/* * Copyright (c) 2006 Rob Sykes <robs@users.sourceforge.net> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/avstring.h" #include "libavutil/opt.h" #include "libavutil/samplefmt.h" #include "avfilter.h" #include "audio.h" #include "internal.h" #include "generate_wave_table.h" #define INTERPOLATION_LINEAR 0 #define INTERPOLATION_QUADRATIC 1 typedef struct FlangerContext { const AVClass *class; double delay_min; double delay_depth; double feedback_gain; double delay_gain; double speed; int wave_shape; double channel_phase; int interpolation; double in_gain; int max_samples; uint8_t **delay_buffer; int delay_buf_pos; double *delay_last; float *lfo; int lfo_length; int lfo_pos; } FlangerContext; #define OFFSET(x) offsetof(FlangerContext, x) #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption flanger_options[] = { { "delay", "base delay in milliseconds", OFFSET(delay_min), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 30, A }, { "depth", "added swept delay in milliseconds", OFFSET(delay_depth), AV_OPT_TYPE_DOUBLE, {.dbl=2}, 0, 10, A }, { "regen", "percentage regeneration (delayed signal feedback)", OFFSET(feedback_gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -95, 95, A }, { "width", "percentage of delayed signal mixed with original", OFFSET(delay_gain), AV_OPT_TYPE_DOUBLE, {.dbl=71}, 0, 100, A }, { "speed", "sweeps per second (Hz)", OFFSET(speed), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0.1, 10, A }, { "shape", "swept wave shape", OFFSET(wave_shape), AV_OPT_TYPE_INT, {.i64=WAVE_SIN}, WAVE_SIN, WAVE_NB-1, A, "type" }, { "triangular", NULL, 0, AV_OPT_TYPE_CONST, {.i64=WAVE_TRI}, 0, 0, A, "type" }, { "t", NULL, 0, AV_OPT_TYPE_CONST, {.i64=WAVE_TRI}, 0, 0, A, "type" }, { "sinusoidal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=WAVE_SIN}, 0, 0, A, "type" }, { "s", NULL, 0, AV_OPT_TYPE_CONST, {.i64=WAVE_SIN}, 0, 0, A, "type" }, { "phase", "swept wave percentage phase-shift for multi-channel", OFFSET(channel_phase), AV_OPT_TYPE_DOUBLE, {.dbl=25}, 0, 100, A }, { "interp", "delay-line interpolation", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, A, "itype" }, { "linear", NULL, 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATION_LINEAR}, 0, 0, A, "itype" }, { "quadratic", NULL, 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATION_QUADRATIC}, 0, 0, A, "itype" }, { NULL } }; AVFILTER_DEFINE_CLASS(flanger); static int init(AVFilterContext *ctx) { FlangerContext *s = ctx->priv; s->feedback_gain /= 100; s->delay_gain /= 100; s->channel_phase /= 100; s->delay_min /= 1000; s->delay_depth /= 1000; s->in_gain = 1 / (1 + s->delay_gain); s->delay_gain /= 1 + s->delay_gain; s->delay_gain *= 1 - fabs(s->feedback_gain); return 0; } static int query_formats(AVFilterContext *ctx) { AVFilterChannelLayouts *layouts; AVFilterFormats *formats; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBLP, AV_SAMPLE_FMT_NONE }; int ret; layouts = ff_all_channel_counts(); if (!layouts) return AVERROR(ENOMEM); ret = ff_set_common_channel_layouts(ctx, layouts); if (ret < 0) return ret; formats = ff_make_format_list(sample_fmts); if (!formats) return AVERROR(ENOMEM); ret = ff_set_common_formats(ctx, formats); if (ret < 0) return ret; formats = ff_all_samplerates(); if (!formats) return AVERROR(ENOMEM); return ff_set_common_samplerates(ctx, formats); } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; FlangerContext *s = ctx->priv; s->max_samples = (s->delay_min + s->delay_depth) * inlink->sample_rate + 2.5; s->lfo_length = inlink->sample_rate / s->speed; s->delay_last = av_calloc(inlink->channels, sizeof(*s->delay_last)); s->lfo = av_calloc(s->lfo_length, sizeof(*s->lfo)); if (!s->lfo || !s->delay_last) return AVERROR(ENOMEM); ff_generate_wave_table(s->wave_shape, AV_SAMPLE_FMT_FLT, s->lfo, s->lfo_length, rint(s->delay_min * inlink->sample_rate), s->max_samples - 2., 3 * M_PI_2); return av_samples_alloc_array_and_samples(&s->delay_buffer, NULL, inlink->channels, s->max_samples, inlink->format, 0); } static int filter_frame(AVFilterLink *inlink, AVFrame *frame) { AVFilterContext *ctx = inlink->dst; FlangerContext *s = ctx->priv; AVFrame *out_frame; int chan, i; if (av_frame_is_writable(frame)) { out_frame = frame; } else { out_frame = ff_get_audio_buffer(inlink, frame->nb_samples); if (!out_frame) { av_frame_free(&frame); return AVERROR(ENOMEM); } av_frame_copy_props(out_frame, frame); } for (i = 0; i < frame->nb_samples; i++) { s->delay_buf_pos = (s->delay_buf_pos + s->max_samples - 1) % s->max_samples; for (chan = 0; chan < inlink->channels; chan++) { double *src = (double *)frame->extended_data[chan]; double *dst = (double *)out_frame->extended_data[chan]; double delayed_0, delayed_1; double delayed; double in, out; int channel_phase = chan * s->lfo_length * s->channel_phase + .5; double delay = s->lfo[(s->lfo_pos + channel_phase) % s->lfo_length]; int int_delay = (int)delay; double frac_delay = modf(delay, &delay); double *delay_buffer = (double *)s->delay_buffer[chan]; in = src[i]; delay_buffer[s->delay_buf_pos] = in + s->delay_last[chan] * s->feedback_gain; delayed_0 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples]; delayed_1 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples]; if (s->interpolation == INTERPOLATION_LINEAR) { delayed = delayed_0 + (delayed_1 - delayed_0) * frac_delay; } else { double a, b; double delayed_2 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples]; delayed_2 -= delayed_0; delayed_1 -= delayed_0; a = delayed_2 * .5 - delayed_1; b = delayed_1 * 2 - delayed_2 *.5; delayed = delayed_0 + (a * frac_delay + b) * frac_delay; } s->delay_last[chan] = delayed; out = in * s->in_gain + delayed * s->delay_gain; dst[i] = out; } s->lfo_pos = (s->lfo_pos + 1) % s->lfo_length; } if (frame != out_frame) av_frame_free(&frame); return ff_filter_frame(ctx->outputs[0], out_frame); } static av_cold void uninit(AVFilterContext *ctx) { FlangerContext *s = ctx->priv; av_freep(&s->lfo); av_freep(&s->delay_last); if (s->delay_buffer) av_freep(&s->delay_buffer[0]); av_freep(&s->delay_buffer); } static const AVFilterPad flanger_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_input, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad flanger_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, }, { NULL } }; AVFilter ff_af_flanger = { .name = "flanger", .description = NULL_IF_CONFIG_SMALL("Apply a flanging effect to the audio."), .query_formats = query_formats, .priv_size = sizeof(FlangerContext), .priv_class = &flanger_class, .init = init, .uninit = uninit, .inputs = flanger_inputs, .outputs = flanger_outputs, };