1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/svq1enc.c
Niklas Haas 703288cec6 avcodec/internal: add FFCodec.color_ranges
I went through all codecs and put them into five basic categories:

1. JPEG range only
2. MPEG range only
3. Explicitly tagged
4. Broken (codec supports both but encoder ignores tags)
5. N/A (headerless or pseudo-formats)

Filters in category 5 remain untouched. The rest gain an explicit
assignment of their supported color ranges, with codecs in category
4 being set to MPEG-only for safety.

It might be considered redundant to distinguish between 0 (category 5)
and MPEG+JPEG (category 3), but in doing so we effectively communicate
that we can guarantee that these tags will be encoded, which is distinct
from the situation where there are some codecs that simply don't have
tagging or implied semantics (e.g. rawvideo).

A full list of codecs follows:

JPEG range only:
 - amv
 - roqvideo

MPEG range only:
 - asv1, asv2
 - avui
 - cfhd
 - cljr
 - dnxhd
 - dvvideo
 - ffv1
 - flv
 - h261, h263, h263p
 - {h263,vp8}_v4l2m2m
 - huffyuv, ffvhuff
 - jpeg2000
 - libopenjpeg
 - libtheora
 - libwebp, libwebp_anim
 - libx262
 - libxavs, libxavs2
 - libxvid
 - mpeg1video, mpeg2video
 - mpeg2_qsv
 - mpeg2_vaapi
 - mpeg4, msmpeg4, msmpeg4v2, wmv1, wmv2
 - mpeg4_omx
 - prores, prores_aw, prores_ks
 - rv10, rv20
 - snow
 - speedhq
 - svq1
 - tiff
 - utvideo

Explicitly tagged (MPEG/JPEG):
 - {av1,h264,hevc}_nvenc
 - {av1,h264,hevc}_vaapi
 - {av1,h264,hevc,vp8,vp9,mpeg4}_mediacodec
 - {av1,h264,hevc,vp9}_qsv
 - h264_amf
 - {h264,hevc,prores}_videotoolbox
 - libaom-av1
 - libkvazaar
 - libopenh264
 - librav1e
 - libsvtav1
 - libvpx, libvpx-vp9
 - libx264
 - libx265
 - ljpeg
 - mjpeg
 - vc2

Broken (encoder ignores tags):
 - {av1,hevc}_amf
 - {h264,hevc,mpeg4}_v4l2m2m
 - h264_omx
 - libxeve
 - magicyuv
 - {vp8,vp9,mjpeg}_vaapi

N/A:
 - ayuv, yuv4, y41p, v308, v210, v410, v408 (headerless)
 - pgmyuv (headerless)
 - rawvideo, bitpacked (headerless)
 - vnull, wrapped_avframe (pseudocodecs)
2024-09-08 13:58:11 +02:00

753 lines
27 KiB
C

/*
* SVQ1 Encoder
* Copyright (C) 2004 Mike Melanson <melanson@pcisys.net>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Sorenson Vector Quantizer #1 (SVQ1) video codec.
* For more information of the SVQ1 algorithm, visit:
* http://www.pcisys.net/~melanson/codecs/
*/
#include "libavutil/emms.h"
#include "libavutil/mem.h"
#include "avcodec.h"
#include "codec_internal.h"
#include "encode.h"
#include "hpeldsp.h"
#include "me_cmp.h"
#include "mpegvideo.h"
#include "h263.h"
#include "h263enc.h"
#include "internal.h"
#include "mpegutils.h"
#include "packet_internal.h"
#include "put_bits.h"
#include "svq1.h"
#include "svq1encdsp.h"
#include "svq1enc_cb.h"
#include "version.h"
#include "libavutil/avassert.h"
#include "libavutil/frame.h"
#include "libavutil/mem_internal.h"
// Workaround for GCC bug 102513
#if AV_GCC_VERSION_AT_LEAST(10, 0) && AV_GCC_VERSION_AT_MOST(12, 0) \
&& !defined(__clang__) && !defined(__INTEL_COMPILER)
#pragma GCC optimize ("no-ipa-cp-clone")
#endif
typedef struct SVQ1EncContext {
/* FIXME: Needed for motion estimation, should not be used for anything
* else, the idea is to make the motion estimation eventually independent
* of MpegEncContext, so this will be removed then. */
MpegEncContext m;
AVCodecContext *avctx;
MECmpContext mecc;
HpelDSPContext hdsp;
AVFrame *current_picture;
AVFrame *last_picture;
/* Some compression statistics */
enum AVPictureType pict_type;
int quality;
/* why ooh why this sick breadth first order,
* everything is slower and more complex */
PutBitContext reorder_pb[6];
int frame_width;
int frame_height;
/* Y plane block dimensions */
int y_block_width;
int y_block_height;
/* U & V plane (C planes) block dimensions */
int c_block_width;
int c_block_height;
DECLARE_ALIGNED(16, int16_t, encoded_block_levels)[6][7][256];
uint16_t *mb_type;
uint32_t *dummy;
int16_t (*motion_val8[3])[2];
int16_t (*motion_val16[3])[2];
int64_t rd_total;
uint8_t *scratchbuf;
int motion_est;
SVQ1EncDSPContext svq1encdsp;
} SVQ1EncContext;
static void svq1_write_header(SVQ1EncContext *s, PutBitContext *pb, int frame_type)
{
int i;
/* frame code */
put_bits(pb, 22, 0x20);
/* temporal reference (sure hope this is a "don't care") */
put_bits(pb, 8, 0x00);
/* frame type */
put_bits(pb, 2, frame_type - 1);
if (frame_type == AV_PICTURE_TYPE_I) {
/* no checksum since frame code is 0x20 */
/* no embedded string either */
/* output 5 unknown bits (2 + 2 + 1) */
put_bits(pb, 5, 2); /* 2 needed by quicktime decoder */
i = ff_match_2uint16(ff_svq1_frame_size_table,
FF_ARRAY_ELEMS(ff_svq1_frame_size_table),
s->frame_width, s->frame_height);
put_bits(pb, 3, i);
if (i == 7) {
put_bits(pb, 12, s->frame_width);
put_bits(pb, 12, s->frame_height);
}
}
/* no checksum or extra data (next 2 bits get 0) */
put_bits(pb, 2, 0);
}
#define QUALITY_THRESHOLD 100
#define THRESHOLD_MULTIPLIER 0.6
static int encode_block(SVQ1EncContext *s, uint8_t *src, uint8_t *ref,
uint8_t *decoded, int stride, unsigned level,
int threshold, int lambda, int intra)
{
int count, y, x, i, j, split, best_mean, best_score, best_count;
int best_vector[6];
int block_sum[7] = { 0, 0, 0, 0, 0, 0 };
int w = 2 << (level + 2 >> 1);
int h = 2 << (level + 1 >> 1);
int size = w * h;
int16_t (*block)[256] = s->encoded_block_levels[level];
const int8_t *codebook_sum, *codebook;
const uint16_t(*mean_vlc)[2];
const uint8_t(*multistage_vlc)[2];
best_score = 0;
// FIXME: Optimize, this does not need to be done multiple times.
if (intra) {
// level is 5 when encode_block is called from svq1_encode_plane
// and always < 4 when called recursively from this function.
codebook_sum = level < 4 ? svq1_intra_codebook_sum[level] : NULL;
codebook = ff_svq1_intra_codebooks[level];
mean_vlc = ff_svq1_intra_mean_vlc;
multistage_vlc = ff_svq1_intra_multistage_vlc[level];
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
int v = src[x + y * stride];
block[0][x + w * y] = v;
best_score += v * v;
block_sum[0] += v;
}
}
} else {
// level is 5 or < 4, see above for details.
codebook_sum = level < 4 ? svq1_inter_codebook_sum[level] : NULL;
codebook = ff_svq1_inter_codebooks[level];
mean_vlc = ff_svq1_inter_mean_vlc + 256;
multistage_vlc = ff_svq1_inter_multistage_vlc[level];
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
int v = src[x + y * stride] - ref[x + y * stride];
block[0][x + w * y] = v;
best_score += v * v;
block_sum[0] += v;
}
}
}
best_count = 0;
best_score -= (int)((unsigned)block_sum[0] * block_sum[0] >> (level + 3));
best_mean = block_sum[0] + (size >> 1) >> (level + 3);
if (level < 4) {
for (count = 1; count < 7; count++) {
int best_vector_score = INT_MAX;
int best_vector_sum = -999, best_vector_mean = -999;
const int stage = count - 1;
const int8_t *vector;
for (i = 0; i < 16; i++) {
int sum = codebook_sum[stage * 16 + i];
int sqr, diff, score;
vector = codebook + stage * size * 16 + i * size;
sqr = s->svq1encdsp.ssd_int8_vs_int16(vector, block[stage], size);
diff = block_sum[stage] - sum;
score = sqr - (diff * (int64_t)diff >> (level + 3)); // FIXME: 64 bits slooow
if (score < best_vector_score) {
int mean = diff + (size >> 1) >> (level + 3);
av_assert2(mean > -300 && mean < 300);
mean = av_clip(mean, intra ? 0 : -256, 255);
best_vector_score = score;
best_vector[stage] = i;
best_vector_sum = sum;
best_vector_mean = mean;
}
}
av_assert0(best_vector_mean != -999);
vector = codebook + stage * size * 16 + best_vector[stage] * size;
for (j = 0; j < size; j++)
block[stage + 1][j] = block[stage][j] - vector[j];
block_sum[stage + 1] = block_sum[stage] - best_vector_sum;
best_vector_score += lambda *
(+1 + 4 * count +
multistage_vlc[1 + count][1]
+ mean_vlc[best_vector_mean][1]);
if (best_vector_score < best_score) {
best_score = best_vector_score;
best_count = count;
best_mean = best_vector_mean;
}
}
}
if (best_mean == -128)
best_mean = -127;
else if (best_mean == 128)
best_mean = 127;
split = 0;
if (best_score > threshold && level) {
int score = 0;
int offset = level & 1 ? stride * h / 2 : w / 2;
PutBitContext backup[6];
for (i = level - 1; i >= 0; i--)
backup[i] = s->reorder_pb[i];
score += encode_block(s, src, ref, decoded, stride, level - 1,
threshold >> 1, lambda, intra);
score += encode_block(s, src + offset, ref + offset, decoded + offset,
stride, level - 1, threshold >> 1, lambda, intra);
score += lambda;
if (score < best_score) {
best_score = score;
split = 1;
} else {
for (i = level - 1; i >= 0; i--)
s->reorder_pb[i] = backup[i];
}
}
if (level > 0)
put_bits(&s->reorder_pb[level], 1, split);
if (!split) {
av_assert1(best_mean >= 0 && best_mean < 256 || !intra);
av_assert1(best_mean >= -256 && best_mean < 256);
av_assert1(best_count >= 0 && best_count < 7);
av_assert1(level < 4 || best_count == 0);
/* output the encoding */
put_bits(&s->reorder_pb[level],
multistage_vlc[1 + best_count][1],
multistage_vlc[1 + best_count][0]);
put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1],
mean_vlc[best_mean][0]);
for (i = 0; i < best_count; i++) {
av_assert2(best_vector[i] >= 0 && best_vector[i] < 16);
put_bits(&s->reorder_pb[level], 4, best_vector[i]);
}
for (y = 0; y < h; y++)
for (x = 0; x < w; x++)
decoded[x + y * stride] = src[x + y * stride] -
block[best_count][x + w * y] +
best_mean;
}
return best_score;
}
static void init_block_index(MpegEncContext *s){
s->block_index[0]= s->b8_stride*(s->mb_y*2 ) + s->mb_x*2;
s->block_index[1]= s->b8_stride*(s->mb_y*2 ) + 1 + s->mb_x*2;
s->block_index[2]= s->b8_stride*(s->mb_y*2 + 1) + s->mb_x*2;
s->block_index[3]= s->b8_stride*(s->mb_y*2 + 1) + 1 + s->mb_x*2;
s->block_index[4]= s->mb_stride*(s->mb_y + 1) + s->b8_stride*s->mb_height*2 + s->mb_x;
s->block_index[5]= s->mb_stride*(s->mb_y + s->mb_height + 2) + s->b8_stride*s->mb_height*2 + s->mb_x;
}
static int svq1_encode_plane(SVQ1EncContext *s, int plane,
PutBitContext *pb,
const unsigned char *src_plane,
unsigned char *ref_plane,
unsigned char *decoded_plane,
int width, int height, int src_stride, int stride)
{
int x, y;
int i;
int block_width, block_height;
int level;
int threshold[6];
uint8_t *src = s->scratchbuf + stride * 32;
const int lambda = (s->quality * s->quality) >>
(2 * FF_LAMBDA_SHIFT);
/* figure out the acceptable level thresholds in advance */
threshold[5] = QUALITY_THRESHOLD;
for (level = 4; level >= 0; level--)
threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER;
block_width = (width + 15) / 16;
block_height = (height + 15) / 16;
if (s->pict_type == AV_PICTURE_TYPE_P) {
s->m.avctx = s->avctx;
s->m.last_pic.data[0] = ref_plane;
s->m.linesize =
s->m.last_pic.linesize[0] =
s->m.new_pic->linesize[0] =
s->m.cur_pic.linesize[0] = stride;
s->m.width = width;
s->m.height = height;
s->m.mb_width = block_width;
s->m.mb_height = block_height;
s->m.mb_stride = s->m.mb_width + 1;
s->m.b8_stride = 2 * s->m.mb_width + 1;
s->m.f_code = 1;
s->m.pict_type = s->pict_type;
s->m.motion_est = s->motion_est;
s->m.me.scene_change_score = 0;
// s->m.out_format = FMT_H263;
// s->m.unrestricted_mv = 1;
s->m.lambda = s->quality;
s->m.qscale = s->m.lambda * 139 +
FF_LAMBDA_SCALE * 64 >>
FF_LAMBDA_SHIFT + 7;
s->m.lambda2 = s->m.lambda * s->m.lambda +
FF_LAMBDA_SCALE / 2 >>
FF_LAMBDA_SHIFT;
if (!s->motion_val8[plane]) {
s->motion_val8[plane] = av_mallocz((s->m.b8_stride *
block_height * 2 + 2) *
2 * sizeof(int16_t));
s->motion_val16[plane] = av_mallocz((s->m.mb_stride *
(block_height + 2) + 1) *
2 * sizeof(int16_t));
if (!s->motion_val8[plane] || !s->motion_val16[plane])
return AVERROR(ENOMEM);
}
s->m.mb_type = s->mb_type;
// dummies, to avoid segfaults
s->m.mb_mean = (uint8_t *)s->dummy;
s->m.mb_var = (uint16_t *)s->dummy;
s->m.mc_mb_var = (uint16_t *)s->dummy;
s->m.cur_pic.mb_type = s->dummy;
s->m.cur_pic.motion_val[0] = s->motion_val8[plane] + 2;
s->m.p_mv_table = s->motion_val16[plane] +
s->m.mb_stride + 1;
ff_me_init_pic(&s->m);
s->m.me.dia_size = s->avctx->dia_size;
s->m.first_slice_line = 1;
for (y = 0; y < block_height; y++) {
s->m.new_pic->data[0] = src - y * 16 * stride; // ugly
s->m.mb_y = y;
for (i = 0; i < 16 && i + 16 * y < height; i++) {
memcpy(&src[i * stride], &src_plane[(i + 16 * y) * src_stride],
width);
for (x = width; x < 16 * block_width; x++)
src[i * stride + x] = src[i * stride + x - 1];
}
for (; i < 16 && i + 16 * y < 16 * block_height; i++)
memcpy(&src[i * stride], &src[(i - 1) * stride],
16 * block_width);
for (x = 0; x < block_width; x++) {
s->m.mb_x = x;
init_block_index(&s->m);
ff_estimate_p_frame_motion(&s->m, x, y);
}
s->m.first_slice_line = 0;
}
ff_fix_long_p_mvs(&s->m, CANDIDATE_MB_TYPE_INTRA);
ff_fix_long_mvs(&s->m, NULL, 0, s->m.p_mv_table, s->m.f_code,
CANDIDATE_MB_TYPE_INTER, 0);
}
s->m.first_slice_line = 1;
for (y = 0; y < block_height; y++) {
for (i = 0; i < 16 && i + 16 * y < height; i++) {
memcpy(&src[i * stride], &src_plane[(i + 16 * y) * src_stride],
width);
for (x = width; x < 16 * block_width; x++)
src[i * stride + x] = src[i * stride + x - 1];
}
for (; i < 16 && i + 16 * y < 16 * block_height; i++)
memcpy(&src[i * stride], &src[(i - 1) * stride], 16 * block_width);
s->m.mb_y = y;
for (x = 0; x < block_width; x++) {
uint8_t reorder_buffer[2][6][7 * 32];
int count[2][6];
int offset = y * 16 * stride + x * 16;
uint8_t *decoded = decoded_plane + offset;
const uint8_t *ref = ref_plane + offset;
int score[4] = { 0, 0, 0, 0 }, best;
uint8_t *temp = s->scratchbuf;
if (put_bytes_left(pb, 0) < 3000) { // FIXME: check size
av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
return -1;
}
s->m.mb_x = x;
init_block_index(&s->m);
if (s->pict_type == AV_PICTURE_TYPE_I ||
(s->m.mb_type[x + y * s->m.mb_stride] &
CANDIDATE_MB_TYPE_INTRA)) {
for (i = 0; i < 6; i++)
init_put_bits(&s->reorder_pb[i], reorder_buffer[0][i],
7 * 32);
if (s->pict_type == AV_PICTURE_TYPE_P) {
put_bits(&s->reorder_pb[5], SVQ1_BLOCK_INTRA_LEN, SVQ1_BLOCK_INTRA_CODE);
score[0] = SVQ1_BLOCK_INTRA_LEN * lambda;
}
score[0] += encode_block(s, src + 16 * x, NULL, temp, stride,
5, 64, lambda, 1);
for (i = 0; i < 6; i++) {
count[0][i] = put_bits_count(&s->reorder_pb[i]);
flush_put_bits(&s->reorder_pb[i]);
}
} else
score[0] = INT_MAX;
best = 0;
if (s->pict_type == AV_PICTURE_TYPE_P) {
int mx, my, pred_x, pred_y, dxy;
int16_t *motion_ptr;
motion_ptr = ff_h263_pred_motion(&s->m, 0, 0, &pred_x, &pred_y);
if (s->m.mb_type[x + y * s->m.mb_stride] &
CANDIDATE_MB_TYPE_INTER) {
for (i = 0; i < 6; i++)
init_put_bits(&s->reorder_pb[i], reorder_buffer[1][i],
7 * 32);
put_bits(&s->reorder_pb[5], SVQ1_BLOCK_INTER_LEN, SVQ1_BLOCK_INTER_CODE);
mx = motion_ptr[0];
my = motion_ptr[1];
av_assert1(mx >= -32 && mx <= 31);
av_assert1(my >= -32 && my <= 31);
av_assert1(pred_x >= -32 && pred_x <= 31);
av_assert1(pred_y >= -32 && pred_y <= 31);
ff_h263_encode_motion(&s->reorder_pb[5], mx - pred_x, 1);
ff_h263_encode_motion(&s->reorder_pb[5], my - pred_y, 1);
score[1] += lambda * put_bits_count(&s->reorder_pb[5]);
dxy = (mx & 1) + 2 * (my & 1);
s->hdsp.put_pixels_tab[0][dxy](temp + 16*stride,
ref + (mx >> 1) +
stride * (my >> 1),
stride, 16);
score[1] += encode_block(s, src + 16 * x, temp + 16*stride,
decoded, stride, 5, 64, lambda, 0);
best = score[1] <= score[0];
score[2] = s->mecc.sse[0](NULL, src + 16 * x, ref,
stride, 16);
score[2] += SVQ1_BLOCK_SKIP_LEN * lambda;
if (score[2] < score[best] && mx == 0 && my == 0) {
best = 2;
s->hdsp.put_pixels_tab[0][0](decoded, ref, stride, 16);
put_bits(pb, SVQ1_BLOCK_SKIP_LEN, SVQ1_BLOCK_SKIP_CODE);
}
}
if (best == 1) {
for (i = 0; i < 6; i++) {
count[1][i] = put_bits_count(&s->reorder_pb[i]);
flush_put_bits(&s->reorder_pb[i]);
}
} else {
motion_ptr[0] =
motion_ptr[1] =
motion_ptr[2] =
motion_ptr[3] =
motion_ptr[0 + 2 * s->m.b8_stride] =
motion_ptr[1 + 2 * s->m.b8_stride] =
motion_ptr[2 + 2 * s->m.b8_stride] =
motion_ptr[3 + 2 * s->m.b8_stride] = 0;
}
}
s->rd_total += score[best];
if (best != 2)
for (i = 5; i >= 0; i--)
ff_copy_bits(pb, reorder_buffer[best][i],
count[best][i]);
if (best == 0)
s->hdsp.put_pixels_tab[0][0](decoded, temp, stride, 16);
}
s->m.first_slice_line = 0;
}
return 0;
}
static av_cold int svq1_encode_end(AVCodecContext *avctx)
{
SVQ1EncContext *const s = avctx->priv_data;
int i;
if (avctx->frame_num)
av_log(avctx, AV_LOG_DEBUG, "RD: %f\n",
s->rd_total / (double)(avctx->width * avctx->height *
avctx->frame_num));
av_freep(&s->m.me.scratchpad);
av_freep(&s->m.me.map);
av_freep(&s->mb_type);
av_freep(&s->dummy);
av_freep(&s->scratchbuf);
s->m.mb_type = NULL;
ff_mpv_common_end(&s->m);
for (i = 0; i < 3; i++) {
av_freep(&s->motion_val8[i]);
av_freep(&s->motion_val16[i]);
}
av_frame_free(&s->current_picture);
av_frame_free(&s->last_picture);
av_frame_free(&s->m.new_pic);
return 0;
}
static av_cold int write_ident(AVCodecContext *avctx, const char *ident)
{
int size = strlen(ident);
avctx->extradata = av_malloc(size + 8);
if (!avctx->extradata)
return AVERROR(ENOMEM);
AV_WB32(avctx->extradata, size + 8);
AV_WL32(avctx->extradata + 4, MKTAG('S', 'V', 'Q', '1'));
memcpy(avctx->extradata + 8, ident, size);
avctx->extradata_size = size + 8;
return 0;
}
static av_cold int svq1_encode_init(AVCodecContext *avctx)
{
SVQ1EncContext *const s = avctx->priv_data;
int ret;
if (avctx->width >= 4096 || avctx->height >= 4096) {
av_log(avctx, AV_LOG_ERROR, "Dimensions too large, maximum is 4095x4095\n");
return AVERROR(EINVAL);
}
ff_hpeldsp_init(&s->hdsp, avctx->flags);
ff_me_cmp_init(&s->mecc, avctx);
ret = ff_me_init(&s->m.me, avctx, &s->mecc, 0);
if (ret < 0)
return ret;
ff_mpegvideoencdsp_init(&s->m.mpvencdsp, avctx);
s->current_picture = av_frame_alloc();
s->last_picture = av_frame_alloc();
if (!s->current_picture || !s->last_picture) {
return AVERROR(ENOMEM);
}
s->frame_width = avctx->width;
s->frame_height = avctx->height;
s->y_block_width = (s->frame_width + 15) / 16;
s->y_block_height = (s->frame_height + 15) / 16;
s->c_block_width = (s->frame_width / 4 + 15) / 16;
s->c_block_height = (s->frame_height / 4 + 15) / 16;
s->avctx = avctx;
s->m.avctx = avctx;
if ((ret = ff_mpv_common_init(&s->m)) < 0) {
return ret;
}
s->m.picture_structure = PICT_FRAME;
s->m.me.temp =
s->m.me.scratchpad = av_mallocz((avctx->width + 64) *
2 * 16 * 2 * sizeof(uint8_t));
s->mb_type = av_mallocz((s->y_block_width + 1) *
s->y_block_height * sizeof(int16_t));
s->dummy = av_mallocz((s->y_block_width + 1) *
s->y_block_height * sizeof(int32_t));
s->m.me.map = av_mallocz(2 * ME_MAP_SIZE * sizeof(*s->m.me.map));
s->m.new_pic = av_frame_alloc();
if (!s->m.me.scratchpad || !s->m.me.map ||
!s->mb_type || !s->dummy || !s->m.new_pic)
return AVERROR(ENOMEM);
s->m.me.score_map = s->m.me.map + ME_MAP_SIZE;
ff_svq1enc_init(&s->svq1encdsp);
ff_h263_encode_init(&s->m); // mv_penalty
return write_ident(avctx, s->avctx->flags & AV_CODEC_FLAG_BITEXACT ? "Lavc" : LIBAVCODEC_IDENT);
}
static int svq1_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *pict, int *got_packet)
{
SVQ1EncContext *const s = avctx->priv_data;
PutBitContext pb;
int i, ret;
ret = ff_alloc_packet(avctx, pkt, s->y_block_width * s->y_block_height *
MAX_MB_BYTES * 3 + FF_INPUT_BUFFER_MIN_SIZE);
if (ret < 0)
return ret;
if (avctx->pix_fmt != AV_PIX_FMT_YUV410P) {
av_log(avctx, AV_LOG_ERROR, "unsupported pixel format\n");
return -1;
}
if (!s->current_picture->data[0]) {
if ((ret = ff_encode_alloc_frame(avctx, s->current_picture)) < 0) {
return ret;
}
}
if (!s->last_picture->data[0]) {
ret = ff_encode_alloc_frame(avctx, s->last_picture);
if (ret < 0)
return ret;
}
if (!s->scratchbuf) {
s->scratchbuf = av_malloc_array(s->current_picture->linesize[0], 16 * 3);
if (!s->scratchbuf)
return AVERROR(ENOMEM);
}
FFSWAP(AVFrame*, s->current_picture, s->last_picture);
if (avctx->gop_size && (avctx->frame_num % avctx->gop_size))
s->pict_type = AV_PICTURE_TYPE_P;
else
s->pict_type = AV_PICTURE_TYPE_I;
s->quality = pict->quality;
ff_side_data_set_encoder_stats(pkt, pict->quality, NULL, 0, s->pict_type);
init_put_bits(&pb, pkt->data, pkt->size);
svq1_write_header(s, &pb, s->pict_type);
for (i = 0; i < 3; i++) {
int ret = svq1_encode_plane(s, i, &pb,
pict->data[i],
s->last_picture->data[i],
s->current_picture->data[i],
s->frame_width / (i ? 4 : 1),
s->frame_height / (i ? 4 : 1),
pict->linesize[i],
s->current_picture->linesize[i]);
emms_c();
if (ret < 0) {
int j;
for (j = 0; j < i; j++) {
av_freep(&s->motion_val8[j]);
av_freep(&s->motion_val16[j]);
}
av_freep(&s->scratchbuf);
return -1;
}
}
// align_put_bits(&pb);
while (put_bits_count(&pb) & 31)
put_bits(&pb, 1, 0);
flush_put_bits(&pb);
pkt->size = put_bytes_output(&pb);
if (s->pict_type == AV_PICTURE_TYPE_I)
pkt->flags |= AV_PKT_FLAG_KEY;
*got_packet = 1;
return 0;
}
#define OFFSET(x) offsetof(struct SVQ1EncContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "motion-est", "Motion estimation algorithm", OFFSET(motion_est), AV_OPT_TYPE_INT, { .i64 = FF_ME_EPZS }, FF_ME_ZERO, FF_ME_XONE, VE, .unit = "motion-est"},
{ "zero", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ZERO }, 0, 0, FF_MPV_OPT_FLAGS, .unit = "motion-est" },
{ "epzs", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_EPZS }, 0, 0, FF_MPV_OPT_FLAGS, .unit = "motion-est" },
{ "xone", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_XONE }, 0, 0, FF_MPV_OPT_FLAGS, .unit = "motion-est" },
{ NULL },
};
static const AVClass svq1enc_class = {
.class_name = "svq1enc",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
const FFCodec ff_svq1_encoder = {
.p.name = "svq1",
CODEC_LONG_NAME("Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_SVQ1,
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
.priv_data_size = sizeof(SVQ1EncContext),
.p.priv_class = &svq1enc_class,
.init = svq1_encode_init,
FF_CODEC_ENCODE_CB(svq1_encode_frame),
.close = svq1_encode_end,
.p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUV410P,
AV_PIX_FMT_NONE },
.color_ranges = AVCOL_RANGE_MPEG,
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
};