1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-13 21:28:01 +02:00
FFmpeg/libavcodec/utvideoenc.c
Jan Ekström 3fbad00714 utvideoenc: Enable support for multiple slices and use them
The official Ut Video decoder only threads with slices, thus until
now any files encoded by the libavcodec encoder have only been
decodable with a single thread. The default slice count is now
set to subsampled_height / 120.

Also sets slices to 1 for the Ut Video encoder tests to keep them
green.

Signed-off-by: Derek Buitenhuis <derek.buitenhuis@gmail.com>
2014-02-14 15:09:39 +00:00

651 lines
19 KiB
C

/*
* Ut Video encoder
* Copyright (c) 2012 Jan Ekström
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Ut Video encoder
*/
#include "libavutil/imgutils.h"
#include "libavutil/intreadwrite.h"
#include "avcodec.h"
#include "internal.h"
#include "bytestream.h"
#include "put_bits.h"
#include "dsputil.h"
#include "mathops.h"
#include "utvideo.h"
#include "huffman.h"
/* Compare huffentry symbols */
static int huff_cmp_sym(const void *a, const void *b)
{
const HuffEntry *aa = a, *bb = b;
return aa->sym - bb->sym;
}
static av_cold int utvideo_encode_close(AVCodecContext *avctx)
{
UtvideoContext *c = avctx->priv_data;
int i;
av_freep(&avctx->coded_frame);
av_freep(&c->slice_bits);
for (i = 0; i < 4; i++)
av_freep(&c->slice_buffer[i]);
return 0;
}
static av_cold int utvideo_encode_init(AVCodecContext *avctx)
{
UtvideoContext *c = avctx->priv_data;
int i, subsampled_height;
uint32_t original_format;
c->avctx = avctx;
c->frame_info_size = 4;
c->slice_stride = FFALIGN(avctx->width, 32);
switch (avctx->pix_fmt) {
case AV_PIX_FMT_RGB24:
c->planes = 3;
avctx->codec_tag = MKTAG('U', 'L', 'R', 'G');
original_format = UTVIDEO_RGB;
break;
case AV_PIX_FMT_RGBA:
c->planes = 4;
avctx->codec_tag = MKTAG('U', 'L', 'R', 'A');
original_format = UTVIDEO_RGBA;
break;
case AV_PIX_FMT_YUV420P:
if (avctx->width & 1 || avctx->height & 1) {
av_log(avctx, AV_LOG_ERROR,
"4:2:0 video requires even width and height.\n");
return AVERROR_INVALIDDATA;
}
c->planes = 3;
if (avctx->colorspace == AVCOL_SPC_BT709)
avctx->codec_tag = MKTAG('U', 'L', 'H', '0');
else
avctx->codec_tag = MKTAG('U', 'L', 'Y', '0');
original_format = UTVIDEO_420;
break;
case AV_PIX_FMT_YUV422P:
if (avctx->width & 1) {
av_log(avctx, AV_LOG_ERROR,
"4:2:2 video requires even width.\n");
return AVERROR_INVALIDDATA;
}
c->planes = 3;
if (avctx->colorspace == AVCOL_SPC_BT709)
avctx->codec_tag = MKTAG('U', 'L', 'H', '2');
else
avctx->codec_tag = MKTAG('U', 'L', 'Y', '2');
original_format = UTVIDEO_422;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
avctx->pix_fmt);
return AVERROR_INVALIDDATA;
}
ff_dsputil_init(&c->dsp, avctx);
/* Check the prediction method, and error out if unsupported */
if (avctx->prediction_method < 0 || avctx->prediction_method > 4) {
av_log(avctx, AV_LOG_WARNING,
"Prediction method %d is not supported in Ut Video.\n",
avctx->prediction_method);
return AVERROR_OPTION_NOT_FOUND;
}
if (avctx->prediction_method == FF_PRED_PLANE) {
av_log(avctx, AV_LOG_ERROR,
"Plane prediction is not supported in Ut Video.\n");
return AVERROR_OPTION_NOT_FOUND;
}
/* Convert from libavcodec prediction type to Ut Video's */
c->frame_pred = ff_ut_pred_order[avctx->prediction_method];
if (c->frame_pred == PRED_GRADIENT) {
av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n");
return AVERROR_OPTION_NOT_FOUND;
}
/*
* Check the asked slice count for obviously invalid
* values (> 256 or negative).
*/
if (avctx->slices > 256 || avctx->slices < 0) {
av_log(avctx, AV_LOG_ERROR,
"Slice count %d is not supported in Ut Video (theoretical range is 0-256).\n",
avctx->slices);
return AVERROR(EINVAL);
}
/* Check that the slice count is not larger than the subsampled height */
subsampled_height = avctx->height >> av_pix_fmt_desc_get(avctx->pix_fmt)->log2_chroma_h;
if (avctx->slices > subsampled_height) {
av_log(avctx, AV_LOG_ERROR,
"Slice count %d is larger than the subsampling-applied height %d.\n",
avctx->slices, subsampled_height);
return AVERROR(EINVAL);
}
avctx->coded_frame = av_frame_alloc();
if (!avctx->coded_frame) {
av_log(avctx, AV_LOG_ERROR, "Could not allocate frame.\n");
utvideo_encode_close(avctx);
return AVERROR(ENOMEM);
}
/* extradata size is 4 * 32bit */
avctx->extradata_size = 16;
avctx->extradata = av_mallocz(avctx->extradata_size +
FF_INPUT_BUFFER_PADDING_SIZE);
if (!avctx->extradata) {
av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
utvideo_encode_close(avctx);
return AVERROR(ENOMEM);
}
for (i = 0; i < c->planes; i++) {
c->slice_buffer[i] = av_malloc(c->slice_stride * (avctx->height + 2) +
FF_INPUT_BUFFER_PADDING_SIZE);
if (!c->slice_buffer[i]) {
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n");
utvideo_encode_close(avctx);
return AVERROR(ENOMEM);
}
}
/*
* Set the version of the encoder.
* Last byte is "implementation ID", which is
* obtained from the creator of the format.
* Libavcodec has been assigned with the ID 0xF0.
*/
AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0));
/*
* Set the "original format"
* Not used for anything during decoding.
*/
AV_WL32(avctx->extradata + 4, original_format);
/* Write 4 as the 'frame info size' */
AV_WL32(avctx->extradata + 8, c->frame_info_size);
/*
* Set how many slices are going to be used.
* By default uses multiple slices depending on the subsampled height.
* This enables multithreading in the official decoder.
*/
if (!avctx->slices) {
c->slices = subsampled_height / 120;
if (!c->slices)
c->slices = 1;
else if (c->slices > 256)
c->slices = 256;
} else {
c->slices = avctx->slices;
}
/* Set compression mode */
c->compression = COMP_HUFF;
/*
* Set the encoding flags:
* - Slice count minus 1
* - Interlaced encoding mode flag, set to zero for now.
* - Compression mode (none/huff)
* And write the flags.
*/
c->flags = (c->slices - 1) << 24;
c->flags |= 0 << 11; // bit field to signal interlaced encoding mode
c->flags |= c->compression;
AV_WL32(avctx->extradata + 12, c->flags);
return 0;
}
static void mangle_rgb_planes(uint8_t *dst[4], int dst_stride, uint8_t *src,
int step, int stride, int width, int height)
{
int i, j;
int k = 2 * dst_stride;
unsigned int g;
for (j = 0; j < height; j++) {
if (step == 3) {
for (i = 0; i < width * step; i += step) {
g = src[i + 1];
dst[0][k] = g;
g += 0x80;
dst[1][k] = src[i + 2] - g;
dst[2][k] = src[i + 0] - g;
k++;
}
} else {
for (i = 0; i < width * step; i += step) {
g = src[i + 1];
dst[0][k] = g;
g += 0x80;
dst[1][k] = src[i + 2] - g;
dst[2][k] = src[i + 0] - g;
dst[3][k] = src[i + 3];
k++;
}
}
k += dst_stride - width;
src += stride;
}
}
/* Write data to a plane with left prediction */
static void left_predict(uint8_t *src, uint8_t *dst, int stride,
int width, int height)
{
int i, j;
uint8_t prev;
prev = 0x80; /* Set the initial value */
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {
*dst++ = src[i] - prev;
prev = src[i];
}
src += stride;
}
}
/* Write data to a plane with median prediction */
static void median_predict(UtvideoContext *c, uint8_t *src, uint8_t *dst, int stride,
int width, int height)
{
int i, j;
int A, B;
uint8_t prev;
/* First line uses left neighbour prediction */
prev = 0x80; /* Set the initial value */
for (i = 0; i < width; i++) {
*dst++ = src[i] - prev;
prev = src[i];
}
if (height == 1)
return;
src += stride;
/*
* Second line uses top prediction for the first sample,
* and median for the rest.
*/
A = B = 0;
/* Rest of the coded part uses median prediction */
for (j = 1; j < height; j++) {
c->dsp.sub_hfyu_median_prediction(dst, src - stride, src, width, &A, &B);
dst += width;
src += stride;
}
}
/* Count the usage of values in a plane */
static void count_usage(uint8_t *src, int width,
int height, uint64_t *counts)
{
int i, j;
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++) {
counts[src[i]]++;
}
src += width;
}
}
/* Calculate the actual huffman codes from the code lengths */
static void calculate_codes(HuffEntry *he)
{
int last, i;
uint32_t code;
qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
last = 255;
while (he[last].len == 255 && last)
last--;
code = 1;
for (i = last; i >= 0; i--) {
he[i].code = code >> (32 - he[i].len);
code += 0x80000000u >> (he[i].len - 1);
}
qsort(he, 256, sizeof(*he), huff_cmp_sym);
}
/* Write huffman bit codes to a memory block */
static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size,
int width, int height, HuffEntry *he)
{
PutBitContext pb;
int i, j;
int count;
init_put_bits(&pb, dst, dst_size);
/* Write the codes */
for (j = 0; j < height; j++) {
for (i = 0; i < width; i++)
put_bits(&pb, he[src[i]].len, he[src[i]].code);
src += width;
}
/* Pad output to a 32bit boundary */
count = put_bits_count(&pb) & 0x1F;
if (count)
put_bits(&pb, 32 - count, 0);
/* Get the amount of bits written */
count = put_bits_count(&pb);
/* Flush the rest with zeroes */
flush_put_bits(&pb);
return count;
}
static int encode_plane(AVCodecContext *avctx, uint8_t *src,
uint8_t *dst, int stride,
int width, int height, PutByteContext *pb)
{
UtvideoContext *c = avctx->priv_data;
uint8_t lengths[256];
uint64_t counts[256] = { 0 };
HuffEntry he[256];
uint32_t offset = 0, slice_len = 0;
int i, sstart, send = 0;
int symbol;
/* Do prediction / make planes */
switch (c->frame_pred) {
case PRED_NONE:
for (i = 0; i < c->slices; i++) {
sstart = send;
send = height * (i + 1) / c->slices;
av_image_copy_plane(dst + sstart * width, width,
src + sstart * stride, stride,
width, send - sstart);
}
break;
case PRED_LEFT:
for (i = 0; i < c->slices; i++) {
sstart = send;
send = height * (i + 1) / c->slices;
left_predict(src + sstart * stride, dst + sstart * width,
stride, width, send - sstart);
}
break;
case PRED_MEDIAN:
for (i = 0; i < c->slices; i++) {
sstart = send;
send = height * (i + 1) / c->slices;
median_predict(c, src + sstart * stride, dst + sstart * width,
stride, width, send - sstart);
}
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n",
c->frame_pred);
return AVERROR_OPTION_NOT_FOUND;
}
/* Count the usage of values */
count_usage(dst, width, height, counts);
/* Check for a special case where only one symbol was used */
for (symbol = 0; symbol < 256; symbol++) {
/* If non-zero count is found, see if it matches width * height */
if (counts[symbol]) {
/* Special case if only one symbol was used */
if (counts[symbol] == width * height) {
/*
* Write a zero for the single symbol
* used in the plane, else 0xFF.
*/
for (i = 0; i < 256; i++) {
if (i == symbol)
bytestream2_put_byte(pb, 0);
else
bytestream2_put_byte(pb, 0xFF);
}
/* Write zeroes for lengths */
for (i = 0; i < c->slices; i++)
bytestream2_put_le32(pb, 0);
/* And that's all for that plane folks */
return 0;
}
break;
}
}
/* Calculate huffman lengths */
ff_huff_gen_len_table(lengths, counts);
/*
* Write the plane's header into the output packet:
* - huffman code lengths (256 bytes)
* - slice end offsets (gotten from the slice lengths)
*/
for (i = 0; i < 256; i++) {
bytestream2_put_byte(pb, lengths[i]);
he[i].len = lengths[i];
he[i].sym = i;
}
/* Calculate the huffman codes themselves */
calculate_codes(he);
send = 0;
for (i = 0; i < c->slices; i++) {
sstart = send;
send = height * (i + 1) / c->slices;
/*
* Write the huffman codes to a buffer,
* get the offset in bits and convert to bytes.
*/
offset += write_huff_codes(dst + sstart * width, c->slice_bits,
width * (send - sstart), width,
send - sstart, he) >> 3;
slice_len = offset - slice_len;
/* Byteswap the written huffman codes */
c->dsp.bswap_buf((uint32_t *) c->slice_bits,
(uint32_t *) c->slice_bits,
slice_len >> 2);
/* Write the offset to the stream */
bytestream2_put_le32(pb, offset);
/* Seek to the data part of the packet */
bytestream2_seek_p(pb, 4 * (c->slices - i - 1) +
offset - slice_len, SEEK_CUR);
/* Write the slices' data into the output packet */
bytestream2_put_buffer(pb, c->slice_bits, slice_len);
/* Seek back to the slice offsets */
bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset,
SEEK_CUR);
slice_len = offset;
}
/* And at the end seek to the end of written slice(s) */
bytestream2_seek_p(pb, offset, SEEK_CUR);
return 0;
}
static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *pic, int *got_packet)
{
UtvideoContext *c = avctx->priv_data;
PutByteContext pb;
uint32_t frame_info;
uint8_t *dst;
int width = avctx->width, height = avctx->height;
int i, ret = 0;
/* Allocate a new packet if needed, and set it to the pointer dst */
ret = ff_alloc_packet(pkt, (256 + 4 * c->slices + width * height) *
c->planes + 4);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR,
"Error allocating the output packet, or the provided packet "
"was too small.\n");
return ret;
}
dst = pkt->data;
bytestream2_init_writer(&pb, dst, pkt->size);
av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
width * height + FF_INPUT_BUFFER_PADDING_SIZE);
if (!c->slice_bits) {
av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n");
return AVERROR(ENOMEM);
}
/* In case of RGB, mangle the planes to Ut Video's format */
if (avctx->pix_fmt == AV_PIX_FMT_RGBA || avctx->pix_fmt == AV_PIX_FMT_RGB24)
mangle_rgb_planes(c->slice_buffer, c->slice_stride, pic->data[0],
c->planes, pic->linesize[0], width, height);
/* Deal with the planes */
switch (avctx->pix_fmt) {
case AV_PIX_FMT_RGB24:
case AV_PIX_FMT_RGBA:
for (i = 0; i < c->planes; i++) {
ret = encode_plane(avctx, c->slice_buffer[i] + 2 * c->slice_stride,
c->slice_buffer[i], c->slice_stride,
width, height, &pb);
if (ret) {
av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
return ret;
}
}
break;
case AV_PIX_FMT_YUV422P:
for (i = 0; i < c->planes; i++) {
ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
pic->linesize[i], width >> !!i, height, &pb);
if (ret) {
av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
return ret;
}
}
break;
case AV_PIX_FMT_YUV420P:
for (i = 0; i < c->planes; i++) {
ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
pic->linesize[i], width >> !!i, height >> !!i,
&pb);
if (ret) {
av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
return ret;
}
}
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
avctx->pix_fmt);
return AVERROR_INVALIDDATA;
}
/*
* Write frame information (LE 32bit unsigned)
* into the output packet.
* Contains the prediction method.
*/
frame_info = c->frame_pred << 8;
bytestream2_put_le32(&pb, frame_info);
/*
* At least currently Ut Video is IDR only.
* Set flags accordingly.
*/
avctx->coded_frame->key_frame = 1;
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
pkt->size = bytestream2_tell_p(&pb);
pkt->flags |= AV_PKT_FLAG_KEY;
/* Packet should be done */
*got_packet = 1;
return 0;
}
AVCodec ff_utvideo_encoder = {
.name = "utvideo",
.long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_UTVIDEO,
.priv_data_size = sizeof(UtvideoContext),
.init = utvideo_encode_init,
.encode2 = utvideo_encode_frame,
.close = utvideo_encode_close,
.pix_fmts = (const enum AVPixelFormat[]) {
AV_PIX_FMT_RGB24, AV_PIX_FMT_RGBA, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE
},
};