint16_t*)src; linesize /= 2; return src16[xi + yi * linesize]; } else if (geq->bps == 32) { const float *src32 = (const float*)src; linesize /= 4; return src32[xi + yi * linesize]; } else if (geq->bps == 8) { return src[xi + yi * linesize]; } } return 0; } static int calculate_sums(GEQContext *geq, int plane, int w, int h) { int xi, yi; AVFrame *picref = geq->picref; const uint8_t *src = picref->data[plane]; int linesize = picref->linesize[plane]; if (!geq->pixel_sums[plane]) geq->pixel_sums[plane] = av_malloc_array(w, h * sizeof (*geq->pixel_sums[plane])); if (!geq->pixel_sums[plane]) return AVERROR(ENOMEM); if (geq->bps == 32) linesize /= 4; else if (geq->bps > 8 && geq->bps <= 16) linesize /= 2; for (yi = 0; yi < h; yi ++) { if (geq->bps > 8 && geq->bps <= 16) { const uint16_t *src16 = (const uint16_t*)src; double linesum = 0; for (xi = 0; xi < w; xi ++) { linesum += src16[xi + yi * linesize]; geq->pixel_sums[plane][xi + yi * w] = linesum; } } else if (geq->bps == 8) { double linesum = 0; for (xi = 0; xi < w; xi ++) { linesum += src[xi + yi * linesize]; geq->pixel_sums[plane][xi + yi * w] = linesum; } } else if (geq->bps == 32) { const float *src32 = (const float*)src; double linesum = 0; for (xi = 0; xi < w; xi ++) { linesum += src32[xi + yi * linesize]; geq->pixel_sums[plane][xi + yi * w] = linesum; } } if (yi) for (xi = 0; xi < w; xi ++) { geq->pixel_sums[plane][xi + yi * w] += geq->pixel_sums[plane][xi + yi * w - w]; } } return 0; } static inline double getpix_integrate_internal(GEQContext *geq, int x, int y, int plane, int w, int h) { if (x > w - 1) { double boundary = getpix_integrate_internal(geq, w - 1, y, plane, w, h); return 2*boundary - getpix_integrate_internal(geq, 2*(w - 1) - x, y, plane, w, h); } else if (y > h - 1) { double boundary = getpix_integrate_internal(geq, x, h - 1, plane, w, h); return 2*boundary - getpix_integrate_internal(geq, x, 2*(h - 1) - y, plane, w, h); } else if (x < 0) { if (x == -1) return 0; return - getpix_integrate_internal(geq, -x-2, y, plane, w, h); } else if (y < 0) { if (y == -1) return 0; return - getpix_integrate_internal(geq, x, -y-2, plane, w, h); } return geq->pixel_sums[plane][x + y * w]; } static inline double getpix_integrate(void *priv, double x, double y, int plane) { GEQContext *geq = priv; AVFrame *picref = geq->picref; const uint8_t *src = picref->data[plane]; const int w = (plane == 1 || plane == 2) ? AV_CEIL_RSHIFT(picref->width, geq->hsub) : picref->width; const int h = (plane == 1 || plane == 2) ? AV_CEIL_RSHIFT(picref->height, geq->vsub) : picref->height; if (!src) return 0; return getpix_integrate_internal(geq, lrint(av_clipd(x, -w, 2*w)), lrint(av_clipd(y, -h, 2*h)), plane, w, h); } //TODO: cubic interpolate //TODO: keep the last few frames static double lum(void *priv, double x, double y) { return getpix(priv, x, y, 0); } static double cb(void *priv, double x, double y) { return getpix(priv, x, y, 1); } static double cr(void *priv, double x, double y) { return getpix(priv, x, y, 2); } static double alpha(void *priv, double x, double y) { return getpix(priv, x, y, 3); } static double lumsum(void *priv, double x, double y) { return getpix_integrate(priv, x, y, 0); } static double cbsum(void *priv, double x, double y) { return getpix_integrate(priv, x, y, 1); } static double crsub(void *priv, double x, double y) { return getpix_integrate(priv, x, y, 2); } static double alphasum(void *priv, double x, double y) { return getpix_integrate(priv, x, y, 3); } static av_cold int geq_init(AVFilterContext *ctx) { GEQContext *geq = ctx->priv; int plane, ret = 0; if (!geq->expr_str[Y] && !geq->expr_str[G] && !geq->expr_str[B] && !geq->expr_str[R]) { av_log(ctx, AV_LOG_ERROR, "A luminance or RGB expression is mandatory\n"); ret = AVERROR(EINVAL); goto end; } geq->is_rgb = !geq->expr_str[Y]; if ((geq->expr_str[Y] || geq->expr_str[U] || geq->expr_str[V]) && (geq->expr_str[G] || geq->expr_str[B] || geq->expr_str[R])) { av_log(ctx, AV_LOG_ERROR, "Either YCbCr or RGB but not both must be specified\n"); ret = AVERROR(EINVAL); goto end; } if (!geq->expr_str[U] && !geq->expr_str[V]) { /* No chroma at all: fallback on luma */ geq->expr_str[U] = av_strdup(geq->expr_str[Y]); geq->expr_str[V] = av_strdup(geq->expr_str[Y]); } else { /* One chroma unspecified, fallback on the other */ if (!geq->expr_str[U]) geq->expr_str[U] = av_strdup(geq->expr_str[V]); if (!geq->expr_str[V]) geq->expr_str[V] = av_strdup(geq->expr_str[U]); } if (!geq->expr_str[A] && geq->bps != 32) { geq->expr_str[A] = av_asprintf("%d", (1<bps) - 1); } else if (!geq->expr_str[A]) { geq->expr_str[A] = av_asprintf("%f", 1.f); } if (!geq->expr_str[G]) geq->expr_str[G] = av_strdup("g(X,Y)"); if (!geq->expr_str[B]) geq->expr_str[B] = av_strdup("b(X,Y)"); if (!geq->expr_str[R]) geq->expr_str[R] = av_strdup("r(X,Y)"); if (geq->is_rgb ? (!geq->expr_str[G] || !geq->expr_str[B] || !geq->expr_str[R]) : (!geq->expr_str[U] || !geq->expr_str[V] || !geq->expr_str[A])) { ret = AVERROR(ENOMEM); goto end; } for (plane = 0; plane < NB_PLANES; plane++) { static double (*const p[])(void *, double, double) = { lum , cb , cr , alpha , lumsum, cbsum, crsub, alphasum, }; static const char *const func2_yuv_names[] = { "lum" , "cb" , "cr" , "alpha" , "p", "lumsum", "cbsum", "crsum", "alphasum", "psum", NULL }; static const char *const func2_rgb_names[] = { "g" , "b" , "r" , "alpha" , "p", "gsum", "bsum", "rsum", "alphasum", "psum", NULL }; const char *const *func2_names = geq->is_rgb ? func2_rgb_names : func2_yuv_names; double (*const func2[])(void *, double, double) = { lum , cb , cr , alpha , p[plane], lumsum, cbsum, crsub, alphasum, p[plane + 4], NULL }; int counter[10] = {0}; for (int i = 0; i < MAX_NB_THREADS; i++) { ret = av_expr_parse(&geq->e[plane][i], geq->expr_str[plane < 3 && geq->is_rgb ? plane+4 : plane], var_names, NULL, NULL, func2_names, func2, 0, ctx); if (ret < 0) goto end; } av_expr_count_func(geq->e[plane][0], counter, FF_ARRAY_ELEMS(counter), 2); geq->needs_sum[plane] = counter[5] + counter[6] + counter[7] + counter[8] + counter[9]; } end: return ret; } static int geq_query_formats(AVFilterContext *ctx) { GEQContext *geq = ctx->priv; static const enum AVPixelFormat yuv_pix_fmts[] = { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_GRAY8, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_GRAY16, AV_PIX_FMT_GRAYF32, AV_PIX_FMT_NONE }; static const enum AVPixelFormat rgb_pix_fmts[] = { AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_GBRPF32, AV_PIX_FMT_GBRAPF32, AV_PIX_FMT_NONE }; const enum AVPixelFormat *pix_fmts = geq->is_rgb ? rgb_pix_fmts : yuv_pix_fmts; return ff_set_common_formats_from_list(ctx, pix_fmts); } static int geq_config_props(AVFilterLink *inlink) { GEQContext *geq = inlink->dst->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); av_assert0(desc); geq->hsub = desc->log2_chroma_w; geq->vsub = desc->log2_chroma_h; geq->bps = desc->comp[0].depth; geq->planes = desc->nb_components; return 0; } typedef struct ThreadData { int height; int width; int plane; int linesize; } ThreadData; static int slice_geq_filter(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { GEQContext *geq = ctx->priv; ThreadData *td = arg; const int height = td->height; const int width = td->width; const int plane = td->plane; const int linesize = td->linesize; const int slice_start = (height * jobnr) / nb_jobs; const int slice_end = (height * (jobnr+1)) / nb_jobs; int x, y; double values[VAR_VARS_NB]; values[VAR_W] = geq->values[VAR_W]; values[VAR_H] = geq->values[VAR_H]; values[VAR_N] = geq->values[VAR_N]; values[VAR_SW] = geq->values[VAR_SW]; values[VAR_SH] = geq->values[VAR_SH]; values[VAR_T] = geq->values[VAR_T]; if (geq->bps == 8) { uint8_t *ptr = geq->dst + linesize * slice_start; for (y = slice_start; y < slice_end; y++) { values[VAR_Y] = y; for (x = 0; x < width; x++) { values[VAR_X] = x; ptr[x] = av_expr_eval(geq->e[plane][jobnr], values, geq); } ptr += linesize; } } else if (geq->bps <= 16) { uint16_t *ptr16 = geq->dst16 + (linesize/2) * slice_start; for (y = slice_start; y < slice_end; y++) { values[VAR_Y] = y; for (x = 0; x < width; x++) { values[VAR_X] = x; ptr16[x] = av_expr_eval(geq->e[plane][jobnr], values, geq); } ptr16 += linesize/2; } } else { float *ptr32 = geq->dst32 + (linesize/4) * slice_start; for (y = slice_start; y < slice_end; y++) { values[VAR_Y] = y; for (x = 0; x < width; x++) { values[VAR_X] = x; ptr32[x] = av_expr_eval(geq->e[plane][jobnr], values, geq); } ptr32 += linesize/4; } } return 0; } static int geq_filter_frame(AVFilterLink *inlink, AVFrame *in) { int plane; FilterLink *inl = ff_filter_link(inlink); AVFilterContext *ctx = inlink->dst; const int nb_threads = FFMIN(MAX_NB_THREADS, ff_filter_get_nb_threads(ctx)); GEQContext *geq = ctx->priv; AVFilterLink *outlink = inlink->dst->outputs[0]; AVFrame *out; geq->values[VAR_N] = inl->frame_count_out, geq->values[VAR_T] = in->pts == AV_NOPTS_VALUE ? NAN : in->pts * av_q2d(inlink->time_base), geq->picref = in; out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); for (plane = 0; plane < geq->planes && out->data[plane]; plane++) { const int width = (plane == 1 || plane == 2) ? AV_CEIL_RSHIFT(inlink->w, geq->hsub) : inlink->w; const int height = (plane == 1 || plane == 2) ? AV_CEIL_RSHIFT(inlink->h, geq->vsub) : inlink->h; const int linesize = out->linesize[plane]; ThreadData td; geq->dst = out->data[plane]; geq->dst16 = (uint16_t*)out->data[plane]; geq->dst32 = (float*)out->data[plane]; geq->values[VAR_W] = width; geq->values[VAR_H] = height; geq->values[VAR_SW] = width / (double)inlink->w; geq->values[VAR_SH] = height / (double)inlink->h; td.width = width; td.height = height; td.plane = plane; td.linesize = linesize; if (geq->needs_sum[plane]) calculate_sums(geq, plane, width, height); ff_filter_execute(ctx, slice_geq_filter, &td, NULL, FFMIN(height, nb_threads)); } av_frame_free(&geq->picref); return ff_filter_frame(outlink, out); } static av_cold void geq_uninit(AVFilterContext *ctx) { int i; GEQContext *geq = ctx->priv; for (i = 0; i < NB_PLANES; i++) for (int j = 0; j < MAX_NB_THREADS; j++) av_expr_free(geq->e[i][j]); for (i = 0; i < NB_PLANES; i++) av_freep(&geq->pixel_sums); } static const AVFilterPad geq_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = geq_config_props, .filter_frame = geq_filter_frame, }, }; const AVFilter ff_vf_geq = { .name = "geq", .description = NULL_IF_CONFIG_SMALL("Apply generic equation to each pixel."), .priv_size = sizeof(GEQContext), .init = geq_init, .uninit = geq_uninit, FILTER_INPUTS(geq_inputs), FILTER_OUTPUTS(ff_video_default_filterpad), FILTER_QUERY_FUNC(geq_query_formats), .priv_class = &geq_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, };