1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-08-04 22:03:09 +02:00
Files
FFmpeg/libavcodec/hashtable.c
Andreas Rheinhardt 3be9b3f156 avcodec/hashtable: Remove null statement
Reviewed-by: Emma Worley <emma@emma.gg>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2025-06-04 15:32:29 +02:00

213 lines
7.1 KiB
C

/*
* Generic hashtable
* Copyright (C) 2025 Emma Worley <emma@emma.gg>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdint.h>
#include <string.h>
#include "libavutil/attributes.h"
#include "libavutil/crc.h"
#include "libavutil/error.h"
#include "libavutil/macros.h"
#include "libavutil/mem.h"
#include "hashtable.h"
#define ALIGN _Alignof(size_t)
struct FFHashtableContext {
size_t key_size;
size_t val_size;
size_t entry_size;
size_t max_entries;
size_t nb_entries;
const AVCRC *crc;
uint8_t *table;
uint8_t swapbuf[];
};
/*
* Hash table entries are comprised of a probe sequence length (PSL), key, and
* value. When the PSL of an entry is zero, it means it is not occupied by a
* key/value pair. When the PSL is non-zero, it represents the "distance" of
* the entry from its "home" location plus one, where the "home" location is
* hash(key) % max_entries.
*/
#define ENTRY_PSL_VAL(entry) (*(size_t*)(entry))
#define ENTRY_KEY_PTR(entry) ((entry) + sizeof(size_t))
#define ENTRY_VAL_PTR(entry) (ENTRY_KEY_PTR(entry) + ctx->key_size)
#define KEYS_EQUAL(k1, k2) (!memcmp((k1), (k2), ctx->key_size))
av_cold int ff_hashtable_alloc(FFHashtableContext **ctx, size_t key_size,
size_t val_size, size_t max_entries)
{
const size_t keyval_size = key_size + val_size;
if (keyval_size < key_size || // did (unsigned,defined) wraparound happen?
keyval_size > FFMIN(SIZE_MAX - sizeof(size_t) - (ALIGN - 1),
(SIZE_MAX - sizeof(FFHashtableContext)) / 2))
return AVERROR(ERANGE);
FFHashtableContext *res = av_mallocz(sizeof(*res) + 2 * keyval_size);
if (!res)
return AVERROR(ENOMEM);
res->key_size = key_size;
res->val_size = val_size;
res->entry_size = FFALIGN(sizeof(size_t) + keyval_size, ALIGN);
res->max_entries = max_entries;
res->nb_entries = 0;
res->crc = av_crc_get_table(AV_CRC_32_IEEE);
if (!res->crc) {
ff_hashtable_freep(&res);
return AVERROR_BUG;
}
res->table = av_calloc(res->max_entries, res->entry_size);
if (!res->table) {
ff_hashtable_freep(&res);
return AVERROR(ENOMEM);
}
*ctx = res;
return 0;
}
static size_t hash_key(const struct FFHashtableContext *ctx, const void *key)
{
return av_crc(ctx->crc, 0, key, ctx->key_size) % ctx->max_entries;
}
int ff_hashtable_get(const struct FFHashtableContext *ctx, const void *key, void *val)
{
if (!ctx->nb_entries)
return 0;
size_t hash = hash_key(ctx, key);
for (size_t psl = 1; psl <= ctx->max_entries; psl++) {
size_t wrapped_index = (hash + psl) % ctx->max_entries;
uint8_t *entry = ctx->table + wrapped_index * ctx->entry_size;
if (ENTRY_PSL_VAL(entry) < psl)
// When PSL stops increasing it means there are no further entries
// with the same key hash.
return 0;
if (KEYS_EQUAL(ENTRY_KEY_PTR(entry), key)) {
memcpy(val, ENTRY_VAL_PTR(entry), ctx->val_size);
return 1;
}
}
return 0;
}
int ff_hashtable_set(struct FFHashtableContext *ctx, const void *key, const void *val)
{
int swapping = 0;
size_t psl = 1;
size_t hash = hash_key(ctx, key);
size_t wrapped_index = hash % ctx->max_entries;
uint8_t *set = ctx->swapbuf;
uint8_t *tmp = ctx->swapbuf + ctx->key_size + ctx->val_size;
memcpy(set, key, ctx->key_size);
memcpy(set + ctx->key_size, val, ctx->val_size);
for (size_t i = 0; i < ctx->max_entries; i++) {
if (++wrapped_index == ctx->max_entries)
wrapped_index = 0;
uint8_t *entry = ctx->table + wrapped_index * ctx->entry_size;
if (!ENTRY_PSL_VAL(entry) || (!swapping && KEYS_EQUAL(ENTRY_KEY_PTR(entry), set))) {
if (!ENTRY_PSL_VAL(entry))
ctx->nb_entries++;
ENTRY_PSL_VAL(entry) = psl;
memcpy(ENTRY_KEY_PTR(entry), set, ctx->key_size + ctx->val_size);
return 1;
}
if (ENTRY_PSL_VAL(entry) < psl) {
// When PSL stops increasing it means there are no further entries
// with the same key hash. We can only hope to find an unoccupied
// entry.
if (ctx->nb_entries == ctx->max_entries)
// The table is full so inserts are impossible.
return 0;
// Robin Hood hash tables "steal from the rich" by minimizing the
// PSL of the inserted entry.
swapping = 1;
// set needs to swap with entry
memcpy(tmp, ENTRY_KEY_PTR(entry), ctx->key_size + ctx->val_size);
memcpy(ENTRY_KEY_PTR(entry), set, ctx->key_size + ctx->val_size);
FFSWAP(uint8_t*, set, tmp);
FFSWAP(size_t, psl, ENTRY_PSL_VAL(entry));
}
psl++;
}
return 0;
}
int ff_hashtable_delete(struct FFHashtableContext *ctx, const void *key)
{
if (!ctx->nb_entries)
return 0;
uint8_t *next_entry;
size_t hash = hash_key(ctx, key);
size_t wrapped_index = hash % ctx->max_entries;
for (size_t psl = 1; psl <= ctx->max_entries; psl++) {
if (++wrapped_index == ctx->max_entries)
wrapped_index = 0;
uint8_t *entry = ctx->table + wrapped_index * ctx->entry_size;
if (ENTRY_PSL_VAL(entry) < psl)
// When PSL stops increasing it means there are no further entries
// with the same key hash.
return 0;
if (KEYS_EQUAL(ENTRY_KEY_PTR(entry), key)) {
ENTRY_PSL_VAL(entry) = 0;
// Shift each following entry that will benefit from a reduced PSL.
for (psl++; psl <= ctx->max_entries; psl++) {
if (++wrapped_index == ctx->max_entries)
wrapped_index = 0;
next_entry = ctx->table + wrapped_index * ctx->entry_size;
if (ENTRY_PSL_VAL(next_entry) <= 1) {
ctx->nb_entries--;
return 1;
}
memcpy(entry, next_entry, ctx->entry_size);
ENTRY_PSL_VAL(entry)--;
ENTRY_PSL_VAL(next_entry) = 0;
entry = next_entry;
}
}
}
return 0;
}
void ff_hashtable_clear(struct FFHashtableContext *ctx)
{
memset(ctx->table, 0, ctx->entry_size * ctx->max_entries);
}
av_cold void ff_hashtable_freep(FFHashtableContext **ctx)
{
if (*ctx) {
av_freep(&(*ctx)->table);
av_freep(ctx);
}
}