mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2025-01-08 13:22:53 +02:00
dff39ea9f0
Unlike other tf.*.conv2d layers, tf.nn.conv2d does not create many nodes (within a scope) in the graph, it just acts like other layers. tf.nn.conv2d only creates one node in the graph, and no internal nodes such as 'kernel' are created. The format of native model file is also changed, a flag named has_bias is added, so change the version number. Signed-off-by: Guo, Yejun <yejun.guo@intel.com> Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
241 lines
12 KiB
C
241 lines
12 KiB
C
/*
|
|
* Copyright (c) 2019 Guo Yejun
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include "libavfilter/dnn/dnn_backend_native_layer_conv2d.h"
|
|
|
|
#define EPSON 0.00001
|
|
|
|
static int test_with_same_dilate(void)
|
|
{
|
|
// the input data and expected data are generated with below python code.
|
|
/*
|
|
x = tf.placeholder(tf.float32, shape=[1, None, None, 3])
|
|
y = tf.layers.conv2d(x, 2, 3, activation=tf.nn.tanh, padding='same', dilation_rate=(2, 2), bias_initializer=tf.keras.initializers.he_normal())
|
|
data = np.random.rand(1, 5, 6, 3);
|
|
|
|
sess=tf.Session()
|
|
sess.run(tf.global_variables_initializer())
|
|
|
|
weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()])
|
|
kernel = weights['conv2d/kernel:0']
|
|
kernel = np.transpose(kernel, [3, 0, 1, 2])
|
|
print("kernel:")
|
|
print(kernel.shape)
|
|
print(list(kernel.flatten()))
|
|
|
|
bias = weights['conv2d/bias:0']
|
|
print("bias:")
|
|
print(bias.shape)
|
|
print(list(bias.flatten()))
|
|
|
|
output = sess.run(y, feed_dict={x: data})
|
|
|
|
print("input:")
|
|
print(data.shape)
|
|
print(list(data.flatten()))
|
|
|
|
print("output:")
|
|
print(output.shape)
|
|
print(list(output.flatten()))
|
|
*/
|
|
|
|
ConvolutionalParams params;
|
|
DnnOperand operands[2];
|
|
int32_t input_indexes[1];
|
|
float input[1*5*6*3] = {
|
|
0.7012556460308194, 0.4233847954643357, 0.19515900664313612, 0.16343083004926495, 0.5758261611052848, 0.9510767434014871, 0.11014085055947687,
|
|
0.906327053637727, 0.8136794715542507, 0.45371764543639526, 0.5768443343523952, 0.19543668786046986, 0.15648326047898609, 0.2099500241141279,
|
|
0.17658777090552413, 0.059335724777169196, 0.1729991838469117, 0.8150514704819208, 0.4435535466703049, 0.3752188477566878, 0.749936650421431,
|
|
0.6823494635284907, 0.10776389679424747, 0.34247481674596836, 0.5147867256244629, 0.9063709728129032, 0.12423605800856818, 0.6064872945412728,
|
|
0.5891681538551459, 0.9865836236466314, 0.9002163879294677, 0.003968273184274618, 0.8628374809643967, 0.1327176268279583, 0.8449799925703798,
|
|
0.1937671869354366, 0.41524410152707425, 0.02038786604756837, 0.49792466069597496, 0.8881874553848784, 0.9683921035597336, 0.4122972568010813,
|
|
0.843553550993252, 0.9588482762501964, 0.5190350762645546, 0.4283584264145317, 0.09781496073714646, 0.9501058833776156, 0.8665541760152776,
|
|
0.31669272550095806, 0.07133074675453632, 0.606438007334886, 0.7007157020538224, 0.4827996264130444, 0.5167615606392761, 0.6385043039312651,
|
|
0.23069664707810555, 0.058233497329354456, 0.06323892961591071, 0.24816458893245974, 0.8646369065257812, 0.24742185893094837, 0.09991225948167437,
|
|
0.625700606979606, 0.7678541502111257, 0.6215834594679912, 0.5623003956582483, 0.07389123942681242, 0.7659100715711249, 0.486061471642225,
|
|
0.9947455699829012, 0.9094911797643259, 0.7644355876253265, 0.05384315321492239, 0.13565394382783613, 0.9810628204953316, 0.007386389078887889,
|
|
0.226182754156241, 0.2609021390764772, 0.24182802076928933, 0.13264782451941648, 0.2035816485767682, 0.005504188177612557, 0.7014619934040155,
|
|
0.956215988391991, 0.5670398541013633, 0.9809764721750784, 0.6886338100487461, 0.5758152317218274, 0.7137823176776179
|
|
};
|
|
float expected_output[1*5*6*2] = {
|
|
-0.9480655, -0.7169147, -0.9404794, -0.5567385, -0.8991124, -0.8306558, -0.94487447, -0.8932543, -0.88238764, -0.7301602,
|
|
-0.8974813, -0.7026703, -0.8858988, -0.53203243, -0.92881465, -0.5648504, -0.8871471, -0.7000097, -0.91754407, -0.79684794,
|
|
-0.760465, -0.117928326, -0.88302773, -0.8975289, -0.70615053, 0.19231977, -0.8318776, -0.386184, -0.80698484, -0.8556624,
|
|
-0.7336671, -0.6168619, -0.7658234, -0.63449603, -0.73314047, -0.87502456, -0.58158904, -0.4184259, -0.52618927, -0.13613208,
|
|
-0.5093187, -0.21027721, -0.39455596, -0.44507834, -0.22269244, -0.73400885, -0.77655095, -0.74408925, -0.57313335, -0.15333457,
|
|
-0.74620694, -0.34858236, -0.42586932, -0.5240488, 0.1634339, -0.2447881, -0.57927346, -0.62732303, -0.82287043, -0.8474058
|
|
};
|
|
float *output;
|
|
float kernel[2*3*3*3] = {
|
|
0.26025516, 0.16536498, -0.24351254, 0.33892477, -0.34005195, 0.35202783, 0.34056443, 0.01422739, 0.13799345, 0.29489166,
|
|
0.2781723, 0.178585, 0.22122234, 0.044115514, 0.13134438, 0.31705368, 0.22527462, -0.021323413, 0.115134746, -0.18216397,
|
|
-0.21197563, -0.027848959, -0.01704529, -0.12401503, -0.23415318, -0.12661739, -0.35338148, 0.20049328, -0.076153606,
|
|
-0.23642601, -0.3125769, -0.025851756, -0.30006272, 0.050762743, 0.32003498, 0.3052225, -0.0017385483, 0.25337684, -0.25664508,
|
|
0.27846587, -0.3112659, 0.2066065, 0.31499845, 0.113178134, 0.09449363, -0.11828774, -0.12671001, -0.36259216, 0.2710235,
|
|
-0.19676702, 0.023612618, -0.2596915, -0.34949252, -0.108270735
|
|
};
|
|
float bias[2] = { -1.6574852, -0.72915393 };
|
|
|
|
params.activation = TANH;
|
|
params.has_bias = 1;
|
|
params.biases = bias;
|
|
params.dilation = 2;
|
|
params.input_num = 3;
|
|
params.kernel = kernel;
|
|
params.kernel_size = 3;
|
|
params.output_num = 2;
|
|
params.padding_method = SAME;
|
|
|
|
operands[0].data = input;
|
|
operands[0].dims[0] = 1;
|
|
operands[0].dims[1] = 5;
|
|
operands[0].dims[2] = 6;
|
|
operands[0].dims[3] = 3;
|
|
operands[1].data = NULL;
|
|
|
|
input_indexes[0] = 0;
|
|
dnn_execute_layer_conv2d(operands, input_indexes, 1, ¶ms);
|
|
|
|
output = operands[1].data;
|
|
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
|
|
if (fabs(output[i] - expected_output[i]) > EPSON) {
|
|
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
|
|
av_freep(&output);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
av_freep(&output);
|
|
return 0;
|
|
}
|
|
|
|
static int test_with_valid(void)
|
|
{
|
|
// the input data and expected data are generated with below python code.
|
|
/*
|
|
x = tf.placeholder(tf.float32, shape=[1, None, None, 3])
|
|
y = tf.layers.conv2d(x, 2, 3, activation=tf.nn.tanh, padding='valid', bias_initializer=tf.keras.initializers.he_normal())
|
|
data = np.random.rand(1, 5, 6, 3);
|
|
|
|
sess=tf.Session()
|
|
sess.run(tf.global_variables_initializer())
|
|
|
|
weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()])
|
|
kernel = weights['conv2d/kernel:0']
|
|
kernel = np.transpose(kernel, [3, 0, 1, 2])
|
|
print("kernel:")
|
|
print(kernel.shape)
|
|
print(list(kernel.flatten()))
|
|
|
|
bias = weights['conv2d/bias:0']
|
|
print("bias:")
|
|
print(bias.shape)
|
|
print(list(bias.flatten()))
|
|
|
|
output = sess.run(y, feed_dict={x: data})
|
|
|
|
print("input:")
|
|
print(data.shape)
|
|
print(list(data.flatten()))
|
|
|
|
print("output:")
|
|
print(output.shape)
|
|
print(list(output.flatten()))
|
|
*/
|
|
|
|
ConvolutionalParams params;
|
|
DnnOperand operands[2];
|
|
int32_t input_indexes[1];
|
|
float input[1*5*6*3] = {
|
|
0.26126657468269665, 0.42762216215337556, 0.7466274030131497, 0.802550266787863, 0.3709323443076644, 0.5919817068197668, 0.49274512279324967,
|
|
0.7170132295090351, 0.0911793215410649, 0.5134213878288361, 0.670132600785118, 0.49417034512633484, 0.03887389460089885, 0.436785102836845,
|
|
0.1490231658611978, 0.6413606121498127, 0.8595987991375995, 0.9132593077586231, 0.7075959004873255, 0.17754995944845464, 0.5212507214937141,
|
|
0.35379732738215475, 0.25205107358505296, 0.3928792840544273, 0.09485294189485782, 0.8685115437448666, 0.6489046799288605, 0.509253797582924,
|
|
0.8993255536791972, 0.18740056466602373, 0.34237617336313986, 0.3871438962989183, 0.1488532571774911, 0.5187002331293636, 0.8137098818752955,
|
|
0.521761863717401, 0.4622312310118274, 0.29038411334638825, 0.16194915718170566, 0.5175999923925211, 0.8852230040101133, 0.0218263385047206,
|
|
0.08482355352852367, 0.3463638568376264, 0.28627127120619733, 0.9553293378948409, 0.4803391055970835, 0.841635695030805, 0.3556828280031952,
|
|
0.06778527221541808, 0.28193560357091596, 0.8399957619031576, 0.03305536359456385, 0.6625039162109645, 0.9300552020023897, 0.8551529138204146,
|
|
0.6133216915522418, 0.222427800857393, 0.1315422686800336, 0.6189144989185527, 0.5346184916866876, 0.8348888624532548, 0.6544834567840291,
|
|
0.2844062293389934, 0.28780026600883324, 0.5372272015684924, 0.6250226011503823, 0.28119106062279453, 0.49655812908420094, 0.6451488959145951,
|
|
0.7362580606834843, 0.44815578616664087, 0.6454760235835586, 0.6794062414265861, 0.045378883014935756, 0.9008388543865096, 0.7949752851269782,
|
|
0.4179928876222264, 0.28733419007048644, 0.996902319501908, 0.5690851338677467, 0.9511814013279738, 0.025323788678181636, 0.5594359732604794,
|
|
0.1213732595086251, 0.7172624313368294, 0.6759328959074691, 0.07252138454885071, 0.17557735158403442, 0.5988895455048769
|
|
};
|
|
float expected_output[1*3*4*2] = {
|
|
-0.556947, -0.42143887, -0.092070885, 0.27404794, -0.41886684, 0.0862887, -0.25001016, -0.342721, 0.020730592, 0.04016919, -0.69839877,
|
|
-0.06136704, 0.14186388, -0.11655602, -0.23489095, -0.3845829, -0.19017771, 0.1595885, -0.18308741, -0.3071209, -0.5848686, -0.22509028,
|
|
-0.6023201, -0.14448485
|
|
};
|
|
float *output;
|
|
float kernel[2*3*3*3] = {
|
|
-0.25291282, 0.22402048, 0.028642118, -0.14615723, -0.27362752, -0.34801802, -0.2759148, 0.19594926, -0.25029412, 0.34606284, 0.10376671,
|
|
-0.1015394, 0.23616093, 0.2134214, 0.35285157, 0.05893758, 0.0024731457, -0.17143056, 0.35758412, 0.2186206, -0.28384736, -0.21206513,
|
|
-0.20871592, 0.27070445, 0.25878823, 0.11136332, -0.33737376, 0.08353335, -0.34290665, 0.041805506, -0.09738535, 0.3284936, -0.16838405,
|
|
-0.032494456, -0.29193437, 0.033259362, -0.09272635, -0.2802651, -0.28648436, 0.3542878, 0.2432127, -0.24551713, 0.27813476, 0.21024024,
|
|
-0.013690501, -0.1350077, -0.07826337, -0.34563828, 0.3220685, -0.07571727, 0.19420576, 0.20783454, 0.18738335, 0.16672492
|
|
};
|
|
float bias[2] = { -0.4773722, -0.19620377 };
|
|
|
|
params.activation = TANH;
|
|
params.has_bias = 1;
|
|
params.biases = bias;
|
|
params.dilation = 1;
|
|
params.input_num = 3;
|
|
params.kernel = kernel;
|
|
params.kernel_size = 3;
|
|
params.output_num = 2;
|
|
params.padding_method = VALID;
|
|
|
|
operands[0].data = input;
|
|
operands[0].dims[0] = 1;
|
|
operands[0].dims[1] = 5;
|
|
operands[0].dims[2] = 6;
|
|
operands[0].dims[3] = 3;
|
|
operands[1].data = NULL;
|
|
|
|
input_indexes[0] = 0;
|
|
dnn_execute_layer_conv2d(operands, input_indexes, 1, ¶ms);
|
|
|
|
output = operands[1].data;
|
|
for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) {
|
|
if (fabs(output[i] - expected_output[i]) > EPSON) {
|
|
printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]);
|
|
av_freep(&output);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
av_freep(&output);
|
|
return 0;
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
if (test_with_valid())
|
|
return 1;
|
|
if (test_with_same_dilate())
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|