1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/huffyuvenc.c
Niklas Haas 703288cec6 avcodec/internal: add FFCodec.color_ranges
I went through all codecs and put them into five basic categories:

1. JPEG range only
2. MPEG range only
3. Explicitly tagged
4. Broken (codec supports both but encoder ignores tags)
5. N/A (headerless or pseudo-formats)

Filters in category 5 remain untouched. The rest gain an explicit
assignment of their supported color ranges, with codecs in category
4 being set to MPEG-only for safety.

It might be considered redundant to distinguish between 0 (category 5)
and MPEG+JPEG (category 3), but in doing so we effectively communicate
that we can guarantee that these tags will be encoded, which is distinct
from the situation where there are some codecs that simply don't have
tagging or implied semantics (e.g. rawvideo).

A full list of codecs follows:

JPEG range only:
 - amv
 - roqvideo

MPEG range only:
 - asv1, asv2
 - avui
 - cfhd
 - cljr
 - dnxhd
 - dvvideo
 - ffv1
 - flv
 - h261, h263, h263p
 - {h263,vp8}_v4l2m2m
 - huffyuv, ffvhuff
 - jpeg2000
 - libopenjpeg
 - libtheora
 - libwebp, libwebp_anim
 - libx262
 - libxavs, libxavs2
 - libxvid
 - mpeg1video, mpeg2video
 - mpeg2_qsv
 - mpeg2_vaapi
 - mpeg4, msmpeg4, msmpeg4v2, wmv1, wmv2
 - mpeg4_omx
 - prores, prores_aw, prores_ks
 - rv10, rv20
 - snow
 - speedhq
 - svq1
 - tiff
 - utvideo

Explicitly tagged (MPEG/JPEG):
 - {av1,h264,hevc}_nvenc
 - {av1,h264,hevc}_vaapi
 - {av1,h264,hevc,vp8,vp9,mpeg4}_mediacodec
 - {av1,h264,hevc,vp9}_qsv
 - h264_amf
 - {h264,hevc,prores}_videotoolbox
 - libaom-av1
 - libkvazaar
 - libopenh264
 - librav1e
 - libsvtav1
 - libvpx, libvpx-vp9
 - libx264
 - libx265
 - ljpeg
 - mjpeg
 - vc2

Broken (encoder ignores tags):
 - {av1,hevc}_amf
 - {h264,hevc,mpeg4}_v4l2m2m
 - h264_omx
 - libxeve
 - magicyuv
 - {vp8,vp9,mjpeg}_vaapi

N/A:
 - ayuv, yuv4, y41p, v308, v210, v410, v408 (headerless)
 - pgmyuv (headerless)
 - rawvideo, bitpacked (headerless)
 - vnull, wrapped_avframe (pseudocodecs)
2024-09-08 13:58:11 +02:00

1074 lines
38 KiB
C

/*
* Copyright (c) 2002-2014 Michael Niedermayer <michaelni@gmx.at>
*
* see https://multimedia.cx/huffyuv.txt for a description of
* the algorithm used
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* yuva, gray, 4:4:4, 4:1:1, 4:1:0 and >8 bit per sample support sponsored by NOA
*/
/**
* @file
* huffyuv encoder
*/
#include "config_components.h"
#include "avcodec.h"
#include "bswapdsp.h"
#include "codec_internal.h"
#include "encode.h"
#include "huffyuv.h"
#include "huffman.h"
#include "huffyuvencdsp.h"
#include "lossless_videoencdsp.h"
#include "put_bits.h"
#include "libavutil/emms.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
typedef struct HYuvEncContext {
AVClass *class;
AVCodecContext *avctx;
PutBitContext pb;
Predictor predictor;
int interlaced;
int decorrelate;
int bitstream_bpp;
int version;
int bps;
int n; // 1<<bps
int vlc_n; // number of vlc codes (FFMIN(1<<bps, MAX_VLC_N))
int alpha;
int chroma;
int yuv;
int chroma_h_shift;
int chroma_v_shift;
int flags;
int context;
int picture_number;
union {
uint8_t *temp[3];
uint16_t *temp16[3];
};
uint64_t stats[4][MAX_VLC_N];
uint8_t len[4][MAX_VLC_N];
uint32_t bits[4][MAX_VLC_N];
BswapDSPContext bdsp;
HuffYUVEncDSPContext hencdsp;
LLVidEncDSPContext llvidencdsp;
int non_determ; // non-deterministic, multi-threaded encoder allowed
} HYuvEncContext;
static inline void diff_bytes(HYuvEncContext *s, uint8_t *dst,
const uint8_t *src0, const uint8_t *src1, int w)
{
if (s->bps <= 8) {
s->llvidencdsp.diff_bytes(dst, src0, src1, w);
} else {
s->hencdsp.diff_int16((uint16_t *)dst, (const uint16_t *)src0, (const uint16_t *)src1, s->n - 1, w);
}
}
static inline int sub_left_prediction(HYuvEncContext *s, uint8_t *dst,
const uint8_t *src, int w, int left)
{
int i;
int min_width = FFMIN(w, 32);
if (s->bps <= 8) {
for (i = 0; i < min_width; i++) { /* scalar loop before dsp call */
const int temp = src[i];
dst[i] = temp - left;
left = temp;
}
if (w < 32)
return left;
s->llvidencdsp.diff_bytes(dst + 32, src + 32, src + 31, w - 32);
return src[w-1];
} else {
const uint16_t *src16 = (const uint16_t *)src;
uint16_t *dst16 = ( uint16_t *)dst;
for (i = 0; i < min_width; i++) { /* scalar loop before dsp call */
const int temp = src16[i];
dst16[i] = temp - left;
left = temp;
}
if (w < 32)
return left;
s->hencdsp.diff_int16(dst16 + 32, src16 + 32, src16 + 31, s->n - 1, w - 32);
return src16[w-1];
}
}
static inline void sub_left_prediction_bgr32(HYuvEncContext *s, uint8_t *dst,
const uint8_t *src, int w,
int *red, int *green, int *blue,
int *alpha)
{
int i;
int r, g, b, a;
int min_width = FFMIN(w, 8);
r = *red;
g = *green;
b = *blue;
a = *alpha;
for (i = 0; i < min_width; i++) {
const int rt = src[i * 4 + R];
const int gt = src[i * 4 + G];
const int bt = src[i * 4 + B];
const int at = src[i * 4 + A];
dst[i * 4 + R] = rt - r;
dst[i * 4 + G] = gt - g;
dst[i * 4 + B] = bt - b;
dst[i * 4 + A] = at - a;
r = rt;
g = gt;
b = bt;
a = at;
}
s->llvidencdsp.diff_bytes(dst + 32, src + 32, src + 32 - 4, w * 4 - 32);
*red = src[(w - 1) * 4 + R];
*green = src[(w - 1) * 4 + G];
*blue = src[(w - 1) * 4 + B];
*alpha = src[(w - 1) * 4 + A];
}
static inline void sub_left_prediction_rgb24(HYuvEncContext *s, uint8_t *dst,
const uint8_t *src, int w,
int *red, int *green, int *blue)
{
int i;
int r, g, b;
r = *red;
g = *green;
b = *blue;
for (i = 0; i < FFMIN(w, 16); i++) {
const int rt = src[i * 3 + 0];
const int gt = src[i * 3 + 1];
const int bt = src[i * 3 + 2];
dst[i * 3 + 0] = rt - r;
dst[i * 3 + 1] = gt - g;
dst[i * 3 + 2] = bt - b;
r = rt;
g = gt;
b = bt;
}
s->llvidencdsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);
*red = src[(w - 1) * 3 + 0];
*green = src[(w - 1) * 3 + 1];
*blue = src[(w - 1) * 3 + 2];
}
static void sub_median_prediction(HYuvEncContext *s, uint8_t *dst,
const uint8_t *src1, const uint8_t *src2,
int w, int *left, int *left_top)
{
if (s->bps <= 8) {
s->llvidencdsp.sub_median_pred(dst, src1, src2, w , left, left_top);
} else {
s->hencdsp.sub_hfyu_median_pred_int16((uint16_t *)dst, (const uint16_t *)src1, (const uint16_t *)src2, s->n - 1, w , left, left_top);
}
}
static int store_table(HYuvEncContext *s, const uint8_t *len, uint8_t *buf)
{
int i;
int index = 0;
int n = s->vlc_n;
for (i = 0; i < n;) {
int val = len[i];
int repeat = 0;
for (; i < n && len[i] == val && repeat < 255; i++)
repeat++;
av_assert0(val < 32 && val >0 && repeat < 256 && repeat>0);
if (repeat > 7) {
buf[index++] = val;
buf[index++] = repeat;
} else {
buf[index++] = val | (repeat << 5);
}
}
return index;
}
static int store_huffman_tables(HYuvEncContext *s, uint8_t *buf)
{
int i, ret;
int size = 0;
int count = 3;
if (s->version > 2)
count = 1 + s->alpha + 2*s->chroma;
for (i = 0; i < count; i++) {
if ((ret = ff_huff_gen_len_table(s->len[i], s->stats[i], s->vlc_n, 0)) < 0)
return ret;
ret = ff_huffyuv_generate_bits_table(s->bits[i], s->len[i], s->vlc_n);
if (ret < 0)
return ret;
size += store_table(s, s->len[i], buf + size);
}
return size;
}
static av_cold int encode_init(AVCodecContext *avctx)
{
HYuvEncContext *s = avctx->priv_data;
int i, j;
int ret;
const AVPixFmtDescriptor *desc;
s->avctx = avctx;
s->flags = avctx->flags;
ff_bswapdsp_init(&s->bdsp);
ff_huffyuvencdsp_init(&s->hencdsp, avctx->pix_fmt);
ff_llvidencdsp_init(&s->llvidencdsp);
avctx->extradata = av_mallocz(3*MAX_N + 4);
if (!avctx->extradata)
return AVERROR(ENOMEM);
if (s->flags&AV_CODEC_FLAG_PASS1) {
#define STATS_OUT_SIZE 21*MAX_N*3 + 4
avctx->stats_out = av_mallocz(STATS_OUT_SIZE); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
if (!avctx->stats_out)
return AVERROR(ENOMEM);
}
s->version = 2;
desc = av_pix_fmt_desc_get(avctx->pix_fmt);
s->bps = desc->comp[0].depth;
s->yuv = !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
s->chroma = desc->nb_components > 2;
s->alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
s->chroma_h_shift = desc->log2_chroma_w;
s->chroma_v_shift = desc->log2_chroma_h;
switch (avctx->pix_fmt) {
case AV_PIX_FMT_YUV420P:
case AV_PIX_FMT_YUV422P:
if (avctx->width & 1) {
av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
return AVERROR(EINVAL);
}
s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
break;
case AV_PIX_FMT_YUV444P:
case AV_PIX_FMT_YUV410P:
case AV_PIX_FMT_YUV411P:
case AV_PIX_FMT_YUV440P:
case AV_PIX_FMT_GBRP:
case AV_PIX_FMT_GBRP9:
case AV_PIX_FMT_GBRP10:
case AV_PIX_FMT_GBRP12:
case AV_PIX_FMT_GBRP14:
case AV_PIX_FMT_GBRP16:
case AV_PIX_FMT_GRAY8:
case AV_PIX_FMT_GRAY16:
case AV_PIX_FMT_YUVA444P:
case AV_PIX_FMT_YUVA420P:
case AV_PIX_FMT_YUVA422P:
case AV_PIX_FMT_GBRAP:
case AV_PIX_FMT_YUV420P9:
case AV_PIX_FMT_YUV420P10:
case AV_PIX_FMT_YUV420P12:
case AV_PIX_FMT_YUV420P14:
case AV_PIX_FMT_YUV420P16:
case AV_PIX_FMT_YUV422P9:
case AV_PIX_FMT_YUV422P10:
case AV_PIX_FMT_YUV422P12:
case AV_PIX_FMT_YUV422P14:
case AV_PIX_FMT_YUV422P16:
case AV_PIX_FMT_YUV444P9:
case AV_PIX_FMT_YUV444P10:
case AV_PIX_FMT_YUV444P12:
case AV_PIX_FMT_YUV444P14:
case AV_PIX_FMT_YUV444P16:
case AV_PIX_FMT_YUVA420P9:
case AV_PIX_FMT_YUVA420P10:
case AV_PIX_FMT_YUVA420P16:
case AV_PIX_FMT_YUVA422P9:
case AV_PIX_FMT_YUVA422P10:
case AV_PIX_FMT_YUVA422P16:
case AV_PIX_FMT_YUVA444P9:
case AV_PIX_FMT_YUVA444P10:
case AV_PIX_FMT_YUVA444P16:
s->version = 3;
break;
case AV_PIX_FMT_RGB32:
s->bitstream_bpp = 32;
break;
case AV_PIX_FMT_RGB24:
s->bitstream_bpp = 24;
break;
default:
av_log(avctx, AV_LOG_ERROR, "format not supported\n");
return AVERROR(EINVAL);
}
s->n = 1<<s->bps;
s->vlc_n = FFMIN(s->n, MAX_VLC_N);
avctx->bits_per_coded_sample = s->bitstream_bpp;
s->decorrelate = s->bitstream_bpp >= 24 && !s->yuv && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR);
s->interlaced = avctx->flags & AV_CODEC_FLAG_INTERLACED_ME ? 1 : 0;
if (s->context) {
if (s->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) {
av_log(avctx, AV_LOG_ERROR,
"context=1 is not compatible with "
"2 pass huffyuv encoding\n");
return AVERROR(EINVAL);
}
}
if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
if (s->interlaced != ( avctx->height > 288 ))
av_log(avctx, AV_LOG_INFO,
"using huffyuv 2.2.0 or newer interlacing flag\n");
}
if (s->version > 3 && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
av_log(avctx, AV_LOG_ERROR, "Ver > 3 is under development, files encoded with it may not be decodable with future versions!!!\n"
"Use vstrict=-2 / -strict -2 to use it anyway.\n");
return AVERROR(EINVAL);
}
if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN && s->version <= 2) {
av_log(avctx, AV_LOG_ERROR,
"Error: RGB is incompatible with median predictor\n");
return AVERROR(EINVAL);
}
avctx->extradata[0] = s->predictor | (s->decorrelate << 6);
avctx->extradata[2] = s->interlaced ? 0x10 : 0x20;
if (s->context)
avctx->extradata[2] |= 0x40;
if (s->version < 3) {
avctx->extradata[1] = s->bitstream_bpp;
avctx->extradata[3] = 0;
} else {
avctx->extradata[1] = ((s->bps-1)<<4) | s->chroma_h_shift | (s->chroma_v_shift<<2);
if (s->chroma)
avctx->extradata[2] |= s->yuv ? 1 : 2;
if (s->alpha)
avctx->extradata[2] |= 4;
avctx->extradata[3] = 1;
}
avctx->extradata_size = 4;
if (avctx->stats_in) {
char *p = avctx->stats_in;
for (i = 0; i < 4; i++)
for (j = 0; j < s->vlc_n; j++)
s->stats[i][j] = 1;
for (;;) {
for (i = 0; i < 4; i++) {
char *next;
for (j = 0; j < s->vlc_n; j++) {
s->stats[i][j] += strtol(p, &next, 0);
if (next == p) return -1;
p = next;
}
}
if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
}
} else {
for (i = 0; i < 4; i++)
for (j = 0; j < s->vlc_n; j++) {
int d = FFMIN(j, s->vlc_n - j);
s->stats[i][j] = 100000000 / (d*d + 1);
}
}
ret = store_huffman_tables(s, avctx->extradata + avctx->extradata_size);
if (ret < 0)
return ret;
avctx->extradata_size += ret;
if (s->context) {
for (i = 0; i < 4; i++) {
int pels = avctx->width * avctx->height / (i ? 40 : 10);
for (j = 0; j < s->vlc_n; j++) {
int d = FFMIN(j, s->vlc_n - j);
s->stats[i][j] = pels/(d*d + 1);
}
}
} else {
for (i = 0; i < 4; i++)
for (j = 0; j < s->vlc_n; j++)
s->stats[i][j]= 0;
}
s->picture_number=0;
for (int i = 0; i < 3; i++) {
s->temp[i] = av_malloc(4 * avctx->width + 16);
if (!s->temp[i])
return AVERROR(ENOMEM);
}
return 0;
}
static int encode_422_bitstream(HYuvEncContext *s, int offset, int count)
{
int i;
const uint8_t *y = s->temp[0] + offset;
const uint8_t *u = s->temp[1] + offset / 2;
const uint8_t *v = s->temp[2] + offset / 2;
if (put_bytes_left(&s->pb, 0) < 2 * 4 * count) {
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
#define LOAD4\
int y0 = y[2 * i];\
int y1 = y[2 * i + 1];\
int u0 = u[i];\
int v0 = v[i];
count /= 2;
if (s->flags & AV_CODEC_FLAG_PASS1) {
for(i = 0; i < count; i++) {
LOAD4;
s->stats[0][y0]++;
s->stats[1][u0]++;
s->stats[0][y1]++;
s->stats[2][v0]++;
}
}
if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
return 0;
if (s->context) {
for (i = 0; i < count; i++) {
LOAD4;
s->stats[0][y0]++;
put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
s->stats[1][u0]++;
put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
s->stats[0][y1]++;
put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
s->stats[2][v0]++;
put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
}
} else {
for(i = 0; i < count; i++) {
LOAD4;
put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
}
}
return 0;
}
static int encode_plane_bitstream(HYuvEncContext *s, int width, int plane)
{
int count = width/2;
if (put_bytes_left(&s->pb, 0) < count * s->bps / 2) {
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
#define LOADEND\
int y0 = s->temp[0][width-1];
#define LOADEND_14\
int y0 = s->temp16[0][width-1] & mask;
#define LOADEND_16\
int y0 = s->temp16[0][width-1];
#define STATEND\
s->stats[plane][y0]++;
#define STATEND_16\
s->stats[plane][y0>>2]++;
#define WRITEEND\
put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);
#define WRITEEND_16\
put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
put_bits(&s->pb, 2, y0&3);
#define LOAD2\
int y0 = s->temp[0][2 * i];\
int y1 = s->temp[0][2 * i + 1];
#define LOAD2_14\
int y0 = s->temp16[0][2 * i] & mask;\
int y1 = s->temp16[0][2 * i + 1] & mask;
#define LOAD2_16\
int y0 = s->temp16[0][2 * i];\
int y1 = s->temp16[0][2 * i + 1];
#define STAT2\
s->stats[plane][y0]++;\
s->stats[plane][y1]++;
#define STAT2_16\
s->stats[plane][y0>>2]++;\
s->stats[plane][y1>>2]++;
#define WRITE2\
put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);\
put_bits(&s->pb, s->len[plane][y1], s->bits[plane][y1]);
#define WRITE2_16\
put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
put_bits(&s->pb, 2, y0&3);\
put_bits(&s->pb, s->len[plane][y1>>2], s->bits[plane][y1>>2]);\
put_bits(&s->pb, 2, y1&3);
#define ENCODE_PLANE(LOAD, LOADEND, WRITE, WRITEEND, STAT, STATEND) \
do { \
if (s->flags & AV_CODEC_FLAG_PASS1) { \
for (int i = 0; i < count; i++) { \
LOAD; \
STAT; \
} \
if (width & 1) { \
LOADEND; \
STATEND; \
} \
} \
if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT) \
return 0; \
\
if (s->context) { \
for (int i = 0; i < count; i++) { \
LOAD; \
STAT; \
WRITE; \
} \
if (width & 1) { \
LOADEND; \
STATEND; \
WRITEEND; \
} \
} else { \
for (int i = 0; i < count; i++) { \
LOAD; \
WRITE; \
} \
if (width & 1) { \
LOADEND; \
WRITEEND; \
} \
} \
} while (0)
if (s->bps <= 8) {
ENCODE_PLANE(LOAD2, LOADEND, WRITE2, WRITEEND, STAT2, STATEND);
} else if (s->bps <= 14) {
int mask = s->n - 1;
ENCODE_PLANE(LOAD2_14, LOADEND_14, WRITE2, WRITEEND, STAT2, STATEND);
} else {
ENCODE_PLANE(LOAD2_16, LOADEND_16, WRITE2_16, WRITEEND_16, STAT2_16, STATEND_16);
}
#undef LOAD2
#undef STAT2
#undef WRITE2
return 0;
}
static int encode_gray_bitstream(HYuvEncContext *s, int count)
{
int i;
if (put_bytes_left(&s->pb, 0) < 4 * count) {
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
#define LOAD2\
int y0 = s->temp[0][2 * i];\
int y1 = s->temp[0][2 * i + 1];
#define STAT2\
s->stats[0][y0]++;\
s->stats[0][y1]++;
#define WRITE2\
put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
count /= 2;
if (s->flags & AV_CODEC_FLAG_PASS1) {
for (i = 0; i < count; i++) {
LOAD2;
STAT2;
}
}
if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
return 0;
if (s->context) {
for (i = 0; i < count; i++) {
LOAD2;
STAT2;
WRITE2;
}
} else {
for (i = 0; i < count; i++) {
LOAD2;
WRITE2;
}
}
return 0;
}
static inline int encode_bgra_bitstream(HYuvEncContext *s, int count, int planes)
{
int i;
if (put_bytes_left(&s->pb, 0) < 4 * planes * count) {
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
#define LOAD_GBRA \
int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G]; \
int b =(s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g) & 0xFF;\
int r =(s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g) & 0xFF;\
int a = s->temp[0][planes * i + A];
#define STAT_BGRA \
s->stats[0][b]++; \
s->stats[1][g]++; \
s->stats[2][r]++; \
if (planes == 4) \
s->stats[2][a]++;
#define WRITE_GBRA \
put_bits(&s->pb, s->len[1][g], s->bits[1][g]); \
put_bits(&s->pb, s->len[0][b], s->bits[0][b]); \
put_bits(&s->pb, s->len[2][r], s->bits[2][r]); \
if (planes == 4) \
put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
if ((s->flags & AV_CODEC_FLAG_PASS1) &&
(s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) {
for (i = 0; i < count; i++) {
LOAD_GBRA;
STAT_BGRA;
}
} else if (s->context || (s->flags & AV_CODEC_FLAG_PASS1)) {
for (i = 0; i < count; i++) {
LOAD_GBRA;
STAT_BGRA;
WRITE_GBRA;
}
} else {
for (i = 0; i < count; i++) {
LOAD_GBRA;
WRITE_GBRA;
}
}
return 0;
}
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *p, int *got_packet)
{
HYuvEncContext *s = avctx->priv_data;
const int width = avctx->width;
const int width2 = avctx->width >> 1;
const int height = avctx->height;
const int fake_ystride = (1 + s->interlaced) * p->linesize[0];
const int fake_ustride = (1 + s->interlaced) * p->linesize[1];
const int fake_vstride = (1 + s->interlaced) * p->linesize[2];
int i, j, size = 0, ret;
if ((ret = ff_alloc_packet(avctx, pkt, width * height * 3 * 4 + FF_INPUT_BUFFER_MIN_SIZE)) < 0)
return ret;
if (s->context) {
size = store_huffman_tables(s, pkt->data);
if (size < 0)
return size;
for (i = 0; i < 4; i++)
for (j = 0; j < s->vlc_n; j++)
s->stats[i][j] >>= 1;
}
init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
int lefty, leftu, leftv, y, cy;
put_bits(&s->pb, 8, leftv = p->data[2][0]);
put_bits(&s->pb, 8, lefty = p->data[0][1]);
put_bits(&s->pb, 8, leftu = p->data[1][0]);
put_bits(&s->pb, 8, p->data[0][0]);
lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
encode_422_bitstream(s, 2, width-2);
if (s->predictor==MEDIAN) {
int lefttopy, lefttopu, lefttopv;
cy = y = 1;
if (s->interlaced) {
lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
encode_422_bitstream(s, 0, width);
y++; cy++;
}
lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
encode_422_bitstream(s, 0, 4);
lefttopy = p->data[0][3];
lefttopu = p->data[1][1];
lefttopv = p->data[2][1];
s->llvidencdsp.sub_median_pred(s->temp[0], p->data[0] + 4, p->data[0] + fake_ystride + 4, width - 4, &lefty, &lefttopy);
s->llvidencdsp.sub_median_pred(s->temp[1], p->data[1] + 2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
s->llvidencdsp.sub_median_pred(s->temp[2], p->data[2] + 2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
encode_422_bitstream(s, 0, width - 4);
y++; cy++;
for (; y < height; y++,cy++) {
const uint8_t *ydst, *udst, *vdst;
if (s->bitstream_bpp == 12) {
while (2 * cy > y) {
ydst = p->data[0] + p->linesize[0] * y;
s->llvidencdsp.sub_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
encode_gray_bitstream(s, width);
y++;
}
if (y >= height) break;
}
ydst = p->data[0] + p->linesize[0] * y;
udst = p->data[1] + p->linesize[1] * cy;
vdst = p->data[2] + p->linesize[2] * cy;
s->llvidencdsp.sub_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
s->llvidencdsp.sub_median_pred(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
s->llvidencdsp.sub_median_pred(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
encode_422_bitstream(s, 0, width);
}
} else {
for (cy = y = 1; y < height; y++, cy++) {
const uint8_t *ydst, *udst, *vdst;
/* encode a luma only line & y++ */
if (s->bitstream_bpp == 12) {
ydst = p->data[0] + p->linesize[0] * y;
if (s->predictor == PLANE && s->interlaced < y) {
s->llvidencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
} else {
lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
}
encode_gray_bitstream(s, width);
y++;
if (y >= height) break;
}
ydst = p->data[0] + p->linesize[0] * y;
udst = p->data[1] + p->linesize[1] * cy;
vdst = p->data[2] + p->linesize[2] * cy;
if (s->predictor == PLANE && s->interlaced < cy) {
s->llvidencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
s->llvidencdsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
s->llvidencdsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
} else {
lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
}
encode_422_bitstream(s, 0, width);
}
}
} else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
const uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
const int stride = -p->linesize[0];
const int fake_stride = -fake_ystride;
int leftr, leftg, leftb, lefta;
put_bits(&s->pb, 8, lefta = data[A]);
put_bits(&s->pb, 8, leftr = data[R]);
put_bits(&s->pb, 8, leftg = data[G]);
put_bits(&s->pb, 8, leftb = data[B]);
sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
&leftr, &leftg, &leftb, &lefta);
encode_bgra_bitstream(s, width - 1, 4);
for (int y = 1; y < height; y++) {
const uint8_t *dst = data + y*stride;
if (s->predictor == PLANE && s->interlaced < y) {
s->llvidencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
&leftr, &leftg, &leftb, &lefta);
} else {
sub_left_prediction_bgr32(s, s->temp[0], dst, width,
&leftr, &leftg, &leftb, &lefta);
}
encode_bgra_bitstream(s, width, 4);
}
} else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
const uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
const int stride = -p->linesize[0];
const int fake_stride = -fake_ystride;
int leftr, leftg, leftb;
put_bits(&s->pb, 8, leftr = data[0]);
put_bits(&s->pb, 8, leftg = data[1]);
put_bits(&s->pb, 8, leftb = data[2]);
put_bits(&s->pb, 8, 0);
sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
&leftr, &leftg, &leftb);
encode_bgra_bitstream(s, width-1, 3);
for (int y = 1; y < height; y++) {
const uint8_t *dst = data + y * stride;
if (s->predictor == PLANE && s->interlaced < y) {
s->llvidencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
width * 3);
sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
&leftr, &leftg, &leftb);
} else {
sub_left_prediction_rgb24(s, s->temp[0], dst, width,
&leftr, &leftg, &leftb);
}
encode_bgra_bitstream(s, width, 3);
}
} else if (s->version > 2) {
int plane;
for (plane = 0; plane < 1 + 2*s->chroma + s->alpha; plane++) {
int left, y;
int w = width;
int h = height;
int fake_stride = fake_ystride;
if (s->chroma && (plane == 1 || plane == 2)) {
w >>= s->chroma_h_shift;
h >>= s->chroma_v_shift;
fake_stride = plane == 1 ? fake_ustride : fake_vstride;
}
left = sub_left_prediction(s, s->temp[0], p->data[plane], w , 0);
encode_plane_bitstream(s, w, plane);
if (s->predictor==MEDIAN) {
int lefttop;
y = 1;
if (s->interlaced) {
left = sub_left_prediction(s, s->temp[0], p->data[plane] + p->linesize[plane], w , left);
encode_plane_bitstream(s, w, plane);
y++;
}
lefttop = p->data[plane][0];
for (; y < h; y++) {
const uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
sub_median_prediction(s, s->temp[0], dst - fake_stride, dst, w , &left, &lefttop);
encode_plane_bitstream(s, w, plane);
}
} else {
for (y = 1; y < h; y++) {
const uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
if (s->predictor == PLANE && s->interlaced < y) {
diff_bytes(s, s->temp[1], dst, dst - fake_stride, w);
left = sub_left_prediction(s, s->temp[0], s->temp[1], w , left);
} else {
left = sub_left_prediction(s, s->temp[0], dst, w , left);
}
encode_plane_bitstream(s, w, plane);
}
}
}
} else {
av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
}
emms_c();
size += (put_bits_count(&s->pb) + 31) / 8;
put_bits(&s->pb, 16, 0);
put_bits(&s->pb, 15, 0);
size /= 4;
if ((s->flags & AV_CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
int j;
char *p = avctx->stats_out;
char *end = p + STATS_OUT_SIZE;
for (i = 0; i < 4; i++) {
for (j = 0; j < s->vlc_n; j++) {
snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
p += strlen(p);
s->stats[i][j]= 0;
}
snprintf(p, end-p, "\n");
p++;
if (end <= p)
return AVERROR(ENOMEM);
}
} else if (avctx->stats_out)
avctx->stats_out[0] = '\0';
if (!(s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) {
flush_put_bits(&s->pb);
s->bdsp.bswap_buf((uint32_t *) pkt->data, (uint32_t *) pkt->data, size);
}
s->picture_number++;
pkt->size = size * 4;
*got_packet = 1;
return 0;
}
static av_cold int encode_end(AVCodecContext *avctx)
{
HYuvEncContext *s = avctx->priv_data;
av_freep(&avctx->stats_out);
for (int i = 0; i < 3; i++)
av_freep(&s->temp[i]);
return 0;
}
#define OFFSET(x) offsetof(HYuvEncContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
/* ffvhuff-only options */
{ "context", "Set per-frame huffman tables", OFFSET(context), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
/* Common options */
{ "non_deterministic", "Allow multithreading for e.g. context=1 at the expense of determinism",
OFFSET(non_determ), AV_OPT_TYPE_BOOL, { .i64 = 0 },
0, 1, VE },
{ "pred", "Prediction method", OFFSET(predictor), AV_OPT_TYPE_INT, { .i64 = LEFT }, LEFT, MEDIAN, VE, .unit = "pred" },
{ "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, INT_MIN, INT_MAX, VE, .unit = "pred" },
{ "plane", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PLANE }, INT_MIN, INT_MAX, VE, .unit = "pred" },
{ "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, INT_MIN, INT_MAX, VE, .unit = "pred" },
{ NULL },
};
static const AVClass normal_class = {
.class_name = "huffyuv",
.item_name = av_default_item_name,
.option = options + 1,
.version = LIBAVUTIL_VERSION_INT,
};
const FFCodec ff_huffyuv_encoder = {
.p.name = "huffyuv",
CODEC_LONG_NAME("Huffyuv / HuffYUV"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_HUFFYUV,
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
.priv_data_size = sizeof(HYuvEncContext),
.init = encode_init,
FF_CODEC_ENCODE_CB(encode_frame),
.close = encode_end,
.p.priv_class = &normal_class,
.p.pix_fmts = (const enum AVPixelFormat[]){
AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
},
.color_ranges = AVCOL_RANGE_MPEG,
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
};
#if CONFIG_FFVHUFF_ENCODER
static const AVClass ff_class = {
.class_name = "ffvhuff",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
const FFCodec ff_ffvhuff_encoder = {
.p.name = "ffvhuff",
CODEC_LONG_NAME("Huffyuv FFmpeg variant"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_FFVHUFF,
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
.priv_data_size = sizeof(HYuvEncContext),
.init = encode_init,
FF_CODEC_ENCODE_CB(encode_frame),
.close = encode_end,
.p.priv_class = &ff_class,
.p.pix_fmts = (const enum AVPixelFormat[]){
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_GBRP,
AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_GBRAP,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16,
AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16,
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P16,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_RGB24,
AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
},
.color_ranges = AVCOL_RANGE_MPEG,
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
};
#endif