1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavcodec/mlpenc.c
James Almer 65ddc74988 avutil: remove deprecated FF_API_OLD_CHANNEL_LAYOUT
Signed-off-by: James Almer <jamrial@gmail.com>
2024-03-07 08:53:30 -03:00

2347 lines
82 KiB
C

/**
* MLP encoder
* Copyright (c) 2008 Ramiro Polla
* Copyright (c) 2016-2019 Jai Luthra
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config_components.h"
#include "avcodec.h"
#include "codec_internal.h"
#include "encode.h"
#include "put_bits.h"
#include "audio_frame_queue.h"
#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/crc.h"
#include "libavutil/avstring.h"
#include "libavutil/intmath.h"
#include "libavutil/opt.h"
#include "libavutil/samplefmt.h"
#include "libavutil/thread.h"
#include "mlp_parse.h"
#include "mlp.h"
#include "lpc.h"
#define MAX_NCHANNELS (MAX_CHANNELS + 2)
#define MIN_HEADER_INTERVAL 8
#define MAX_HEADER_INTERVAL 128
#define MLP_MIN_LPC_ORDER 1
#define MLP_MAX_LPC_ORDER 8
#define MLP_MIN_LPC_SHIFT 0
#define MLP_MAX_LPC_SHIFT 15
typedef struct RestartHeader {
uint8_t min_channel; ///< The index of the first channel coded in this substream.
uint8_t max_channel; ///< The index of the last channel coded in this substream.
uint8_t max_matrix_channel; ///< The number of channels input into the rematrix stage.
int8_t max_shift;
uint8_t noise_shift; ///< The left shift applied to random noise in 0x31ea substreams.
uint32_t noisegen_seed; ///< The current seed value for the pseudorandom noise generator(s).
uint8_t data_check_present; ///< Set if the substream contains extra info to check the size of VLC blocks.
int32_t lossless_check_data; ///< XOR of all output samples
uint8_t max_huff_lsbs; ///< largest huff_lsbs
uint8_t max_output_bits; ///< largest output bit-depth
} RestartHeader;
typedef struct MatrixParams {
uint8_t count; ///< number of matrices to apply
uint8_t outch[MAX_MATRICES]; ///< output channel for each matrix
int32_t forco[MAX_MATRICES][MAX_NCHANNELS]; ///< forward coefficients
int32_t coeff[MAX_MATRICES][MAX_NCHANNELS]; ///< decoding coefficients
uint8_t fbits[MAX_MATRICES]; ///< fraction bits
int8_t noise_shift[MAX_CHANNELS];
uint8_t lsb_bypass[MAX_MATRICES];
int8_t bypassed_lsbs[MAX_MATRICES][MAX_BLOCKSIZE];
} MatrixParams;
#define PARAMS_DEFAULT (0xff)
#define PARAM_PRESENCE_FLAGS (1 << 8)
typedef struct DecodingParams {
uint16_t blocksize; ///< number of PCM samples in current audio block
uint8_t quant_step_size[MAX_CHANNELS]; ///< left shift to apply to Huffman-decoded residuals
int8_t output_shift[MAX_CHANNELS]; ///< Left shift to apply to decoded PCM values to get final 24-bit output.
uint8_t max_order[MAX_CHANNELS];
MatrixParams matrix_params;
uint8_t param_presence_flags; ///< Bitmask of which parameter sets are conveyed in a decoding parameter block.
int32_t sample_buffer[MAX_NCHANNELS][MAX_BLOCKSIZE];
} DecodingParams;
typedef struct BestOffset {
int32_t offset;
uint32_t bitcount;
uint8_t lsb_bits;
int32_t min;
int32_t max;
} BestOffset;
#define HUFF_OFFSET_MIN (-16384)
#define HUFF_OFFSET_MAX ( 16383)
/** Number of possible codebooks (counting "no codebooks") */
#define NUM_CODEBOOKS 4
typedef struct MLPBlock {
unsigned int seq_size;
ChannelParams channel_params[MAX_CHANNELS];
DecodingParams decoding_params;
int32_t lossless_check_data;
unsigned int max_output_bits; ///< largest output bit-depth
BestOffset best_offset[MAX_CHANNELS][NUM_CODEBOOKS];
ChannelParams major_channel_params[MAX_CHANNELS]; ///< ChannelParams to be written to bitstream.
DecodingParams major_decoding_params; ///< DecodingParams to be written to bitstream.
int major_params_changed; ///< params_changed to be written to bitstream.
int32_t inout_buffer[MAX_NCHANNELS][MAX_BLOCKSIZE];
} MLPBlock;
typedef struct MLPSubstream {
RestartHeader restart_header;
RestartHeader *cur_restart_header;
MLPBlock b[MAX_HEADER_INTERVAL + 1];
unsigned int major_cur_subblock_index;
unsigned int major_filter_state_subblock;
int32_t coefs[MAX_CHANNELS][MAX_LPC_ORDER][MAX_LPC_ORDER];
} MLPSubstream;
typedef struct MLPEncodeContext {
AVClass *class;
AVCodecContext *avctx;
int max_restart_interval; ///< Max interval of access units in between two major frames.
int min_restart_interval; ///< Min interval of access units in between two major frames.
int cur_restart_interval;
int lpc_coeff_precision;
int rematrix_precision;
int lpc_type;
int lpc_passes;
int prediction_order;
int max_codebook_search;
int num_substreams; ///< Number of substreams contained within this stream.
int num_channels; /**< Number of channels in major_scratch_buffer.
* Normal channels + noise channels. */
int coded_sample_fmt [2]; ///< sample format encoded for MLP
int coded_sample_rate[2]; ///< sample rate encoded for MLP
int coded_peak_bitrate; ///< peak bitrate for this major sync header
int flags; ///< major sync info flags
/* channel_meaning */
int substream_info;
int thd_substream_info;
int fs;
int wordlength;
int channel_occupancy;
int summary_info;
int32_t last_frames; ///< Signal last frames.
unsigned int major_number_of_frames;
unsigned int next_major_number_of_frames;
unsigned int major_frame_size; ///< Number of samples in current major frame being encoded.
unsigned int next_major_frame_size; ///< Counter of number of samples for next major frame.
unsigned int frame_index; ///< Index of current frame being encoded.
unsigned int restart_intervals; ///< Number of possible major frame sizes.
uint16_t output_timing; ///< Timestamp of current access unit.
uint16_t input_timing; ///< Decoding timestamp of current access unit.
uint8_t noise_type;
uint8_t channel_arrangement; ///< channel arrangement for MLP streams
uint16_t channel_arrangement8; ///< 8 channel arrangement for THD streams
uint8_t multichannel_type6ch; ///< channel modifier for TrueHD stream 0
uint8_t multichannel_type8ch; ///< channel modifier for TrueHD stream 0
uint8_t ch2_presentation_mod; ///< channel modifier for TrueHD stream 0
uint8_t ch6_presentation_mod; ///< channel modifier for TrueHD stream 1
uint8_t ch8_presentation_mod; ///< channel modifier for TrueHD stream 2
MLPSubstream s[2];
int32_t filter_state[NUM_FILTERS][MAX_HEADER_INTERVAL * MAX_BLOCKSIZE];
int32_t lpc_sample_buffer[MAX_HEADER_INTERVAL * MAX_BLOCKSIZE];
AudioFrameQueue afq;
/* Analysis stage. */
unsigned int number_of_frames;
unsigned int number_of_subblocks;
int shorten_by;
LPCContext lpc_ctx;
} MLPEncodeContext;
static ChannelParams restart_channel_params[MAX_CHANNELS];
static DecodingParams restart_decoding_params[MAX_SUBSTREAMS];
static const BestOffset restart_best_offset[NUM_CODEBOOKS] = {{0}};
#define SYNC_MAJOR 0xf8726f
#define MAJOR_SYNC_INFO_SIGNATURE 0xB752
/* must be set for DVD-A */
#define FLAGS_DVDA 0x4000
/* FIFO delay must be constant */
#define FLAGS_CONST 0x8000
#define SUBSTREAM_INFO_MAX_2_CHAN 0x01
#define SUBSTREAM_INFO_HIGH_RATE 0x02
#define SUBSTREAM_INFO_ALWAYS_SET 0x04
#define SUBSTREAM_INFO_2_SUBSTREAMS 0x08
/****************************************************************************
************ Functions that copy, clear, or compare parameters *************
****************************************************************************/
/** Compares two FilterParams structures and returns 1 if anything has
* changed. Returns 0 if they are both equal.
*/
static int compare_filter_params(const ChannelParams *prev_cp, const ChannelParams *cp, int filter)
{
const FilterParams *prev = &prev_cp->filter_params[filter];
const FilterParams *fp = &cp->filter_params[filter];
if (prev->order != fp->order)
return 1;
if (!fp->order)
return 0;
if (prev->shift != fp->shift)
return 1;
for (int i = 0; i < fp->order; i++)
if (prev_cp->coeff[filter][i] != cp->coeff[filter][i])
return 1;
return 0;
}
/** Compare two primitive matrices and returns 1 if anything has changed.
* Returns 0 if they are both equal.
*/
static int compare_matrix_params(MLPEncodeContext *ctx, MLPSubstream *s,
const MatrixParams *prev, const MatrixParams *mp)
{
RestartHeader *rh = s->cur_restart_header;
if (prev->count != mp->count)
return 1;
if (!mp->count)
return 0;
for (unsigned int mat = 0; mat < mp->count; mat++) {
if (prev->outch[mat] != mp->outch[mat])
return 1;
if (prev->fbits[mat] != mp->fbits[mat])
return 1;
if (prev->noise_shift[mat] != mp->noise_shift[mat])
return 1;
if (prev->lsb_bypass[mat] != mp->lsb_bypass[mat])
return 1;
for (int ch = 0; ch <= rh->max_matrix_channel; ch++)
if (prev->coeff[mat][ch] != mp->coeff[mat][ch])
return 1;
}
return 0;
}
/** Compares two DecodingParams and ChannelParams structures to decide if a
* new decoding params header has to be written.
*/
static int compare_decoding_params(MLPEncodeContext *ctx,
MLPSubstream *s,
unsigned int index)
{
const DecodingParams *prev = index ? &s->b[index-1].major_decoding_params : restart_decoding_params;
DecodingParams *dp = &s->b[index].major_decoding_params;
const MatrixParams *prev_mp = &prev->matrix_params;
MatrixParams *mp = &dp->matrix_params;
RestartHeader *rh = s->cur_restart_header;
int retval = 0;
if (prev->param_presence_flags != dp->param_presence_flags)
retval |= PARAM_PRESENCE_FLAGS;
if (prev->blocksize != dp->blocksize)
retval |= PARAM_BLOCKSIZE;
if (compare_matrix_params(ctx, s, prev_mp, mp))
retval |= PARAM_MATRIX;
for (int ch = 0; ch <= rh->max_matrix_channel; ch++)
if (prev->output_shift[ch] != dp->output_shift[ch]) {
retval |= PARAM_OUTSHIFT;
break;
}
for (int ch = 0; ch <= rh->max_channel; ch++)
if (prev->quant_step_size[ch] != dp->quant_step_size[ch]) {
retval |= PARAM_QUANTSTEP;
break;
}
for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
const ChannelParams *prev_cp = index ? &s->b[index-1].major_channel_params[ch] : &restart_channel_params[ch];
ChannelParams *cp = &s->b[index].major_channel_params[ch];
if (!(retval & PARAM_FIR) &&
compare_filter_params(prev_cp, cp, FIR))
retval |= PARAM_FIR;
if (!(retval & PARAM_IIR) &&
compare_filter_params(prev_cp, cp, IIR))
retval |= PARAM_IIR;
if (prev_cp->huff_offset != cp->huff_offset)
retval |= PARAM_HUFFOFFSET;
if (prev_cp->codebook != cp->codebook ||
prev_cp->huff_lsbs != cp->huff_lsbs )
retval |= PARAM_PRESENCE;
}
return retval;
}
static void copy_filter_params(ChannelParams *dst_cp, ChannelParams *src_cp, int filter)
{
FilterParams *dst = &dst_cp->filter_params[filter];
FilterParams *src = &src_cp->filter_params[filter];
dst->order = src->order;
if (dst->order) {
dst->shift = src->shift;
dst->coeff_shift = src->coeff_shift;
dst->coeff_bits = src->coeff_bits;
}
for (int order = 0; order < dst->order; order++)
dst_cp->coeff[filter][order] = src_cp->coeff[filter][order];
}
static void copy_matrix_params(MatrixParams *dst, MatrixParams *src)
{
dst->count = src->count;
if (!dst->count)
return;
for (int count = 0; count < MAX_MATRICES; count++) {
dst->outch[count] = src->outch[count];
dst->fbits[count] = src->fbits[count];
dst->noise_shift[count] = src->noise_shift[count];
dst->lsb_bypass[count] = src->lsb_bypass[count];
for (int channel = 0; channel < MAX_NCHANNELS; channel++)
dst->coeff[count][channel] = src->coeff[count][channel];
}
}
static void copy_restart_frame_params(MLPEncodeContext *ctx, MLPSubstream *s)
{
RestartHeader *rh = s->cur_restart_header;
for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) {
DecodingParams *dp = &s->b[index].decoding_params;
copy_matrix_params(&dp->matrix_params, &s->b[1].decoding_params.matrix_params);
for (int ch = 0; ch <= rh->max_matrix_channel; ch++)
dp->output_shift[ch] = s->b[1].decoding_params.output_shift[ch];
for (int ch = 0; ch <= rh->max_channel; ch++) {
ChannelParams *cp = &s->b[index].channel_params[ch];
dp->quant_step_size[ch] = s->b[1].decoding_params.quant_step_size[ch];
if (index)
for (unsigned int filter = 0; filter < NUM_FILTERS; filter++)
copy_filter_params(cp, &s->b[1].channel_params[ch], filter);
}
}
}
/** Clears a DecodingParams struct the way it should be after a restart header. */
static void clear_decoding_params(DecodingParams *decoding_params)
{
DecodingParams *dp = decoding_params;
dp->param_presence_flags = 0xff;
dp->blocksize = 0;
memset(&dp->matrix_params, 0, sizeof(dp->matrix_params ));
memset(dp->quant_step_size, 0, sizeof(dp->quant_step_size));
memset(dp->sample_buffer, 0, sizeof(dp->sample_buffer ));
memset(dp->output_shift, 0, sizeof(dp->output_shift ));
memset(dp->max_order, MAX_FIR_ORDER, sizeof(dp->max_order));
}
/** Clears a ChannelParams struct the way it should be after a restart header. */
static void clear_channel_params(ChannelParams *channel_params, int nb_channels)
{
for (unsigned channel = 0; channel < nb_channels; channel++) {
ChannelParams *cp = &channel_params[channel];
memset(&cp->filter_params, 0, sizeof(cp->filter_params));
/* Default audio coding is 24-bit raw PCM. */
cp->huff_offset = 0;
cp->codebook = 0;
cp->huff_lsbs = 24;
}
}
/** Sets default vales in our encoder for a DecodingParams struct. */
static void default_decoding_params(MLPEncodeContext *ctx, DecodingParams *dp)
{
uint8_t param_presence_flags = 0;
clear_decoding_params(dp);
param_presence_flags |= PARAM_BLOCKSIZE;
param_presence_flags |= PARAM_MATRIX;
param_presence_flags |= PARAM_OUTSHIFT;
param_presence_flags |= PARAM_QUANTSTEP;
param_presence_flags |= PARAM_FIR;
param_presence_flags |= PARAM_IIR;
param_presence_flags |= PARAM_HUFFOFFSET;
param_presence_flags |= PARAM_PRESENCE;
dp->param_presence_flags = param_presence_flags;
}
/****************************************************************************/
/** Calculates the smallest number of bits it takes to encode a given signed
* value in two's complement.
*/
static int inline number_sbits(int32_t n)
{
return 33 - ff_clz(FFABS(n)|1) - !n;
}
enum InputBitDepth {
BITS_16,
BITS_20,
BITS_24,
};
static int mlp_peak_bitrate(int peak_bitrate, int sample_rate)
{
return ((peak_bitrate << 4) - 8) / sample_rate;
}
static av_cold void mlp_encode_init_static(void)
{
clear_channel_params (restart_channel_params, MAX_CHANNELS);
clear_decoding_params(restart_decoding_params);
ff_mlp_init_crc();
}
static av_cold int mlp_encode_init(AVCodecContext *avctx)
{
static AVOnce init_static_once = AV_ONCE_INIT;
MLPEncodeContext *ctx = avctx->priv_data;
uint64_t channels_present;
int ret;
ctx->avctx = avctx;
switch (avctx->sample_rate) {
case 44100 << 0:
avctx->frame_size = 40 << 0;
ctx->coded_sample_rate[0] = 0x08 + 0;
ctx->fs = 0x08 + 1;
break;
case 44100 << 1:
avctx->frame_size = 40 << 1;
ctx->coded_sample_rate[0] = 0x08 + 1;
ctx->fs = 0x0C + 1;
break;
case 44100 << 2:
ctx->substream_info |= SUBSTREAM_INFO_HIGH_RATE;
avctx->frame_size = 40 << 2;
ctx->coded_sample_rate[0] = 0x08 + 2;
ctx->fs = 0x10 + 1;
break;
case 48000 << 0:
avctx->frame_size = 40 << 0;
ctx->coded_sample_rate[0] = 0x00 + 0;
ctx->fs = 0x08 + 2;
break;
case 48000 << 1:
avctx->frame_size = 40 << 1;
ctx->coded_sample_rate[0] = 0x00 + 1;
ctx->fs = 0x0C + 2;
break;
case 48000 << 2:
ctx->substream_info |= SUBSTREAM_INFO_HIGH_RATE;
avctx->frame_size = 40 << 2;
ctx->coded_sample_rate[0] = 0x00 + 2;
ctx->fs = 0x10 + 2;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate %d. Supported "
"sample rates are 44100, 88200, 176400, 48000, "
"96000, and 192000.\n", avctx->sample_rate);
return AVERROR(EINVAL);
}
ctx->coded_sample_rate[1] = -1 & 0xf;
ctx->coded_peak_bitrate = mlp_peak_bitrate(9600000, avctx->sample_rate);
ctx->substream_info |= SUBSTREAM_INFO_ALWAYS_SET;
if (avctx->ch_layout.nb_channels <= 2)
ctx->substream_info |= SUBSTREAM_INFO_MAX_2_CHAN;
switch (avctx->sample_fmt) {
case AV_SAMPLE_FMT_S16P:
ctx->coded_sample_fmt[0] = BITS_16;
ctx->wordlength = 16;
avctx->bits_per_raw_sample = 16;
break;
/* TODO 20 bits: */
case AV_SAMPLE_FMT_S32P:
ctx->coded_sample_fmt[0] = BITS_24;
ctx->wordlength = 24;
avctx->bits_per_raw_sample = 24;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Sample format not supported. "
"Only 16- and 24-bit samples are supported.\n");
return AVERROR(EINVAL);
}
ctx->coded_sample_fmt[1] = -1 & 0xf;
ctx->input_timing = -avctx->frame_size;
ctx->num_channels = avctx->ch_layout.nb_channels + 2; /* +2 noise channels */
ctx->min_restart_interval = ctx->cur_restart_interval = ctx->max_restart_interval;
ctx->restart_intervals = ctx->max_restart_interval / ctx->min_restart_interval;
ctx->num_substreams = 1;
channels_present = av_channel_layout_subset(&avctx->ch_layout, ~(uint64_t)0);
if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
static const uint64_t layout_arrangement[] = {
AV_CH_LAYOUT_MONO, AV_CH_LAYOUT_STEREO,
AV_CH_LAYOUT_2_1, AV_CH_LAYOUT_QUAD,
AV_CH_LAYOUT_2POINT1, 0, 0,
AV_CH_LAYOUT_SURROUND, AV_CH_LAYOUT_4POINT0,
AV_CH_LAYOUT_5POINT0_BACK, AV_CH_LAYOUT_3POINT1,
AV_CH_LAYOUT_4POINT1, AV_CH_LAYOUT_5POINT1_BACK,
};
int i;
for (i = 0;; i++) {
av_assert1(i < FF_ARRAY_ELEMS(layout_arrangement) ||
!"Impossible channel layout");
if (channels_present == layout_arrangement[i])
break;
}
ctx->channel_arrangement = i;
ctx->flags = FLAGS_DVDA;
ctx->channel_occupancy = ff_mlp_ch_info[ctx->channel_arrangement].channel_occupancy;
ctx->summary_info = ff_mlp_ch_info[ctx->channel_arrangement].summary_info ;
} else {
/* TrueHD */
ctx->num_substreams = 1 + (avctx->ch_layout.nb_channels > 2);
switch (channels_present) {
case AV_CH_LAYOUT_MONO:
ctx->ch2_presentation_mod= 3;
ctx->ch6_presentation_mod= 3;
ctx->ch8_presentation_mod= 3;
ctx->thd_substream_info = 0x14;
break;
case AV_CH_LAYOUT_STEREO:
ctx->ch2_presentation_mod= 1;
ctx->ch6_presentation_mod= 1;
ctx->ch8_presentation_mod= 1;
ctx->thd_substream_info = 0x14;
break;
case AV_CH_LAYOUT_2POINT1:
case AV_CH_LAYOUT_SURROUND:
case AV_CH_LAYOUT_3POINT1:
case AV_CH_LAYOUT_4POINT0:
case AV_CH_LAYOUT_4POINT1:
case AV_CH_LAYOUT_5POINT0:
case AV_CH_LAYOUT_5POINT1:
ctx->ch2_presentation_mod= 0;
ctx->ch6_presentation_mod= 0;
ctx->ch8_presentation_mod= 0;
ctx->thd_substream_info = 0x3C;
break;
default:
av_assert1(!"AVCodec.ch_layouts needs to be updated");
}
ctx->flags = 0;
ctx->channel_occupancy = 0;
ctx->summary_info = 0;
ctx->channel_arrangement =
ctx->channel_arrangement8 = layout_truehd(channels_present);
}
for (unsigned int index = 0; index < ctx->restart_intervals; index++) {
for (int n = 0; n < ctx->num_substreams; n++)
ctx->s[n].b[index].seq_size = ((index + 1) * ctx->min_restart_interval) + 1;
}
/* TODO see if noisegen_seed is really worth it. */
if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
RestartHeader *const rh = &ctx->s[0].restart_header;
rh->noisegen_seed = 0;
rh->min_channel = 0;
rh->max_channel = avctx->ch_layout.nb_channels - 1;
rh->max_matrix_channel = rh->max_channel;
} else {
RestartHeader *rh = &ctx->s[0].restart_header;
rh->noisegen_seed = 0;
rh->min_channel = 0;
rh->max_channel = FFMIN(avctx->ch_layout.nb_channels, 2) - 1;
rh->max_matrix_channel = rh->max_channel;
if (avctx->ch_layout.nb_channels > 2) {
rh = &ctx->s[1].restart_header;
rh->noisegen_seed = 0;
rh->min_channel = 2;
rh->max_channel = avctx->ch_layout.nb_channels - 1;
rh->max_matrix_channel = rh->max_channel;
}
}
if ((ret = ff_lpc_init(&ctx->lpc_ctx, ctx->avctx->frame_size,
MLP_MAX_LPC_ORDER, ctx->lpc_type)) < 0)
return ret;
ff_af_queue_init(avctx, &ctx->afq);
ff_thread_once(&init_static_once, mlp_encode_init_static);
return 0;
}
/****************************************************************************
****************** Functions that write to the bitstream *******************
****************************************************************************/
/** Writes a major sync header to the bitstream. */
static void write_major_sync(MLPEncodeContext *ctx, uint8_t *buf, int buf_size)
{
PutBitContext pb;
init_put_bits(&pb, buf, buf_size);
put_bits(&pb, 24, SYNC_MAJOR );
if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
put_bits(&pb, 8, SYNC_MLP );
put_bits(&pb, 4, ctx->coded_sample_fmt [0]);
put_bits(&pb, 4, ctx->coded_sample_fmt [1]);
put_bits(&pb, 4, ctx->coded_sample_rate[0]);
put_bits(&pb, 4, ctx->coded_sample_rate[1]);
put_bits(&pb, 4, 0 ); /* ignored */
put_bits(&pb, 4, 0 ); /* multi_channel_type */
put_bits(&pb, 3, 0 ); /* ignored */
put_bits(&pb, 5, ctx->channel_arrangement );
} else if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
put_bits(&pb, 8, SYNC_TRUEHD );
put_bits(&pb, 4, ctx->coded_sample_rate[0]);
put_bits(&pb, 1, ctx->multichannel_type6ch);
put_bits(&pb, 1, ctx->multichannel_type8ch);
put_bits(&pb, 2, 0 ); /* ignored */
put_bits(&pb, 2, ctx->ch2_presentation_mod);
put_bits(&pb, 2, ctx->ch6_presentation_mod);
put_bits(&pb, 5, ctx->channel_arrangement );
put_bits(&pb, 2, ctx->ch8_presentation_mod);
put_bits(&pb, 13, ctx->channel_arrangement8);
}
put_bits(&pb, 16, MAJOR_SYNC_INFO_SIGNATURE);
put_bits(&pb, 16, ctx->flags );
put_bits(&pb, 16, 0 ); /* ignored */
put_bits(&pb, 1, 1 ); /* is_vbr */
put_bits(&pb, 15, ctx->coded_peak_bitrate );
put_bits(&pb, 4, ctx->num_substreams );
put_bits(&pb, 2, 0 ); /* ignored */
put_bits(&pb, 2, 0 ); /* extended substream info */
/* channel_meaning */
if (ctx->avctx->codec_id == AV_CODEC_ID_MLP) {
put_bits(&pb, 8, ctx->substream_info );
put_bits(&pb, 5, ctx->fs );
put_bits(&pb, 5, ctx->wordlength );
put_bits(&pb, 6, ctx->channel_occupancy );
put_bits(&pb, 3, 0 ); /* ignored */
put_bits(&pb, 10, 0 ); /* speaker_layout */
put_bits(&pb, 3, 0 ); /* copy_protection */
put_bits(&pb, 16, 0x8080 ); /* ignored */
put_bits(&pb, 7, 0 ); /* ignored */
put_bits(&pb, 4, 0 ); /* source_format */
put_bits(&pb, 5, ctx->summary_info );
} else if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
put_bits(&pb, 8, ctx->thd_substream_info );
put_bits(&pb, 6, 0 ); /* reserved */
put_bits(&pb, 1, 0 ); /* 2ch control enabled */
put_bits(&pb, 1, 0 ); /* 6ch control enabled */
put_bits(&pb, 1, 0 ); /* 8ch control enabled */
put_bits(&pb, 1, 0 ); /* reserved */
put_bits(&pb, 7, 0 ); /* drc start up gain */
put_bits(&pb, 6, 0 ); /* 2ch dialogue norm */
put_bits(&pb, 6, 0 ); /* 2ch mix level */
put_bits(&pb, 5, 0 ); /* 6ch dialogue norm */
put_bits(&pb, 6, 0 ); /* 6ch mix level */
put_bits(&pb, 5, 0 ); /* 6ch source format */
put_bits(&pb, 5, 0 ); /* 8ch dialogue norm */
put_bits(&pb, 6, 0 ); /* 8ch mix level */
put_bits(&pb, 6, 0 ); /* 8ch source format */
put_bits(&pb, 1, 0 ); /* reserved */
put_bits(&pb, 1, 0 ); /* extra channel meaning present */
}
flush_put_bits(&pb);
AV_WL16(buf+26, ff_mlp_checksum16(buf, 26));
}
/** Writes a restart header to the bitstream. Damaged streams can start being
* decoded losslessly again after such a header and the subsequent decoding
* params header.
*/
static void write_restart_header(MLPEncodeContext *ctx, MLPSubstream *s,
PutBitContext *pb)
{
RestartHeader *rh = s->cur_restart_header;
uint8_t lossless_check = xor_32_to_8(rh->lossless_check_data);
unsigned int start_count = put_bits_count(pb);
PutBitContext tmpb;
uint8_t checksum;
put_bits(pb, 14, 0x31ea ); /* TODO 0x31eb */
put_bits(pb, 16, ctx->output_timing );
put_bits(pb, 4, rh->min_channel );
put_bits(pb, 4, rh->max_channel );
put_bits(pb, 4, rh->max_matrix_channel);
put_bits(pb, 4, rh->noise_shift );
put_bits(pb, 23, rh->noisegen_seed );
put_bits(pb, 4, rh->max_shift );
put_bits(pb, 5, rh->max_huff_lsbs );
put_bits(pb, 5, rh->max_output_bits );
put_bits(pb, 5, rh->max_output_bits );
put_bits(pb, 1, rh->data_check_present);
put_bits(pb, 8, lossless_check );
put_bits(pb, 16, 0 ); /* ignored */
for (int ch = 0; ch <= rh->max_matrix_channel; ch++)
put_bits(pb, 6, ch);
/* Data must be flushed for the checksum to be correct. */
tmpb = *pb;
flush_put_bits(&tmpb);
checksum = ff_mlp_restart_checksum(pb->buf, put_bits_count(pb) - start_count);
put_bits(pb, 8, checksum);
}
/** Writes matrix params for all primitive matrices to the bitstream. */
static void write_matrix_params(MLPEncodeContext *ctx,
MLPSubstream *s,
DecodingParams *dp,
PutBitContext *pb)
{
RestartHeader *rh = s->cur_restart_header;
MatrixParams *mp = &dp->matrix_params;
int max_channel = rh->max_matrix_channel;
put_bits(pb, 4, mp->count);
if (!ctx->noise_type)
max_channel += 2;
for (unsigned int mat = 0; mat < mp->count; mat++) {
put_bits(pb, 4, mp->outch[mat]); /* matrix_out_ch */
put_bits(pb, 4, mp->fbits[mat]);
put_bits(pb, 1, mp->lsb_bypass[mat]);
for (int ch = 0; ch <= max_channel; ch++) {
int32_t coeff = mp->coeff[mat][ch];
if (coeff) {
put_bits(pb, 1, 1);
coeff >>= 14 - mp->fbits[mat];
put_sbits(pb, mp->fbits[mat] + 2, coeff);
} else {
put_bits(pb, 1, 0);
}
}
}
}
/** Writes filter parameters for one filter to the bitstream. */
static void write_filter_params(MLPEncodeContext *ctx,
ChannelParams *cp,
PutBitContext *pb,
int channel, unsigned int filter)
{
FilterParams *fp = &cp->filter_params[filter];
put_bits(pb, 4, fp->order);
if (fp->order > 0) {
int32_t *fcoeff = cp->coeff[filter];
put_bits(pb, 4, fp->shift );
put_bits(pb, 5, fp->coeff_bits );
put_bits(pb, 3, fp->coeff_shift);
for (int i = 0; i < fp->order; i++) {
put_sbits(pb, fp->coeff_bits, fcoeff[i] >> fp->coeff_shift);
}
/* TODO state data for IIR filter. */
put_bits(pb, 1, 0);
}
}
/** Writes decoding parameters to the bitstream. These change very often,
* usually at almost every frame.
*/
static void write_decoding_params(MLPEncodeContext *ctx, MLPSubstream *s,
PutBitContext *pb, int params_changed,
unsigned int subblock_index)
{
DecodingParams *dp = &s->b[subblock_index].major_decoding_params;
RestartHeader *rh = s->cur_restart_header;
if (dp->param_presence_flags != PARAMS_DEFAULT &&
params_changed & PARAM_PRESENCE_FLAGS) {
put_bits(pb, 1, 1);
put_bits(pb, 8, dp->param_presence_flags);
} else {
put_bits(pb, 1, 0);
}
if (dp->param_presence_flags & PARAM_BLOCKSIZE) {
if (params_changed & PARAM_BLOCKSIZE) {
put_bits(pb, 1, 1);
put_bits(pb, 9, dp->blocksize);
} else {
put_bits(pb, 1, 0);
}
}
if (dp->param_presence_flags & PARAM_MATRIX) {
if (params_changed & PARAM_MATRIX) {
put_bits(pb, 1, 1);
write_matrix_params(ctx, s, dp, pb);
} else {
put_bits(pb, 1, 0);
}
}
if (dp->param_presence_flags & PARAM_OUTSHIFT) {
if (params_changed & PARAM_OUTSHIFT) {
put_bits(pb, 1, 1);
for (int ch = 0; ch <= rh->max_matrix_channel; ch++)
put_sbits(pb, 4, dp->output_shift[ch]);
} else {
put_bits(pb, 1, 0);
}
}
if (dp->param_presence_flags & PARAM_QUANTSTEP) {
if (params_changed & PARAM_QUANTSTEP) {
put_bits(pb, 1, 1);
for (int ch = 0; ch <= rh->max_channel; ch++)
put_bits(pb, 4, dp->quant_step_size[ch]);
} else {
put_bits(pb, 1, 0);
}
}
for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
ChannelParams *cp = &s->b[subblock_index].major_channel_params[ch];
if (dp->param_presence_flags & 0xF) {
put_bits(pb, 1, 1);
if (dp->param_presence_flags & PARAM_FIR) {
if (params_changed & PARAM_FIR) {
put_bits(pb, 1, 1);
write_filter_params(ctx, cp, pb, ch, FIR);
} else {
put_bits(pb, 1, 0);
}
}
if (dp->param_presence_flags & PARAM_IIR) {
if (params_changed & PARAM_IIR) {
put_bits(pb, 1, 1);
write_filter_params(ctx, cp, pb, ch, IIR);
} else {
put_bits(pb, 1, 0);
}
}
if (dp->param_presence_flags & PARAM_HUFFOFFSET) {
if (params_changed & PARAM_HUFFOFFSET) {
put_bits (pb, 1, 1);
put_sbits(pb, 15, cp->huff_offset);
} else {
put_bits(pb, 1, 0);
}
}
if (cp->codebook > 0 && cp->huff_lsbs > 24) {
av_log(ctx->avctx, AV_LOG_ERROR, "Invalid Huff LSBs %d\n", cp->huff_lsbs);
}
put_bits(pb, 2, cp->codebook );
put_bits(pb, 5, cp->huff_lsbs);
} else {
put_bits(pb, 1, 0);
}
}
}
/** Writes the residuals to the bitstream. That is, the VLC codes from the
* codebooks (if any is used), and then the residual.
*/
static void write_block_data(MLPEncodeContext *ctx, MLPSubstream *s,
PutBitContext *pb, unsigned int subblock_index)
{
RestartHeader *rh = s->cur_restart_header;
DecodingParams *dp = &s->b[subblock_index].major_decoding_params;
MatrixParams *mp = &dp->matrix_params;
int32_t sign_huff_offset[MAX_CHANNELS];
int codebook_index [MAX_CHANNELS];
int lsb_bits [MAX_CHANNELS];
for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
ChannelParams *cp = &s->b[subblock_index].major_channel_params[ch];
int sign_shift;
lsb_bits [ch] = cp->huff_lsbs - dp->quant_step_size[ch];
codebook_index [ch] = cp->codebook - 1;
sign_huff_offset[ch] = cp->huff_offset;
sign_shift = lsb_bits[ch] + (cp->codebook ? 2 - cp->codebook : -1);
if (cp->codebook > 0)
sign_huff_offset[ch] -= 7 << lsb_bits[ch];
/* Unsign if needed. */
if (sign_shift >= 0)
sign_huff_offset[ch] -= 1 << sign_shift;
}
for (unsigned int i = 0; i < dp->blocksize; i++) {
for (unsigned int mat = 0; mat < mp->count; mat++) {
if (mp->lsb_bypass[mat]) {
const int8_t *bypassed_lsbs = mp->bypassed_lsbs[mat];
put_bits(pb, 1, bypassed_lsbs[i]);
}
}
for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
int32_t *sample_buffer = dp->sample_buffer[ch];
int32_t sample = sample_buffer[i] >> dp->quant_step_size[ch];
sample -= sign_huff_offset[ch];
if (codebook_index[ch] >= 0) {
int vlc = sample >> lsb_bits[ch];
put_bits(pb, ff_mlp_huffman_tables[codebook_index[ch]][vlc][1],
ff_mlp_huffman_tables[codebook_index[ch]][vlc][0]);
sample &= ((1 << lsb_bits[ch]) - 1);
}
put_bits(pb, lsb_bits[ch], sample);
}
}
}
/** Writes the substream data to the bitstream. */
static uint8_t *write_substr(MLPEncodeContext *ctx,
MLPSubstream *s,
uint8_t *buf, int buf_size,
int restart_frame,
uint16_t *substream_data_len)
{
int32_t *lossless_check_data = &s->b[ctx->frame_index].lossless_check_data;
unsigned int cur_subblock_index = s->major_cur_subblock_index;
unsigned int num_subblocks = s->major_filter_state_subblock;
RestartHeader *rh = &s->restart_header;
int substr_restart_frame = restart_frame;
uint8_t parity, checksum;
PutBitContext pb;
int params_changed;
s->cur_restart_header = rh;
init_put_bits(&pb, buf, buf_size);
for (unsigned int subblock = 0; subblock <= num_subblocks; subblock++) {
unsigned int subblock_index = cur_subblock_index++;
params_changed = s->b[subblock_index].major_params_changed;
if (substr_restart_frame || params_changed) {
put_bits(&pb, 1, 1);
if (substr_restart_frame) {
put_bits(&pb, 1, 1);
write_restart_header(ctx, s, &pb);
rh->lossless_check_data = 0;
} else {
put_bits(&pb, 1, 0);
}
write_decoding_params(ctx, s, &pb, params_changed,
subblock_index);
} else {
put_bits(&pb, 1, 0);
}
write_block_data(ctx, s, &pb, subblock_index);
put_bits(&pb, 1, !substr_restart_frame);
substr_restart_frame = 0;
}
put_bits(&pb, (-put_bits_count(&pb)) & 15, 0);
rh->lossless_check_data ^= lossless_check_data[0];
if (ctx->last_frames == 0 && ctx->shorten_by) {
if (ctx->avctx->codec_id == AV_CODEC_ID_TRUEHD) {
put_bits(&pb, 16, END_OF_STREAM & 0xFFFF);
put_bits(&pb, 16, (ctx->shorten_by & 0x1FFF) | 0xE000);
} else {
put_bits32(&pb, END_OF_STREAM);
}
}
/* Data must be flushed for the checksum and parity to be correct;
* notice that we already are word-aligned here. */
flush_put_bits(&pb);
parity = ff_mlp_calculate_parity(buf, put_bytes_output(&pb)) ^ 0xa9;
checksum = ff_mlp_checksum8 (buf, put_bytes_output(&pb));
put_bits(&pb, 8, parity );
put_bits(&pb, 8, checksum);
flush_put_bits(&pb);
substream_data_len[0] = put_bytes_output(&pb);
buf += substream_data_len[0];
s->major_cur_subblock_index += s->major_filter_state_subblock + 1;
s->major_filter_state_subblock = 0;
return buf;
}
/** Writes the access unit and substream headers to the bitstream. */
static void write_frame_headers(MLPEncodeContext *ctx, uint8_t *frame_header,
uint8_t *substream_headers, unsigned int length,
int restart_frame,
uint16_t substream_data_len[MAX_SUBSTREAMS])
{
uint16_t access_unit_header = 0;
uint16_t substream_data_end = 0;
uint16_t parity_nibble = 0;
parity_nibble = ctx->input_timing;
parity_nibble ^= length;
for (unsigned int substr = 0; substr < ctx->num_substreams; substr++) {
uint16_t substr_hdr = 0;
substream_data_end += substream_data_len[substr];
substr_hdr |= (0 << 15); /* extraword */
substr_hdr |= (!restart_frame << 14); /* !restart_frame */
substr_hdr |= (1 << 13); /* checkdata */
substr_hdr |= (0 << 12); /* ??? */
substr_hdr |= (substream_data_end / 2) & 0x0FFF;
AV_WB16(substream_headers, substr_hdr);
parity_nibble ^= *substream_headers++;
parity_nibble ^= *substream_headers++;
}
parity_nibble ^= parity_nibble >> 8;
parity_nibble ^= parity_nibble >> 4;
parity_nibble &= 0xF;
access_unit_header |= (parity_nibble ^ 0xF) << 12;
access_unit_header |= length & 0xFFF;
AV_WB16(frame_header , access_unit_header);
AV_WB16(frame_header+2, ctx->input_timing );
}
/** Writes an entire access unit to the bitstream. */
static int write_access_unit(MLPEncodeContext *ctx, uint8_t *buf,
int buf_size, int restart_frame)
{
uint16_t substream_data_len[MAX_SUBSTREAMS];
uint8_t *buf1, *buf0 = buf;
int total_length;
/* Frame header will be written at the end. */
buf += 4;
buf_size -= 4;
if (restart_frame) {
write_major_sync(ctx, buf, buf_size);
buf += 28;
buf_size -= 28;
}
buf1 = buf;
/* Substream headers will be written at the end. */
for (unsigned int substr = 0; substr < ctx->num_substreams; substr++) {
buf += 2;
buf_size -= 2;
}
for (int substr = 0; substr < ctx->num_substreams; substr++) {
MLPSubstream *s = &ctx->s[substr];
uint8_t *buf0 = buf;
buf = write_substr(ctx, s, buf, buf_size, restart_frame, &substream_data_len[substr]);
buf_size -= buf - buf0;
}
total_length = buf - buf0;
write_frame_headers(ctx, buf0, buf1, total_length / 2, restart_frame, substream_data_len);
return total_length;
}
/****************************************************************************
****************** Functions that input data to context ********************
****************************************************************************/
/** Inputs data from the samples passed by lavc into the context, shifts them
* appropriately depending on the bit-depth, and calculates the
* lossless_check_data that will be written to the restart header.
*/
static void input_data_internal(MLPEncodeContext *ctx, MLPSubstream *s,
uint8_t **const samples,
int nb_samples, int is24)
{
int32_t *lossless_check_data = &s->b[ctx->frame_index].lossless_check_data;
RestartHeader *rh = &s->restart_header;
int32_t temp_lossless_check_data = 0;
uint32_t bits = 0;
for (int i = 0; i < nb_samples; i++) {
for (int ch = 0; ch <= rh->max_channel; ch++) {
const int32_t *samples_32 = (const int32_t *)samples[ch];
const int16_t *samples_16 = (const int16_t *)samples[ch];
int32_t *sample_buffer = s->b[ctx->frame_index].inout_buffer[ch];
int32_t sample;
sample = is24 ? samples_32[i] >> 8 : samples_16[i] * 256;
bits = FFMAX(number_sbits(sample), bits);
temp_lossless_check_data ^= (sample & 0x00ffffff) << ch;
sample_buffer[i] = sample;
}
}
for (int ch = 0; ch <= rh->max_channel; ch++) {
for (int i = nb_samples; i < ctx->avctx->frame_size; i++) {
int32_t *sample_buffer = s->b[ctx->frame_index].inout_buffer[ch];
sample_buffer[i] = 0;
}
}
s->b[ctx->frame_index].max_output_bits = bits;
lossless_check_data[0] = temp_lossless_check_data;
}
/** Wrapper function for inputting data in two different bit-depths. */
static void input_data(MLPEncodeContext *ctx, MLPSubstream *s, uint8_t **const samples, int nb_samples)
{
input_data_internal(ctx, s, samples, nb_samples, ctx->avctx->sample_fmt == AV_SAMPLE_FMT_S32P);
}
static void input_to_sample_buffer(MLPEncodeContext *ctx, MLPSubstream *s)
{
RestartHeader *rh = &s->restart_header;
for (unsigned int index = 0; index < ctx->number_of_frames; index++) {
unsigned int cur_index = (ctx->frame_index + index + 1) % ctx->cur_restart_interval;
DecodingParams *dp = &s->b[index+1].decoding_params;
for (int ch = 0; ch <= rh->max_channel; ch++) {
const int32_t *input_buffer = s->b[cur_index].inout_buffer[ch];
int32_t *sample_buffer = dp->sample_buffer[ch];
int off = 0;
if (dp->blocksize < ctx->avctx->frame_size) {
DecodingParams *dp = &s->b[index].decoding_params;
int32_t *sample_buffer = dp->sample_buffer[ch];
for (unsigned int i = 0; i < dp->blocksize; i++)
sample_buffer[i] = input_buffer[i];
off = dp->blocksize;
}
for (unsigned int i = 0; i < dp->blocksize; i++)
sample_buffer[i] = input_buffer[i + off];
}
}
}
/****************************************************************************
********* Functions that analyze the data and set the parameters ***********
****************************************************************************/
/** Counts the number of trailing zeroes in a value */
static int number_trailing_zeroes(int32_t sample, unsigned int max, unsigned int def)
{
return sample ? FFMIN(max, ff_ctz(sample)) : def;
}
static void determine_output_shift(MLPEncodeContext *ctx, MLPSubstream *s)
{
RestartHeader *rh = s->cur_restart_header;
DecodingParams *dp1 = &s->b[1].decoding_params;
int32_t sample_mask[MAX_CHANNELS];
memset(sample_mask, 0, sizeof(sample_mask));
for (int j = 0; j <= ctx->cur_restart_interval; j++) {
DecodingParams *dp = &s->b[j].decoding_params;
for (int ch = 0; ch <= rh->max_matrix_channel; ch++) {
int32_t *sample_buffer = dp->sample_buffer[ch];
for (int i = 0; i < dp->blocksize; i++)
sample_mask[ch] |= sample_buffer[i];
}
}
for (int ch = 0; ch <= rh->max_matrix_channel; ch++)
dp1->output_shift[ch] = number_trailing_zeroes(sample_mask[ch], 7, 0);
for (int j = 0; j <= ctx->cur_restart_interval; j++) {
DecodingParams *dp = &s->b[j].decoding_params;
for (int ch = 0; ch <= rh->max_matrix_channel; ch++) {
int32_t *sample_buffer = dp->sample_buffer[ch];
const int shift = dp1->output_shift[ch];
for (int i = 0; i < dp->blocksize; i++)
sample_buffer[i] >>= shift;
}
}
}
/** Determines how many bits are zero at the end of all samples so they can be
* shifted out.
*/
static void determine_quant_step_size(MLPEncodeContext *ctx, MLPSubstream *s)
{
RestartHeader *rh = s->cur_restart_header;
DecodingParams *dp1 = &s->b[1].decoding_params;
int32_t sample_mask[MAX_CHANNELS];
memset(sample_mask, 0, sizeof(sample_mask));
for (int j = 0; j <= ctx->cur_restart_interval; j++) {
DecodingParams *dp = &s->b[j].decoding_params;
for (int ch = 0; ch <= rh->max_channel; ch++) {
int32_t *sample_buffer = dp->sample_buffer[ch];
for (int i = 0; i < dp->blocksize; i++)
sample_mask[ch] |= sample_buffer[i];
}
}
for (int ch = 0; ch <= rh->max_channel; ch++)
dp1->quant_step_size[ch] = number_trailing_zeroes(sample_mask[ch], 15, 0);
}
/** Determines the smallest number of bits needed to encode the filter
* coefficients, and if it's possible to right-shift their values without
* losing any precision.
*/
static void code_filter_coeffs(MLPEncodeContext *ctx, FilterParams *fp, const int32_t *fcoeff)
{
uint32_t coeff_mask = 0;
int bits = 0, shift;
for (int order = 0; order < fp->order; order++) {
int32_t coeff = fcoeff[order];
bits = FFMAX(number_sbits(coeff), bits);
coeff_mask |= coeff;
}
shift = FFMIN(7, coeff_mask ? ff_ctz(coeff_mask) : 0);
fp->coeff_bits = FFMAX(1, bits - shift);
fp->coeff_shift = FFMIN(shift, 16 - fp->coeff_bits);
}
/** Determines the best filter parameters for the given data and writes the
* necessary information to the context.
*/
static void set_filter(MLPEncodeContext *ctx, MLPSubstream *s,
int channel, int retry_filter)
{
ChannelParams *cp = &s->b[1].channel_params[channel];
DecodingParams *dp1 = &s->b[1].decoding_params;
FilterParams *fp = &cp->filter_params[FIR];
if (retry_filter)
dp1->max_order[channel]--;
if (dp1->max_order[channel] == 0) {
fp->order = 0;
} else {
int32_t *lpc_samples = ctx->lpc_sample_buffer;
int32_t *fcoeff = cp->coeff[FIR];
int shift[MAX_LPC_ORDER];
int order;
for (unsigned int j = 0; j <= ctx->cur_restart_interval; j++) {
DecodingParams *dp = &s->b[j].decoding_params;
int32_t *sample_buffer = dp->sample_buffer[channel];
for (unsigned int i = 0; i < dp->blocksize; i++)
lpc_samples[i] = sample_buffer[i];
lpc_samples += dp->blocksize;
}
order = ff_lpc_calc_coefs(&ctx->lpc_ctx, ctx->lpc_sample_buffer,
lpc_samples - ctx->lpc_sample_buffer,
MLP_MIN_LPC_ORDER, dp1->max_order[channel],
ctx->lpc_coeff_precision,
s->coefs[channel], shift, ctx->lpc_type, ctx->lpc_passes,
ctx->prediction_order, MLP_MIN_LPC_SHIFT,
MLP_MAX_LPC_SHIFT, 0);
fp->order = order;
fp->shift = order ? shift[order-1] : 0;
for (unsigned int i = 0; i < order; i++)
fcoeff[i] = s->coefs[channel][order-1][i];
code_filter_coeffs(ctx, fp, fcoeff);
}
}
/** Tries to determine a good prediction filter, and applies it to the samples
* buffer if the filter is good enough. Sets the filter data to be cleared if
* no good filter was found.
*/
static void determine_filters(MLPEncodeContext *ctx, MLPSubstream *s)
{
RestartHeader *rh = s->cur_restart_header;
for (int ch = rh->min_channel; ch <= rh->max_channel; ch++)
set_filter(ctx, s, ch, 0);
}
static int estimate_coeff(MLPEncodeContext *ctx, MLPSubstream *s,
MatrixParams *mp,
int ch0, int ch1)
{
int32_t maxl = INT32_MIN, maxr = INT32_MIN, minl = INT32_MAX, minr = INT32_MAX;
int64_t summ = 0, sums = 0, suml = 0, sumr = 0, enl = 0, enr = 0;
const int shift = 14 - ctx->rematrix_precision;
int32_t cf0, cf1, e[4], d[4], ml, mr;
int i, count = 0;
for (int j = 0; j <= ctx->cur_restart_interval; j++) {
DecodingParams *dp = &s->b[j].decoding_params;
const int32_t *ch[2];
ch[0] = dp->sample_buffer[ch0];
ch[1] = dp->sample_buffer[ch1];
for (int i = 0; i < dp->blocksize; i++) {
int32_t lm = ch[0][i], rm = ch[1][i];
enl += FFABS(lm);
enr += FFABS(rm);
summ += FFABS(lm + rm);
sums += FFABS(lm - rm);
suml += lm;
sumr += rm;
maxl = FFMAX(maxl, lm);
maxr = FFMAX(maxr, rm);
minl = FFMIN(minl, lm);
minr = FFMIN(minr, rm);
}
}
summ -= FFABS(suml + sumr);
sums -= FFABS(suml - sumr);
ml = maxl - minl;
mr = maxr - minr;
if (!summ && !sums)
return 0;
if (!ml || !mr)
return 0;
if ((FFABS(ml) + FFABS(mr)) >= (1 << 24))
return 0;
cf0 = (FFMIN(FFABS(mr), FFABS(ml)) * (1LL << 14)) / FFMAX(FFABS(ml), FFABS(mr));
cf0 = (cf0 >> shift) << shift;
cf1 = -cf0;
if (sums > summ)
FFSWAP(int32_t, cf0, cf1);
count = 1;
i = enl < enr;
mp->outch[0] = ch0 + i;
d[!i] = cf0;
d[ i] = 1 << 14;
e[!i] = cf1;
e[ i] = 1 << 14;
mp->coeff[0][ch0] = av_clip_intp2(d[0], 15);
mp->coeff[0][ch1] = av_clip_intp2(d[1], 15);
mp->forco[0][ch0] = av_clip_intp2(e[0], 15);
mp->forco[0][ch1] = av_clip_intp2(e[1], 15);
return count;
}
/** Determines how many fractional bits are needed to encode matrix
* coefficients. Also shifts the coefficients to fit within 2.14 bits.
*/
static void code_matrix_coeffs(MLPEncodeContext *ctx, MLPSubstream *s,
DecodingParams *dp,
unsigned int mat)
{
RestartHeader *rh = s->cur_restart_header;
MatrixParams *mp = &dp->matrix_params;
int32_t coeff_mask = 0;
for (int ch = 0; ch <= rh->max_matrix_channel; ch++)
coeff_mask |= mp->coeff[mat][ch];
mp->fbits[mat] = 14 - number_trailing_zeroes(coeff_mask, 14, 14);
}
/** Determines best coefficients to use for the lossless matrix. */
static void lossless_matrix_coeffs(MLPEncodeContext *ctx, MLPSubstream *s)
{
RestartHeader *rh = s->cur_restart_header;
DecodingParams *dp = &s->b[1].decoding_params;
MatrixParams *mp = &dp->matrix_params;
mp->count = 0;
if (ctx->num_channels - 2 != 2)
return;
mp->count = estimate_coeff(ctx, s, mp,
rh->min_channel, rh->max_channel);
for (int mat = 0; mat < mp->count; mat++)
code_matrix_coeffs(ctx, s, dp, mat);
}
/** Min and max values that can be encoded with each codebook. The values for
* the third codebook take into account the fact that the sign shift for this
* codebook is outside the coded value, so it has one more bit of precision.
* It should actually be -7 -> 7, shifted down by 0.5.
*/
static const int8_t codebook_extremes[3][2] = {
{-9, 8}, {-8, 7}, {-15, 14},
};
/** Determines the amount of bits needed to encode the samples using no
* codebooks and a specified offset.
*/
static void no_codebook_bits_offset(MLPEncodeContext *ctx,
DecodingParams *dp,
int channel, int32_t offset,
int32_t min, int32_t max,
BestOffset *bo)
{
int32_t unsign = 0;
int lsb_bits;
min -= offset;
max -= offset;
lsb_bits = FFMAX(number_sbits(min), number_sbits(max)) - 1;
lsb_bits += !!lsb_bits;
if (lsb_bits > 0)
unsign = 1U << (lsb_bits - 1);
bo->offset = offset;
bo->lsb_bits = lsb_bits;
bo->bitcount = lsb_bits * dp->blocksize;
bo->min = offset - unsign + 1;
bo->max = offset + unsign;
}
/** Determines the least amount of bits needed to encode the samples using no
* codebooks.
*/
static void no_codebook_bits(MLPEncodeContext *ctx,
DecodingParams *dp,
int channel,
int32_t min, int32_t max,
BestOffset *bo)
{
int32_t offset, unsign = 0;
uint8_t lsb_bits;
/* Set offset inside huffoffset's boundaries by adjusting extremes
* so that more bits are used, thus shifting the offset. */
if (min < HUFF_OFFSET_MIN)
max = FFMAX(max, 2 * HUFF_OFFSET_MIN - min + 1);
if (max > HUFF_OFFSET_MAX)
min = FFMIN(min, 2 * HUFF_OFFSET_MAX - max - 1);
lsb_bits = FFMAX(number_sbits(min), number_sbits(max));
if (lsb_bits > 0)
unsign = 1 << (lsb_bits - 1);
/* If all samples are the same (lsb_bits == 0), offset must be
* adjusted because of sign_shift. */
offset = min + (max - min) / 2 + !!lsb_bits;
bo->offset = offset;
bo->lsb_bits = lsb_bits;
bo->bitcount = lsb_bits * dp->blocksize;
bo->min = max - unsign + 1;
bo->max = min + unsign;
bo->min = FFMAX(bo->min, HUFF_OFFSET_MIN);
bo->max = FFMIN(bo->max, HUFF_OFFSET_MAX);
}
/** Determines the least amount of bits needed to encode the samples using a
* given codebook and a given offset.
*/
static inline void codebook_bits_offset(MLPEncodeContext *ctx,
DecodingParams *dp,
int channel, int codebook,
int32_t sample_min, int32_t sample_max,
int32_t offset, BestOffset *bo)
{
int32_t codebook_min = codebook_extremes[codebook][0];
int32_t codebook_max = codebook_extremes[codebook][1];
int32_t *sample_buffer = dp->sample_buffer[channel];
int codebook_offset = 7 + (2 - codebook);
int32_t unsign_offset = offset;
uint32_t bitcount = 0;
int lsb_bits = 0;
int offset_min = INT_MAX, offset_max = INT_MAX;
int unsign, mask;
sample_min -= offset;
sample_max -= offset;
while (sample_min < codebook_min || sample_max > codebook_max) {
lsb_bits++;
sample_min >>= 1;
sample_max >>= 1;
}
unsign = 1 << lsb_bits;
mask = unsign - 1;
if (codebook == 2) {
unsign_offset -= unsign;
lsb_bits++;
}
for (int i = 0; i < dp->blocksize; i++) {
int32_t sample = sample_buffer[i] >> dp->quant_step_size[channel];
int temp_min, temp_max;
sample -= unsign_offset;
temp_min = sample & mask;
if (temp_min < offset_min)
offset_min = temp_min;
temp_max = unsign - temp_min - 1;
if (temp_max < offset_max)
offset_max = temp_max;
sample >>= lsb_bits;
bitcount += ff_mlp_huffman_tables[codebook][sample + codebook_offset][1];
}
bo->offset = offset;
bo->lsb_bits = lsb_bits;
bo->bitcount = lsb_bits * dp->blocksize + bitcount;
bo->min = FFMAX(offset - offset_min, HUFF_OFFSET_MIN);
bo->max = FFMIN(offset + offset_max, HUFF_OFFSET_MAX);
}
/** Determines the least amount of bits needed to encode the samples using a
* given codebook. Searches for the best offset to minimize the bits.
*/
static inline void codebook_bits(MLPEncodeContext *ctx,
DecodingParams *dp,
int channel, int codebook,
int offset, int32_t min, int32_t max,
BestOffset *bo, int direction)
{
uint32_t previous_count = UINT32_MAX;
int offset_min, offset_max;
int is_greater = 0;
offset_min = FFMAX(min, HUFF_OFFSET_MIN);
offset_max = FFMIN(max, HUFF_OFFSET_MAX);
while (offset <= offset_max && offset >= offset_min) {
BestOffset temp_bo;
codebook_bits_offset(ctx, dp, channel, codebook,
min, max, offset,
&temp_bo);
if (temp_bo.bitcount < previous_count) {
if (temp_bo.bitcount < bo->bitcount)
*bo = temp_bo;
is_greater = 0;
} else if (++is_greater >= ctx->max_codebook_search)
break;
previous_count = temp_bo.bitcount;
if (direction) {
offset = temp_bo.max + 1;
} else {
offset = temp_bo.min - 1;
}
}
}
/** Determines the least amount of bits needed to encode the samples using
* any or no codebook.
*/
static void determine_bits(MLPEncodeContext *ctx, MLPSubstream *s)
{
RestartHeader *rh = s->cur_restart_header;
for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) {
DecodingParams *dp = &s->b[index].decoding_params;
for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
ChannelParams *cp = &s->b[index].channel_params[ch];
int32_t *sample_buffer = dp->sample_buffer[ch];
int32_t min = INT32_MAX, max = INT32_MIN;
int no_filters_used = !cp->filter_params[FIR].order;
int average = 0;
int offset = 0;
/* Determine extremes and average. */
for (int i = 0; i < dp->blocksize; i++) {
int32_t sample = sample_buffer[i] >> dp->quant_step_size[ch];
if (sample < min)
min = sample;
if (sample > max)
max = sample;
average += sample;
}
average /= dp->blocksize;
/* If filtering is used, we always set the offset to zero, otherwise
* we search for the offset that minimizes the bitcount. */
if (no_filters_used) {
no_codebook_bits(ctx, dp, ch, min, max, &s->b[index].best_offset[ch][0]);
offset = av_clip(average, HUFF_OFFSET_MIN, HUFF_OFFSET_MAX);
} else {
no_codebook_bits_offset(ctx, dp, ch, offset, min, max, &s->b[index].best_offset[ch][0]);
}
for (int i = 1; i < NUM_CODEBOOKS; i++) {
BestOffset temp_bo = { 0, UINT32_MAX, 0, 0, 0, };
int32_t offset_max;
codebook_bits_offset(ctx, dp, ch, i - 1,
min, max, offset,
&temp_bo);
if (no_filters_used) {
offset_max = temp_bo.max;
codebook_bits(ctx, dp, ch, i - 1, temp_bo.min - 1,
min, max, &temp_bo, 0);
codebook_bits(ctx, dp, ch, i - 1, offset_max + 1,
min, max, &temp_bo, 1);
}
s->b[index].best_offset[ch][i] = temp_bo;
}
}
}
}
/****************************************************************************
*************** Functions that process the data in some way ****************
****************************************************************************/
#define SAMPLE_MAX(bitdepth) ((1 << (bitdepth - 1)) - 1)
#define SAMPLE_MIN(bitdepth) (~SAMPLE_MAX(bitdepth))
#define MSB_MASK(bits) (-(int)(1u << (bits)))
/** Applies the filter to the current samples, and saves the residual back
* into the samples buffer. If the filter is too bad and overflows the
* maximum amount of bits allowed (24), the samples buffer is left as is and
* the function returns -1.
*/
static int apply_filter(MLPEncodeContext *ctx, MLPSubstream *s, int channel)
{
DecodingParams *dp = &s->b[1].decoding_params;
ChannelParams *cp = &s->b[1].channel_params[channel];
FilterParams *fp[NUM_FILTERS] = { &cp->filter_params[FIR],
&cp->filter_params[IIR], };
const uint8_t codebook = cp->codebook;
int32_t mask = MSB_MASK(dp->quant_step_size[channel]);
int32_t *sample_buffer = s->b[0].decoding_params.sample_buffer[channel];
unsigned int filter_shift = fp[FIR]->shift;
int32_t *filter_state[NUM_FILTERS] = { ctx->filter_state[FIR],
ctx->filter_state[IIR], };
int i, j = 1, k = 0;
for (i = 0; i < 8; i++) {
filter_state[FIR][i] = sample_buffer[i];
filter_state[IIR][i] = sample_buffer[i];
}
while (1) {
int32_t *sample_buffer = s->b[j].decoding_params.sample_buffer[channel];
unsigned int blocksize = s->b[j].decoding_params.blocksize;
int32_t sample, residual;
int64_t accum = 0;
if (!blocksize)
break;
for (int filter = 0; filter < NUM_FILTERS; filter++) {
int32_t *fcoeff = cp->coeff[filter];
for (unsigned int order = 0; order < fp[filter]->order; order++)
accum += (int64_t)filter_state[filter][i - 1 - order] *
fcoeff[order];
}
sample = sample_buffer[k];
accum >>= filter_shift;
residual = sample - (accum & mask);
if ((codebook > 0) &&
(residual < SAMPLE_MIN(24) ||
residual > SAMPLE_MAX(24)))
return -1;
filter_state[FIR][i] = sample;
filter_state[IIR][i] = residual;
i++;
k++;
if (k >= blocksize) {
k = 0;
j++;
if (j > ctx->cur_restart_interval)
break;
}
}
for (int l = 0, j = 0; j <= ctx->cur_restart_interval; j++) {
int32_t *sample_buffer = s->b[j].decoding_params.sample_buffer[channel];
unsigned int blocksize = s->b[j].decoding_params.blocksize;
for (int i = 0; i < blocksize; i++, l++)
sample_buffer[i] = filter_state[IIR][l];
}
return 0;
}
static void apply_filters(MLPEncodeContext *ctx, MLPSubstream *s)
{
RestartHeader *rh = s->cur_restart_header;
for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
while (apply_filter(ctx, s, ch) < 0) {
/* Filter is horribly wrong. Retry. */
set_filter(ctx, s, ch, 1);
}
}
}
/** Generates two noise channels worth of data. */
static void generate_2_noise_channels(MLPEncodeContext *ctx, MLPSubstream *s)
{
RestartHeader *rh = s->cur_restart_header;
uint32_t seed = rh->noisegen_seed;
for (unsigned int j = 0; j <= ctx->cur_restart_interval; j++) {
DecodingParams *dp = &s->b[j].decoding_params;
int32_t *sample_buffer2 = dp->sample_buffer[ctx->num_channels-2];
int32_t *sample_buffer1 = dp->sample_buffer[ctx->num_channels-1];
for (unsigned int i = 0; i < dp->blocksize; i++) {
uint16_t seed_shr7 = seed >> 7;
sample_buffer2[i] = ((int8_t)(seed >> 15)) * (1 << rh->noise_shift);
sample_buffer1[i] = ((int8_t) seed_shr7) * (1 << rh->noise_shift);
seed = (seed << 16) ^ seed_shr7 ^ (seed_shr7 << 5);
}
}
rh->noisegen_seed = seed & ((1 << 24)-1);
}
/** Rematrixes all channels using chosen coefficients. */
static void rematrix_channels(MLPEncodeContext *ctx, MLPSubstream *s)
{
RestartHeader *rh = s->cur_restart_header;
DecodingParams *dp1 = &s->b[1].decoding_params;
MatrixParams *mp1 = &dp1->matrix_params;
const int maxchan = rh->max_matrix_channel;
int32_t orig_samples[MAX_NCHANNELS];
int32_t rematrix_samples[MAX_NCHANNELS];
uint8_t lsb_bypass[MAX_MATRICES] = { 0 };
for (unsigned int j = 0; j <= ctx->cur_restart_interval; j++) {
DecodingParams *dp = &s->b[j].decoding_params;
MatrixParams *mp = &dp->matrix_params;
for (unsigned int i = 0; i < dp->blocksize; i++) {
for (int ch = 0; ch <= maxchan; ch++)
orig_samples[ch] = rematrix_samples[ch] = dp->sample_buffer[ch][i];
for (int mat = 0; mat < mp1->count; mat++) {
unsigned int outch = mp1->outch[mat];
int64_t accum = 0;
for (int ch = 0; ch <= maxchan; ch++) {
int32_t sample = rematrix_samples[ch];
accum += (int64_t)sample * mp1->forco[mat][ch];
}
rematrix_samples[outch] = accum >> 14;
}
for (int ch = 0; ch <= maxchan; ch++)
dp->sample_buffer[ch][i] = rematrix_samples[ch];
for (unsigned int mat = 0; mat < mp1->count; mat++) {
int8_t *bypassed_lsbs = mp->bypassed_lsbs[mat];
unsigned int outch = mp1->outch[mat];
int64_t accum = 0;
int8_t bit;
for (int ch = 0; ch <= maxchan; ch++) {
int32_t sample = rematrix_samples[ch];
accum += (int64_t)sample * mp1->coeff[mat][ch];
}
rematrix_samples[outch] = accum >> 14;
bit = rematrix_samples[outch] != orig_samples[outch];
bypassed_lsbs[i] = bit;
lsb_bypass[mat] |= bit;
}
}
}
for (unsigned int mat = 0; mat < mp1->count; mat++)
mp1->lsb_bypass[mat] = lsb_bypass[mat];
}
/****************************************************************************
**** Functions that deal with determining the best parameters and output ***
****************************************************************************/
typedef struct PathCounter {
char path[MAX_HEADER_INTERVAL + 2];
int cur_idx;
uint32_t bitcount;
} PathCounter;
#define CODEBOOK_CHANGE_BITS 21
static void clear_path_counter(PathCounter *path_counter)
{
memset(path_counter, 0, (NUM_CODEBOOKS + 1) * sizeof(*path_counter));
}
static int compare_best_offset(const BestOffset *prev, const BestOffset *cur)
{
return prev->lsb_bits != cur->lsb_bits;
}
static uint32_t best_codebook_path_cost(MLPEncodeContext *ctx, MLPSubstream *s,
int channel,
PathCounter *src, int cur_codebook)
{
int idx = src->cur_idx;
const BestOffset *cur_bo = s->b[idx].best_offset[channel],
*prev_bo = idx ? s->b[idx - 1].best_offset[channel] :
restart_best_offset;
uint32_t bitcount = src->bitcount;
int prev_codebook = src->path[idx];
bitcount += cur_bo[cur_codebook].bitcount;
if (prev_codebook != cur_codebook ||
compare_best_offset(&prev_bo[prev_codebook], &cur_bo[cur_codebook]))
bitcount += CODEBOOK_CHANGE_BITS;
return bitcount;
}
static void set_best_codebook(MLPEncodeContext *ctx, MLPSubstream *s)
{
RestartHeader *rh = s->cur_restart_header;
for (int channel = rh->min_channel; channel <= rh->max_channel; channel++) {
const BestOffset *prev_bo = restart_best_offset;
BestOffset *cur_bo;
PathCounter path_counter[NUM_CODEBOOKS + 1];
unsigned int best_codebook;
char *best_path;
clear_path_counter(path_counter);
for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) {
uint32_t best_bitcount = UINT32_MAX;
cur_bo = s->b[index].best_offset[channel];
for (unsigned int codebook = 0; codebook < NUM_CODEBOOKS; codebook++) {
uint32_t prev_best_bitcount = UINT32_MAX;
for (unsigned int last_best = 0; last_best < 2; last_best++) {
PathCounter *dst_path = &path_counter[codebook];
PathCounter *src_path;
uint32_t temp_bitcount;
/* First test last path with same headers,
* then with last best. */
if (last_best) {
src_path = &path_counter[NUM_CODEBOOKS];
} else {
if (compare_best_offset(&prev_bo[codebook], &cur_bo[codebook]))
continue;
else
src_path = &path_counter[codebook];
}
temp_bitcount = best_codebook_path_cost(ctx, s, channel, src_path, codebook);
if (temp_bitcount < best_bitcount) {
best_bitcount = temp_bitcount;
best_codebook = codebook;
}
if (temp_bitcount < prev_best_bitcount) {
prev_best_bitcount = temp_bitcount;
if (src_path != dst_path)
memcpy(dst_path, src_path, sizeof(PathCounter));
if (dst_path->cur_idx < FF_ARRAY_ELEMS(dst_path->path) - 1)
dst_path->path[++dst_path->cur_idx] = codebook;
dst_path->bitcount = temp_bitcount;
}
}
}
prev_bo = cur_bo;
memcpy(&path_counter[NUM_CODEBOOKS], &path_counter[best_codebook], sizeof(PathCounter));
}
best_path = path_counter[NUM_CODEBOOKS].path + 1;
/* Update context. */
for (unsigned int index = 0; index < ctx->number_of_subblocks; index++) {
ChannelParams *cp = &s->b[index].channel_params[channel];
DecodingParams *dp = &s->b[index].decoding_params;
best_codebook = *best_path++;
cur_bo = &s->b[index].best_offset[channel][best_codebook];
cp->huff_offset = cur_bo->offset;
cp->huff_lsbs = cur_bo->lsb_bits + dp->quant_step_size[channel];
cp->codebook = best_codebook;
}
}
}
/** Analyzes all collected bitcounts and selects the best parameters for each
* individual access unit.
* TODO This is just a stub!
*/
static void set_major_params(MLPEncodeContext *ctx, MLPSubstream *s)
{
RestartHeader *rh = s->cur_restart_header;
uint8_t max_huff_lsbs = 0, max_output_bits = 0;
int8_t max_shift = 0;
for (int index = 0; index < s->b[ctx->restart_intervals-1].seq_size; index++) {
memcpy(&s->b[index].major_decoding_params,
&s->b[index].decoding_params, sizeof(DecodingParams));
for (int ch = 0; ch <= rh->max_matrix_channel; ch++) {
int8_t shift = s->b[index].decoding_params.output_shift[ch];
max_shift = FFMAX(max_shift, shift);
}
for (int ch = rh->min_channel; ch <= rh->max_channel; ch++) {
uint8_t huff_lsbs = s->b[index].channel_params[ch].huff_lsbs;
max_huff_lsbs = FFMAX(max_huff_lsbs, huff_lsbs);
memcpy(&s->b[index].major_channel_params[ch],
&s->b[index].channel_params[ch],
sizeof(ChannelParams));
}
}
rh->max_huff_lsbs = max_huff_lsbs;
rh->max_shift = max_shift;
for (int index = 0; index < ctx->number_of_frames; index++)
if (max_output_bits < s->b[index].max_output_bits)
max_output_bits = s->b[index].max_output_bits;
rh->max_output_bits = max_output_bits;
s->cur_restart_header = &s->restart_header;
for (int index = 0; index <= ctx->cur_restart_interval; index++)
s->b[index].major_params_changed = compare_decoding_params(ctx, s, index);
s->major_filter_state_subblock = 1;
s->major_cur_subblock_index = 0;
}
static void analyze_sample_buffer(MLPEncodeContext *ctx, MLPSubstream *s)
{
s->cur_restart_header = &s->restart_header;
/* Copy frame_size from frames 0...max to decoding_params 1...max + 1
* decoding_params[0] is for the filter state subblock.
*/
for (unsigned int index = 0; index < ctx->number_of_frames; index++) {
DecodingParams *dp = &s->b[index+1].decoding_params;
dp->blocksize = ctx->avctx->frame_size;
}
/* The official encoder seems to always encode a filter state subblock
* even if there are no filters. TODO check if it is possible to skip
* the filter state subblock for no filters.
*/
s->b[0].decoding_params.blocksize = 8;
s->b[1].decoding_params.blocksize -= 8;
input_to_sample_buffer (ctx, s);
determine_output_shift (ctx, s);
generate_2_noise_channels(ctx, s);
lossless_matrix_coeffs (ctx, s);
rematrix_channels (ctx, s);
determine_quant_step_size(ctx, s);
determine_filters (ctx, s);
apply_filters (ctx, s);
copy_restart_frame_params(ctx, s);
determine_bits(ctx, s);
set_best_codebook(ctx, s);
}
static void process_major_frame(MLPEncodeContext *ctx, MLPSubstream *s)
{
ctx->number_of_frames = ctx->major_number_of_frames;
s->cur_restart_header = &s->restart_header;
generate_2_noise_channels(ctx, s);
rematrix_channels (ctx, s);
apply_filters(ctx, s);
}
/****************************************************************************/
static int mlp_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
const AVFrame *frame, int *got_packet)
{
MLPEncodeContext *ctx = avctx->priv_data;
int bytes_written = 0;
int channels = avctx->ch_layout.nb_channels;
int restart_frame, ret;
const uint8_t *data;
if (!frame && !ctx->last_frames)
ctx->last_frames = (ctx->afq.remaining_samples + avctx->frame_size - 1) / avctx->frame_size;
if (!frame && !ctx->last_frames--)
return 0;
if ((ret = ff_alloc_packet(avctx, avpkt, 87500 * channels)) < 0)
return ret;
if (frame) {
/* add current frame to queue */
if ((ret = ff_af_queue_add(&ctx->afq, frame)) < 0)
return ret;
}
data = frame ? frame->data[0] : NULL;
ctx->frame_index = avctx->frame_num % ctx->cur_restart_interval;
if (avctx->frame_num < ctx->cur_restart_interval) {
if (data)
goto input_and_return;
}
restart_frame = !ctx->frame_index;
if (restart_frame) {
avpkt->flags |= AV_PKT_FLAG_KEY;
for (int n = 0; n < ctx->num_substreams; n++)
set_major_params(ctx, &ctx->s[n]);
if (ctx->min_restart_interval != ctx->cur_restart_interval)
process_major_frame(ctx, &ctx->s[0]);
}
bytes_written = write_access_unit(ctx, avpkt->data, avpkt->size, restart_frame);
ctx->output_timing += avctx->frame_size;
ctx->input_timing += avctx->frame_size;
input_and_return:
if (frame) {
ctx->shorten_by = avctx->frame_size - frame->nb_samples;
ctx->next_major_frame_size += avctx->frame_size;
ctx->next_major_number_of_frames++;
}
if (data)
for (int n = 0; n < ctx->num_substreams; n++)
input_data(ctx, &ctx->s[n], frame->extended_data, frame->nb_samples);
restart_frame = (ctx->frame_index + 1) % ctx->min_restart_interval;
if (!restart_frame) {
for (unsigned int seq_index = 0; seq_index < ctx->restart_intervals; seq_index++) {
unsigned int number_of_samples;
ctx->number_of_frames = ctx->next_major_number_of_frames;
ctx->number_of_subblocks = ctx->next_major_number_of_frames + 1;
number_of_samples = avctx->frame_size * ctx->number_of_frames;
for (int n = 0; n < ctx->num_substreams; n++) {
MLPSubstream *s = &ctx->s[n];
for (int i = 0; i < s->b[seq_index].seq_size; i++) {
clear_channel_params(s->b[i].channel_params, channels);
default_decoding_params(ctx, &s->b[i].decoding_params);
}
}
if (number_of_samples > 0) {
for (int n = 0; n < ctx->num_substreams; n++)
analyze_sample_buffer(ctx, &ctx->s[n]);
}
}
if (ctx->frame_index == (ctx->cur_restart_interval - 1)) {
ctx->major_frame_size = ctx->next_major_frame_size;
ctx->next_major_frame_size = 0;
ctx->major_number_of_frames = ctx->next_major_number_of_frames;
ctx->next_major_number_of_frames = 0;
}
}
if (!frame && ctx->last_frames < ctx->cur_restart_interval - 1)
avctx->frame_num++;
if (bytes_written > 0) {
ff_af_queue_remove(&ctx->afq,
FFMIN(avctx->frame_size, ctx->afq.remaining_samples),
&avpkt->pts,
&avpkt->duration);
av_shrink_packet(avpkt, bytes_written);
*got_packet = 1;
} else {
*got_packet = 0;
}
return 0;
}
static av_cold int mlp_encode_close(AVCodecContext *avctx)
{
MLPEncodeContext *ctx = avctx->priv_data;
ff_lpc_end(&ctx->lpc_ctx);
ff_af_queue_close(&ctx->afq);
return 0;
}
#define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
#define OFFSET(x) offsetof(MLPEncodeContext, x)
static const AVOption mlp_options[] = {
{ "max_interval", "Max number of frames between each new header", OFFSET(max_restart_interval), AV_OPT_TYPE_INT, {.i64 = 16 }, MIN_HEADER_INTERVAL, MAX_HEADER_INTERVAL, FLAGS },
{ "lpc_coeff_precision", "LPC coefficient precision", OFFSET(lpc_coeff_precision), AV_OPT_TYPE_INT, {.i64 = 15 }, 0, 15, FLAGS },
{ "lpc_type", "LPC algorithm", OFFSET(lpc_type), AV_OPT_TYPE_INT, {.i64 = FF_LPC_TYPE_LEVINSON }, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_CHOLESKY, FLAGS, .unit = "lpc_type" },
{ "levinson", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_LEVINSON }, 0, 0, FLAGS, .unit = "lpc_type" },
{ "cholesky", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_CHOLESKY }, 0, 0, FLAGS, .unit = "lpc_type" },
{ "lpc_passes", "Number of passes to use for Cholesky factorization during LPC analysis", OFFSET(lpc_passes), AV_OPT_TYPE_INT, {.i64 = 2 }, 1, INT_MAX, FLAGS },
{ "codebook_search", "Max number of codebook searches", OFFSET(max_codebook_search), AV_OPT_TYPE_INT, {.i64 = 3 }, 1, 100, FLAGS },
{ "prediction_order", "Search method for selecting prediction order", OFFSET(prediction_order), AV_OPT_TYPE_INT, {.i64 = ORDER_METHOD_EST }, ORDER_METHOD_EST, ORDER_METHOD_SEARCH, FLAGS, .unit = "predm" },
{ "estimation", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_EST }, 0, 0, FLAGS, .unit = "predm" },
{ "search", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_SEARCH }, 0, 0, FLAGS, .unit = "predm" },
{ "rematrix_precision", "Rematrix coefficient precision", OFFSET(rematrix_precision), AV_OPT_TYPE_INT, {.i64 = 1 }, 0, 14, FLAGS },
{ NULL },
};
static const AVClass mlp_class = {
.class_name = "mlpenc",
.item_name = av_default_item_name,
.option = mlp_options,
.version = LIBAVUTIL_VERSION_INT,
};
#if CONFIG_MLP_ENCODER
const FFCodec ff_mlp_encoder = {
.p.name ="mlp",
CODEC_LONG_NAME("MLP (Meridian Lossless Packing)"),
.p.type = AVMEDIA_TYPE_AUDIO,
.p.id = AV_CODEC_ID_MLP,
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
AV_CODEC_CAP_EXPERIMENTAL,
.priv_data_size = sizeof(MLPEncodeContext),
.init = mlp_encode_init,
FF_CODEC_ENCODE_CB(mlp_encode_frame),
.close = mlp_encode_close,
.p.priv_class = &mlp_class,
.p.sample_fmts = (const enum AVSampleFormat[]) {AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_S32P, AV_SAMPLE_FMT_NONE},
.p.supported_samplerates = (const int[]) {44100, 48000, 88200, 96000, 176400, 192000, 0},
.p.ch_layouts = ff_mlp_ch_layouts,
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
};
#endif
#if CONFIG_TRUEHD_ENCODER
const FFCodec ff_truehd_encoder = {
.p.name ="truehd",
CODEC_LONG_NAME("TrueHD"),
.p.type = AVMEDIA_TYPE_AUDIO,
.p.id = AV_CODEC_ID_TRUEHD,
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
AV_CODEC_CAP_SMALL_LAST_FRAME |
AV_CODEC_CAP_EXPERIMENTAL,
.priv_data_size = sizeof(MLPEncodeContext),
.init = mlp_encode_init,
FF_CODEC_ENCODE_CB(mlp_encode_frame),
.close = mlp_encode_close,
.p.priv_class = &mlp_class,
.p.sample_fmts = (const enum AVSampleFormat[]) {AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_S32P, AV_SAMPLE_FMT_NONE},
.p.supported_samplerates = (const int[]) {44100, 48000, 88200, 96000, 176400, 192000, 0},
.p.ch_layouts = (const AVChannelLayout[]) {
AV_CHANNEL_LAYOUT_MONO,
AV_CHANNEL_LAYOUT_STEREO,
AV_CHANNEL_LAYOUT_2POINT1,
AV_CHANNEL_LAYOUT_SURROUND,
AV_CHANNEL_LAYOUT_3POINT1,
AV_CHANNEL_LAYOUT_4POINT0,
AV_CHANNEL_LAYOUT_4POINT1,
AV_CHANNEL_LAYOUT_5POINT0,
AV_CHANNEL_LAYOUT_5POINT1,
{ 0 }
},
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
};
#endif