1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavcodec/dca.c
Anssi Hannula f5a2d285f9 Export dca profile information.
Patch by Anssi Hannula anssi d hannula a iki d fi

Originally committed as revision 26250 to svn://svn.ffmpeg.org/ffmpeg/trunk
2011-01-06 22:34:12 +00:00

1860 lines
68 KiB
C

/*
* DCA compatible decoder
* Copyright (C) 2004 Gildas Bazin
* Copyright (C) 2004 Benjamin Zores
* Copyright (C) 2006 Benjamin Larsson
* Copyright (C) 2007 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include "libavutil/common.h"
#include "libavutil/intmath.h"
#include "libavutil/intreadwrite.h"
#include "libavcore/audioconvert.h"
#include "avcodec.h"
#include "dsputil.h"
#include "fft.h"
#include "get_bits.h"
#include "put_bits.h"
#include "dcadata.h"
#include "dcahuff.h"
#include "dca.h"
#include "synth_filter.h"
#include "dcadsp.h"
//#define TRACE
#define DCA_PRIM_CHANNELS_MAX (7)
#define DCA_SUBBANDS (32)
#define DCA_ABITS_MAX (32) /* Should be 28 */
#define DCA_SUBSUBFRAMES_MAX (4)
#define DCA_SUBFRAMES_MAX (16)
#define DCA_BLOCKS_MAX (16)
#define DCA_LFE_MAX (3)
enum DCAMode {
DCA_MONO = 0,
DCA_CHANNEL,
DCA_STEREO,
DCA_STEREO_SUMDIFF,
DCA_STEREO_TOTAL,
DCA_3F,
DCA_2F1R,
DCA_3F1R,
DCA_2F2R,
DCA_3F2R,
DCA_4F2R
};
/* these are unconfirmed but should be mostly correct */
enum DCAExSSSpeakerMask {
DCA_EXSS_FRONT_CENTER = 0x0001,
DCA_EXSS_FRONT_LEFT_RIGHT = 0x0002,
DCA_EXSS_SIDE_REAR_LEFT_RIGHT = 0x0004,
DCA_EXSS_LFE = 0x0008,
DCA_EXSS_REAR_CENTER = 0x0010,
DCA_EXSS_FRONT_HIGH_LEFT_RIGHT = 0x0020,
DCA_EXSS_REAR_LEFT_RIGHT = 0x0040,
DCA_EXSS_FRONT_HIGH_CENTER = 0x0080,
DCA_EXSS_OVERHEAD = 0x0100,
DCA_EXSS_CENTER_LEFT_RIGHT = 0x0200,
DCA_EXSS_WIDE_LEFT_RIGHT = 0x0400,
DCA_EXSS_SIDE_LEFT_RIGHT = 0x0800,
DCA_EXSS_LFE2 = 0x1000,
DCA_EXSS_SIDE_HIGH_LEFT_RIGHT = 0x2000,
DCA_EXSS_REAR_HIGH_CENTER = 0x4000,
DCA_EXSS_REAR_HIGH_LEFT_RIGHT = 0x8000,
};
enum DCAExtensionMask {
DCA_EXT_CORE = 0x001, ///< core in core substream
DCA_EXT_XXCH = 0x002, ///< XXCh channels extension in core substream
DCA_EXT_X96 = 0x004, ///< 96/24 extension in core substream
DCA_EXT_XCH = 0x008, ///< XCh channel extension in core substream
DCA_EXT_EXSS_CORE = 0x010, ///< core in ExSS (extension substream)
DCA_EXT_EXSS_XBR = 0x020, ///< extended bitrate extension in ExSS
DCA_EXT_EXSS_XXCH = 0x040, ///< XXCh channels extension in ExSS
DCA_EXT_EXSS_X96 = 0x080, ///< 96/24 extension in ExSS
DCA_EXT_EXSS_LBR = 0x100, ///< low bitrate component in ExSS
DCA_EXT_EXSS_XLL = 0x200, ///< lossless extension in ExSS
};
/* Tables for mapping dts channel configurations to libavcodec multichannel api.
* Some compromises have been made for special configurations. Most configurations
* are never used so complete accuracy is not needed.
*
* L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
* S -> side, when both rear and back are configured move one of them to the side channel
* OV -> center back
* All 2 channel configurations -> CH_LAYOUT_STEREO
*/
static const int64_t dca_core_channel_layout[] = {
AV_CH_FRONT_CENTER, ///< 1, A
AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
AV_CH_LAYOUT_STEREO, ///< 2, (L+R) + (L-R) (sum-difference)
AV_CH_LAYOUT_STEREO, ///< 2, LT +RT (left and right total)
AV_CH_LAYOUT_STEREO|AV_CH_FRONT_CENTER, ///< 3, C+L+R
AV_CH_LAYOUT_STEREO|AV_CH_BACK_CENTER, ///< 3, L+R+S
AV_CH_LAYOUT_STEREO|AV_CH_FRONT_CENTER|CH_BACK_CENTER, ///< 4, C + L + R+ S
AV_CH_LAYOUT_STEREO|AV_CH_SIDE_LEFT|AV_CH_SIDE_RIGHT, ///< 4, L + R +SL+ SR
AV_CH_LAYOUT_STEREO|AV_CH_FRONT_CENTER|AV_CH_SIDE_LEFT|AV_CH_SIDE_RIGHT, ///< 5, C + L + R+ SL+SR
AV_CH_LAYOUT_STEREO|AV_CH_SIDE_LEFT|AV_CH_SIDE_RIGHT|AV_CH_FRONT_LEFT_OF_CENTER|AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
AV_CH_LAYOUT_STEREO|AV_CH_BACK_LEFT|AV_CH_BACK_RIGHT|AV_CH_FRONT_CENTER|AV_CH_BACK_CENTER, ///< 6, C + L + R+ LR + RR + OV
AV_CH_FRONT_CENTER|AV_CH_FRONT_RIGHT_OF_CENTER|AV_CH_FRONT_LEFT_OF_CENTER|AV_CH_BACK_CENTER|AV_CH_BACK_LEFT|AV_CH_BACK_RIGHT, ///< 6, CF+ CR+LF+ RF+LR + RR
AV_CH_FRONT_LEFT_OF_CENTER|AV_CH_FRONT_CENTER|AV_CH_FRONT_RIGHT_OF_CENTER|AV_CH_LAYOUT_STEREO|AV_CH_SIDE_LEFT|AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
AV_CH_FRONT_LEFT_OF_CENTER|AV_CH_FRONT_RIGHT_OF_CENTER|AV_CH_LAYOUT_STEREO|AV_CH_SIDE_LEFT|AV_CH_SIDE_RIGHT|AV_CH_BACK_LEFT|AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2+ SR1 + SR2
AV_CH_FRONT_LEFT_OF_CENTER|AV_CH_FRONT_CENTER|AV_CH_FRONT_RIGHT_OF_CENTER|AV_CH_LAYOUT_STEREO|AV_CH_SIDE_LEFT|AV_CH_BACK_CENTER|AV_CH_SIDE_RIGHT, ///< 8, CL + C+ CR + L + R + SL + S+ SR
};
static const int8_t dca_lfe_index[] = {
1,2,2,2,2,3,2,3,2,3,2,3,1,3,2,3
};
static const int8_t dca_channel_reorder_lfe[][9] = {
{ 0, -1, -1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
{ 2, 0, 1, -1, -1, -1, -1, -1, -1},
{ 0, 1, 3, -1, -1, -1, -1, -1, -1},
{ 2, 0, 1, 4, -1, -1, -1, -1, -1},
{ 0, 1, 3, 4, -1, -1, -1, -1, -1},
{ 2, 0, 1, 4, 5, -1, -1, -1, -1},
{ 3, 4, 0, 1, 5, 6, -1, -1, -1},
{ 2, 0, 1, 4, 5, 6, -1, -1, -1},
{ 0, 6, 4, 5, 2, 3, -1, -1, -1},
{ 4, 2, 5, 0, 1, 6, 7, -1, -1},
{ 5, 6, 0, 1, 7, 3, 8, 4, -1},
{ 4, 2, 5, 0, 1, 6, 8, 7, -1},
};
static const int8_t dca_channel_reorder_lfe_xch[][9] = {
{ 0, 2, -1, -1, -1, -1, -1, -1, -1},
{ 0, 1, 3, -1, -1, -1, -1, -1, -1},
{ 0, 1, 3, -1, -1, -1, -1, -1, -1},
{ 0, 1, 3, -1, -1, -1, -1, -1, -1},
{ 0, 1, 3, -1, -1, -1, -1, -1, -1},
{ 2, 0, 1, 4, -1, -1, -1, -1, -1},
{ 0, 1, 3, 4, -1, -1, -1, -1, -1},
{ 2, 0, 1, 4, 5, -1, -1, -1, -1},
{ 0, 1, 4, 5, 3, -1, -1, -1, -1},
{ 2, 0, 1, 5, 6, 4, -1, -1, -1},
{ 3, 4, 0, 1, 6, 7, 5, -1, -1},
{ 2, 0, 1, 4, 5, 6, 7, -1, -1},
{ 0, 6, 4, 5, 2, 3, 7, -1, -1},
{ 4, 2, 5, 0, 1, 7, 8, 6, -1},
{ 5, 6, 0, 1, 8, 3, 9, 4, 7},
{ 4, 2, 5, 0, 1, 6, 9, 8, 7},
};
static const int8_t dca_channel_reorder_nolfe[][9] = {
{ 0, -1, -1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
{ 2, 0, 1, -1, -1, -1, -1, -1, -1},
{ 0, 1, 2, -1, -1, -1, -1, -1, -1},
{ 2, 0, 1, 3, -1, -1, -1, -1, -1},
{ 0, 1, 2, 3, -1, -1, -1, -1, -1},
{ 2, 0, 1, 3, 4, -1, -1, -1, -1},
{ 2, 3, 0, 1, 4, 5, -1, -1, -1},
{ 2, 0, 1, 3, 4, 5, -1, -1, -1},
{ 0, 5, 3, 4, 1, 2, -1, -1, -1},
{ 3, 2, 4, 0, 1, 5, 6, -1, -1},
{ 4, 5, 0, 1, 6, 2, 7, 3, -1},
{ 3, 2, 4, 0, 1, 5, 7, 6, -1},
};
static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
{ 0, 1, -1, -1, -1, -1, -1, -1, -1},
{ 0, 1, 2, -1, -1, -1, -1, -1, -1},
{ 0, 1, 2, -1, -1, -1, -1, -1, -1},
{ 0, 1, 2, -1, -1, -1, -1, -1, -1},
{ 0, 1, 2, -1, -1, -1, -1, -1, -1},
{ 2, 0, 1, 3, -1, -1, -1, -1, -1},
{ 0, 1, 2, 3, -1, -1, -1, -1, -1},
{ 2, 0, 1, 3, 4, -1, -1, -1, -1},
{ 0, 1, 3, 4, 2, -1, -1, -1, -1},
{ 2, 0, 1, 4, 5, 3, -1, -1, -1},
{ 2, 3, 0, 1, 5, 6, 4, -1, -1},
{ 2, 0, 1, 3, 4, 5, 6, -1, -1},
{ 0, 5, 3, 4, 1, 2, 6, -1, -1},
{ 3, 2, 4, 0, 1, 6, 7, 5, -1},
{ 4, 5, 0, 1, 7, 2, 8, 3, 6},
{ 3, 2, 4, 0, 1, 5, 8, 7, 6},
};
#define DCA_DOLBY 101 /* FIXME */
#define DCA_CHANNEL_BITS 6
#define DCA_CHANNEL_MASK 0x3F
#define DCA_LFE 0x80
#define HEADER_SIZE 14
#define DCA_MAX_FRAME_SIZE 16384
#define DCA_MAX_EXSS_HEADER_SIZE 4096
/** Bit allocation */
typedef struct {
int offset; ///< code values offset
int maxbits[8]; ///< max bits in VLC
int wrap; ///< wrap for get_vlc2()
VLC vlc[8]; ///< actual codes
} BitAlloc;
static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
static BitAlloc dca_tmode; ///< transition mode VLCs
static BitAlloc dca_scalefactor; ///< scalefactor VLCs
static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba, int idx)
{
return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) + ba->offset;
}
typedef struct {
AVCodecContext *avctx;
/* Frame header */
int frame_type; ///< type of the current frame
int samples_deficit; ///< deficit sample count
int crc_present; ///< crc is present in the bitstream
int sample_blocks; ///< number of PCM sample blocks
int frame_size; ///< primary frame byte size
int amode; ///< audio channels arrangement
int sample_rate; ///< audio sampling rate
int bit_rate; ///< transmission bit rate
int bit_rate_index; ///< transmission bit rate index
int downmix; ///< embedded downmix enabled
int dynrange; ///< embedded dynamic range flag
int timestamp; ///< embedded time stamp flag
int aux_data; ///< auxiliary data flag
int hdcd; ///< source material is mastered in HDCD
int ext_descr; ///< extension audio descriptor flag
int ext_coding; ///< extended coding flag
int aspf; ///< audio sync word insertion flag
int lfe; ///< low frequency effects flag
int predictor_history; ///< predictor history flag
int header_crc; ///< header crc check bytes
int multirate_inter; ///< multirate interpolator switch
int version; ///< encoder software revision
int copy_history; ///< copy history
int source_pcm_res; ///< source pcm resolution
int front_sum; ///< front sum/difference flag
int surround_sum; ///< surround sum/difference flag
int dialog_norm; ///< dialog normalisation parameter
/* Primary audio coding header */
int subframes; ///< number of subframes
int total_channels; ///< number of channels including extensions
int prim_channels; ///< number of primary audio channels
int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
/* Primary audio coding side information */
int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes
int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count
int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2]; ///< scale factors (2 if transient)
int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
int downmix_coef[DCA_PRIM_CHANNELS_MAX][2]; ///< stereo downmix coefficients
int dynrange_coef; ///< dynamic range coefficient
int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data
int lfe_scale_factor;
/* Subband samples history (for ADPCM) */
float subband_samples_hist[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
DECLARE_ALIGNED(16, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
DECLARE_ALIGNED(16, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
int hist_index[DCA_PRIM_CHANNELS_MAX];
DECLARE_ALIGNED(16, float, raXin)[32];
int output; ///< type of output
float add_bias; ///< output bias
float scale_bias; ///< output scale
DECLARE_ALIGNED(16, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
DECLARE_ALIGNED(16, float, samples)[(DCA_PRIM_CHANNELS_MAX+1)*256];
const float *samples_chanptr[DCA_PRIM_CHANNELS_MAX+1];
uint8_t dca_buffer[DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE];
int dca_buffer_size; ///< how much data is in the dca_buffer
const int8_t* channel_order_tab; ///< channel reordering table, lfe and non lfe
GetBitContext gb;
/* Current position in DCA frame */
int current_subframe;
int current_subsubframe;
/* XCh extension information */
int xch_present;
int xch_base_channel; ///< index of first (only) channel containing XCH data
/* Other detected extensions in the core substream */
int xxch_present;
int x96_present;
/* ExSS header parser */
int static_fields; ///< static fields present
int mix_metadata; ///< mixing metadata present
int num_mix_configs; ///< number of mix out configurations
int mix_config_num_ch[4]; ///< number of channels in each mix out configuration
int profile;
int debug_flag; ///< used for suppressing repeated error messages output
DSPContext dsp;
FFTContext imdct;
SynthFilterContext synth;
DCADSPContext dcadsp;
} DCAContext;
static const uint16_t dca_vlc_offs[] = {
0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
};
static av_cold void dca_init_vlcs(void)
{
static int vlcs_initialized = 0;
int i, j, c = 14;
static VLC_TYPE dca_table[23622][2];
if (vlcs_initialized)
return;
dca_bitalloc_index.offset = 1;
dca_bitalloc_index.wrap = 2;
for (i = 0; i < 5; i++) {
dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
bitalloc_12_bits[i], 1, 1,
bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
}
dca_scalefactor.offset = -64;
dca_scalefactor.wrap = 2;
for (i = 0; i < 5; i++) {
dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
scales_bits[i], 1, 1,
scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
}
dca_tmode.offset = 0;
dca_tmode.wrap = 1;
for (i = 0; i < 4; i++) {
dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
tmode_bits[i], 1, 1,
tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
}
for (i = 0; i < 10; i++)
for (j = 0; j < 7; j++){
if (!bitalloc_codes[i][j]) break;
dca_smpl_bitalloc[i+1].offset = bitalloc_offsets[i];
dca_smpl_bitalloc[i+1].wrap = 1 + (j > 4);
dca_smpl_bitalloc[i+1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
dca_smpl_bitalloc[i+1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
init_vlc(&dca_smpl_bitalloc[i+1].vlc[j], bitalloc_maxbits[i][j],
bitalloc_sizes[i],
bitalloc_bits[i][j], 1, 1,
bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
c++;
}
vlcs_initialized = 1;
}
static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
{
while(len--)
*dst++ = get_bits(gb, bits);
}
static int dca_parse_audio_coding_header(DCAContext * s, int base_channel)
{
int i, j;
static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
s->total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
s->prim_channels = s->total_channels;
if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
s->prim_channels = DCA_PRIM_CHANNELS_MAX;
for (i = base_channel; i < s->prim_channels; i++) {
s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
if (s->subband_activity[i] > DCA_SUBBANDS)
s->subband_activity[i] = DCA_SUBBANDS;
}
for (i = base_channel; i < s->prim_channels; i++) {
s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
if (s->vq_start_subband[i] > DCA_SUBBANDS)
s->vq_start_subband[i] = DCA_SUBBANDS;
}
get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
/* Get codebooks quantization indexes */
if (!base_channel)
memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
for (j = 1; j < 11; j++)
for (i = base_channel; i < s->prim_channels; i++)
s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
/* Get scale factor adjustment */
for (j = 0; j < 11; j++)
for (i = base_channel; i < s->prim_channels; i++)
s->scalefactor_adj[i][j] = 1;
for (j = 1; j < 11; j++)
for (i = base_channel; i < s->prim_channels; i++)
if (s->quant_index_huffman[i][j] < thr[j])
s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
if (s->crc_present) {
/* Audio header CRC check */
get_bits(&s->gb, 16);
}
s->current_subframe = 0;
s->current_subsubframe = 0;
#ifdef TRACE
av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
for (i = base_channel; i < s->prim_channels; i++){
av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n", s->subband_activity[i]);
av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n", s->vq_start_subband[i]);
av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n", s->joint_intensity[i]);
av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n", s->transient_huffman[i]);
av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n", s->scalefactor_huffman[i]);
av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n", s->bitalloc_huffman[i]);
av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
for (j = 0; j < 11; j++)
av_log(s->avctx, AV_LOG_DEBUG, " %i",
s->quant_index_huffman[i][j]);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
for (j = 0; j < 11; j++)
av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
#endif
return 0;
}
static int dca_parse_frame_header(DCAContext * s)
{
init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
/* Sync code */
get_bits(&s->gb, 32);
/* Frame header */
s->frame_type = get_bits(&s->gb, 1);
s->samples_deficit = get_bits(&s->gb, 5) + 1;
s->crc_present = get_bits(&s->gb, 1);
s->sample_blocks = get_bits(&s->gb, 7) + 1;
s->frame_size = get_bits(&s->gb, 14) + 1;
if (s->frame_size < 95)
return -1;
s->amode = get_bits(&s->gb, 6);
s->sample_rate = dca_sample_rates[get_bits(&s->gb, 4)];
if (!s->sample_rate)
return -1;
s->bit_rate_index = get_bits(&s->gb, 5);
s->bit_rate = dca_bit_rates[s->bit_rate_index];
if (!s->bit_rate)
return -1;
s->downmix = get_bits(&s->gb, 1);
s->dynrange = get_bits(&s->gb, 1);
s->timestamp = get_bits(&s->gb, 1);
s->aux_data = get_bits(&s->gb, 1);
s->hdcd = get_bits(&s->gb, 1);
s->ext_descr = get_bits(&s->gb, 3);
s->ext_coding = get_bits(&s->gb, 1);
s->aspf = get_bits(&s->gb, 1);
s->lfe = get_bits(&s->gb, 2);
s->predictor_history = get_bits(&s->gb, 1);
/* TODO: check CRC */
if (s->crc_present)
s->header_crc = get_bits(&s->gb, 16);
s->multirate_inter = get_bits(&s->gb, 1);
s->version = get_bits(&s->gb, 4);
s->copy_history = get_bits(&s->gb, 2);
s->source_pcm_res = get_bits(&s->gb, 3);
s->front_sum = get_bits(&s->gb, 1);
s->surround_sum = get_bits(&s->gb, 1);
s->dialog_norm = get_bits(&s->gb, 4);
/* FIXME: channels mixing levels */
s->output = s->amode;
if (s->lfe) s->output |= DCA_LFE;
#ifdef TRACE
av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
s->sample_blocks, s->sample_blocks * 32);
av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
s->amode, dca_channels[s->amode]);
av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
s->sample_rate);
av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
s->bit_rate);
av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix);
av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
s->predictor_history);
av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
s->multirate_inter);
av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
av_log(s->avctx, AV_LOG_DEBUG,
"source pcm resolution: %i (%i bits/sample)\n",
s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
#endif
/* Primary audio coding header */
s->subframes = get_bits(&s->gb, 4) + 1;
return dca_parse_audio_coding_header(s, 0);
}
static inline int get_scale(GetBitContext *gb, int level, int value)
{
if (level < 5) {
/* huffman encoded */
value += get_bitalloc(gb, &dca_scalefactor, level);
} else if (level < 8)
value = get_bits(gb, level + 1);
return value;
}
static int dca_subframe_header(DCAContext * s, int base_channel, int block_index)
{
/* Primary audio coding side information */
int j, k;
if (!base_channel) {
s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
}
for (j = base_channel; j < s->prim_channels; j++) {
for (k = 0; k < s->subband_activity[j]; k++)
s->prediction_mode[j][k] = get_bits(&s->gb, 1);
}
/* Get prediction codebook */
for (j = base_channel; j < s->prim_channels; j++) {
for (k = 0; k < s->subband_activity[j]; k++) {
if (s->prediction_mode[j][k] > 0) {
/* (Prediction coefficient VQ address) */
s->prediction_vq[j][k] = get_bits(&s->gb, 12);
}
}
}
/* Bit allocation index */
for (j = base_channel; j < s->prim_channels; j++) {
for (k = 0; k < s->vq_start_subband[j]; k++) {
if (s->bitalloc_huffman[j] == 6)
s->bitalloc[j][k] = get_bits(&s->gb, 5);
else if (s->bitalloc_huffman[j] == 5)
s->bitalloc[j][k] = get_bits(&s->gb, 4);
else if (s->bitalloc_huffman[j] == 7) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid bit allocation index\n");
return -1;
} else {
s->bitalloc[j][k] =
get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
}
if (s->bitalloc[j][k] > 26) {
// av_log(s->avctx,AV_LOG_DEBUG,"bitalloc index [%i][%i] too big (%i)\n",
// j, k, s->bitalloc[j][k]);
return -1;
}
}
}
/* Transition mode */
for (j = base_channel; j < s->prim_channels; j++) {
for (k = 0; k < s->subband_activity[j]; k++) {
s->transition_mode[j][k] = 0;
if (s->subsubframes[s->current_subframe] > 1 &&
k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
s->transition_mode[j][k] =
get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
}
}
}
for (j = base_channel; j < s->prim_channels; j++) {
const uint32_t *scale_table;
int scale_sum;
memset(s->scale_factor[j], 0, s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
if (s->scalefactor_huffman[j] == 6)
scale_table = scale_factor_quant7;
else
scale_table = scale_factor_quant6;
/* When huffman coded, only the difference is encoded */
scale_sum = 0;
for (k = 0; k < s->subband_activity[j]; k++) {
if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
s->scale_factor[j][k][0] = scale_table[scale_sum];
}
if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
/* Get second scale factor */
scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
s->scale_factor[j][k][1] = scale_table[scale_sum];
}
}
}
/* Joint subband scale factor codebook select */
for (j = base_channel; j < s->prim_channels; j++) {
/* Transmitted only if joint subband coding enabled */
if (s->joint_intensity[j] > 0)
s->joint_huff[j] = get_bits(&s->gb, 3);
}
/* Scale factors for joint subband coding */
for (j = base_channel; j < s->prim_channels; j++) {
int source_channel;
/* Transmitted only if joint subband coding enabled */
if (s->joint_intensity[j] > 0) {
int scale = 0;
source_channel = s->joint_intensity[j] - 1;
/* When huffman coded, only the difference is encoded
* (is this valid as well for joint scales ???) */
for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
scale = get_scale(&s->gb, s->joint_huff[j], 0);
scale += 64; /* bias */
s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
}
if (!(s->debug_flag & 0x02)) {
av_log(s->avctx, AV_LOG_DEBUG,
"Joint stereo coding not supported\n");
s->debug_flag |= 0x02;
}
}
}
/* Stereo downmix coefficients */
if (!base_channel && s->prim_channels > 2) {
if (s->downmix) {
for (j = base_channel; j < s->prim_channels; j++) {
s->downmix_coef[j][0] = get_bits(&s->gb, 7);
s->downmix_coef[j][1] = get_bits(&s->gb, 7);
}
} else {
int am = s->amode & DCA_CHANNEL_MASK;
for (j = base_channel; j < s->prim_channels; j++) {
s->downmix_coef[j][0] = dca_default_coeffs[am][j][0];
s->downmix_coef[j][1] = dca_default_coeffs[am][j][1];
}
}
}
/* Dynamic range coefficient */
if (!base_channel && s->dynrange)
s->dynrange_coef = get_bits(&s->gb, 8);
/* Side information CRC check word */
if (s->crc_present) {
get_bits(&s->gb, 16);
}
/*
* Primary audio data arrays
*/
/* VQ encoded high frequency subbands */
for (j = base_channel; j < s->prim_channels; j++)
for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
/* 1 vector -> 32 samples */
s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
/* Low frequency effect data */
if (!base_channel && s->lfe) {
/* LFE samples */
int lfe_samples = 2 * s->lfe * (4 + block_index);
int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
float lfe_scale;
for (j = lfe_samples; j < lfe_end_sample; j++) {
/* Signed 8 bits int */
s->lfe_data[j] = get_sbits(&s->gb, 8);
}
/* Scale factor index */
s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 8)];
/* Quantization step size * scale factor */
lfe_scale = 0.035 * s->lfe_scale_factor;
for (j = lfe_samples; j < lfe_end_sample; j++)
s->lfe_data[j] *= lfe_scale;
}
#ifdef TRACE
av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n", s->subsubframes[s->current_subframe]);
av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
s->partial_samples[s->current_subframe]);
for (j = base_channel; j < s->prim_channels; j++) {
av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
for (k = 0; k < s->subband_activity[j]; k++)
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
for (j = base_channel; j < s->prim_channels; j++) {
for (k = 0; k < s->subband_activity[j]; k++)
av_log(s->avctx, AV_LOG_DEBUG,
"prediction coefs: %f, %f, %f, %f\n",
(float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
(float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
(float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
(float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
}
for (j = base_channel; j < s->prim_channels; j++) {
av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
for (k = 0; k < s->vq_start_subband[j]; k++)
av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
for (j = base_channel; j < s->prim_channels; j++) {
av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
for (k = 0; k < s->subband_activity[j]; k++)
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
for (j = base_channel; j < s->prim_channels; j++) {
av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
for (k = 0; k < s->subband_activity[j]; k++) {
if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
}
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
for (j = base_channel; j < s->prim_channels; j++) {
if (s->joint_intensity[j] > 0) {
int source_channel = s->joint_intensity[j] - 1;
av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
}
if (!base_channel && s->prim_channels > 2 && s->downmix) {
av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n");
for (j = 0; j < s->prim_channels; j++) {
av_log(s->avctx, AV_LOG_DEBUG, "Channel 0,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][0]]);
av_log(s->avctx, AV_LOG_DEBUG, "Channel 1,%d = %f\n", j, dca_downmix_coeffs[s->downmix_coef[j][1]]);
}
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
for (j = base_channel; j < s->prim_channels; j++)
for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
if (!base_channel && s->lfe) {
int lfe_samples = 2 * s->lfe * (4 + block_index);
int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
for (j = lfe_samples; j < lfe_end_sample; j++)
av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
av_log(s->avctx, AV_LOG_DEBUG, "\n");
}
#endif
return 0;
}
static void qmf_32_subbands(DCAContext * s, int chans,
float samples_in[32][8], float *samples_out,
float scale, float bias)
{
const float *prCoeff;
int i;
int sb_act = s->subband_activity[chans];
int subindex;
scale *= sqrt(1/8.0);
/* Select filter */
if (!s->multirate_inter) /* Non-perfect reconstruction */
prCoeff = fir_32bands_nonperfect;
else /* Perfect reconstruction */
prCoeff = fir_32bands_perfect;
/* Reconstructed channel sample index */
for (subindex = 0; subindex < 8; subindex++) {
/* Load in one sample from each subband and clear inactive subbands */
for (i = 0; i < sb_act; i++){
uint32_t v = AV_RN32A(&samples_in[i][subindex]) ^ ((i-1)&2)<<30;
AV_WN32A(&s->raXin[i], v);
}
for (; i < 32; i++)
s->raXin[i] = 0.0;
s->synth.synth_filter_float(&s->imdct,
s->subband_fir_hist[chans], &s->hist_index[chans],
s->subband_fir_noidea[chans], prCoeff,
samples_out, s->raXin, scale, bias);
samples_out+= 32;
}
}
static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
int num_deci_sample, float *samples_in,
float *samples_out, float scale,
float bias)
{
/* samples_in: An array holding decimated samples.
* Samples in current subframe starts from samples_in[0],
* while samples_in[-1], samples_in[-2], ..., stores samples
* from last subframe as history.
*
* samples_out: An array holding interpolated samples
*/
int decifactor;
const float *prCoeff;
int deciindex;
/* Select decimation filter */
if (decimation_select == 1) {
decifactor = 64;
prCoeff = lfe_fir_128;
} else {
decifactor = 32;
prCoeff = lfe_fir_64;
}
/* Interpolation */
for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
s->dcadsp.lfe_fir(samples_out, samples_in, prCoeff, decifactor,
scale, bias);
samples_in++;
samples_out += 2 * decifactor;
}
}
/* downmixing routines */
#define MIX_REAR1(samples, si1, rs, coef) \
samples[i] += (samples[si1] - add_bias) * coef[rs][0]; \
samples[i+256] += (samples[si1] - add_bias) * coef[rs][1];
#define MIX_REAR2(samples, si1, si2, rs, coef) \
samples[i] += (samples[si1] - add_bias) * coef[rs][0] + (samples[si2] - add_bias) * coef[rs+1][0]; \
samples[i+256] += (samples[si1] - add_bias) * coef[rs][1] + (samples[si2] - add_bias) * coef[rs+1][1];
#define MIX_FRONT3(samples, coef) \
t = samples[i+c] - add_bias; \
u = samples[i+l] - add_bias; \
v = samples[i+r] - add_bias; \
samples[i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0] + add_bias; \
samples[i+256] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1] + add_bias;
#define DOWNMIX_TO_STEREO(op1, op2) \
for (i = 0; i < 256; i++){ \
op1 \
op2 \
}
static void dca_downmix(float *samples, int srcfmt,
int downmix_coef[DCA_PRIM_CHANNELS_MAX][2],
const int8_t *channel_mapping, float add_bias)
{
int c,l,r,sl,sr,s;
int i;
float t, u, v;
float coef[DCA_PRIM_CHANNELS_MAX][2];
for (i=0; i<DCA_PRIM_CHANNELS_MAX; i++) {
coef[i][0] = dca_downmix_coeffs[downmix_coef[i][0]];
coef[i][1] = dca_downmix_coeffs[downmix_coef[i][1]];
}
switch (srcfmt) {
case DCA_MONO:
case DCA_CHANNEL:
case DCA_STEREO_TOTAL:
case DCA_STEREO_SUMDIFF:
case DCA_4F2R:
av_log(NULL, 0, "Not implemented!\n");
break;
case DCA_STEREO:
break;
case DCA_3F:
c = channel_mapping[0] * 256;
l = channel_mapping[1] * 256;
r = channel_mapping[2] * 256;
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),);
break;
case DCA_2F1R:
s = channel_mapping[2] * 256;
DOWNMIX_TO_STEREO(MIX_REAR1(samples, i + s, 2, coef),);
break;
case DCA_3F1R:
c = channel_mapping[0] * 256;
l = channel_mapping[1] * 256;
r = channel_mapping[2] * 256;
s = channel_mapping[3] * 256;
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
MIX_REAR1(samples, i + s, 3, coef));
break;
case DCA_2F2R:
sl = channel_mapping[2] * 256;
sr = channel_mapping[3] * 256;
DOWNMIX_TO_STEREO(MIX_REAR2(samples, i + sl, i + sr, 2, coef),);
break;
case DCA_3F2R:
c = channel_mapping[0] * 256;
l = channel_mapping[1] * 256;
r = channel_mapping[2] * 256;
sl = channel_mapping[3] * 256;
sr = channel_mapping[4] * 256;
DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
MIX_REAR2(samples, i + sl, i + sr, 3, coef));
break;
}
}
/* Very compact version of the block code decoder that does not use table
* look-up but is slightly slower */
static int decode_blockcode(int code, int levels, int *values)
{
int i;
int offset = (levels - 1) >> 1;
for (i = 0; i < 4; i++) {
int div = FASTDIV(code, levels);
values[i] = code - offset - div*levels;
code = div;
}
if (code == 0)
return 0;
else {
av_log(NULL, AV_LOG_ERROR, "ERROR: block code look-up failed\n");
return -1;
}
}
static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
static int dca_subsubframe(DCAContext * s, int base_channel, int block_index)
{
int k, l;
int subsubframe = s->current_subsubframe;
const float *quant_step_table;
/* FIXME */
float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
LOCAL_ALIGNED_16(int, block, [8]);
/*
* Audio data
*/
/* Select quantization step size table */
if (s->bit_rate_index == 0x1f)
quant_step_table = lossless_quant_d;
else
quant_step_table = lossy_quant_d;
for (k = base_channel; k < s->prim_channels; k++) {
for (l = 0; l < s->vq_start_subband[k]; l++) {
int m;
/* Select the mid-tread linear quantizer */
int abits = s->bitalloc[k][l];
float quant_step_size = quant_step_table[abits];
/*
* Determine quantization index code book and its type
*/
/* Select quantization index code book */
int sel = s->quant_index_huffman[k][abits];
/*
* Extract bits from the bit stream
*/
if (!abits){
memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0]));
} else {
/* Deal with transients */
int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
float rscale = quant_step_size * s->scale_factor[k][l][sfi] * s->scalefactor_adj[k][sel];
if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table){
if (abits <= 7){
/* Block code */
int block_code1, block_code2, size, levels;
size = abits_sizes[abits-1];
levels = abits_levels[abits-1];
block_code1 = get_bits(&s->gb, size);
/* FIXME Should test return value */
decode_blockcode(block_code1, levels, block);
block_code2 = get_bits(&s->gb, size);
decode_blockcode(block_code2, levels, &block[4]);
}else{
/* no coding */
for (m = 0; m < 8; m++)
block[m] = get_sbits(&s->gb, abits - 3);
}
}else{
/* Huffman coded */
for (m = 0; m < 8; m++)
block[m] = get_bitalloc(&s->gb, &dca_smpl_bitalloc[abits], sel);
}
s->dsp.int32_to_float_fmul_scalar(subband_samples[k][l],
block, rscale, 8);
}
/*
* Inverse ADPCM if in prediction mode
*/
if (s->prediction_mode[k][l]) {
int n;
for (m = 0; m < 8; m++) {
for (n = 1; n <= 4; n++)
if (m >= n)
subband_samples[k][l][m] +=
(adpcm_vb[s->prediction_vq[k][l]][n - 1] *
subband_samples[k][l][m - n] / 8192);
else if (s->predictor_history)
subband_samples[k][l][m] +=
(adpcm_vb[s->prediction_vq[k][l]][n - 1] *
s->subband_samples_hist[k][l][m - n +
4] / 8192);
}
}
}
/*
* Decode VQ encoded high frequencies
*/
for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
/* 1 vector -> 32 samples but we only need the 8 samples
* for this subsubframe. */
int m;
if (!s->debug_flag & 0x01) {
av_log(s->avctx, AV_LOG_DEBUG, "Stream with high frequencies VQ coding\n");
s->debug_flag |= 0x01;
}
for (m = 0; m < 8; m++) {
subband_samples[k][l][m] =
high_freq_vq[s->high_freq_vq[k][l]][subsubframe * 8 +
m]
* (float) s->scale_factor[k][l][0] / 16.0;
}
}
}
/* Check for DSYNC after subsubframe */
if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
#ifdef TRACE
av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
#endif
} else {
av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
}
}
/* Backup predictor history for adpcm */
for (k = base_channel; k < s->prim_channels; k++)
for (l = 0; l < s->vq_start_subband[k]; l++)
memcpy(s->subband_samples_hist[k][l], &subband_samples[k][l][4],
4 * sizeof(subband_samples[0][0][0]));
return 0;
}
static int dca_filter_channels(DCAContext * s, int block_index)
{
float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
int k;
/* 32 subbands QMF */
for (k = 0; k < s->prim_channels; k++) {
/* static float pcm_to_double[8] =
{32768.0, 32768.0, 524288.0, 524288.0, 0, 8388608.0, 8388608.0};*/
qmf_32_subbands(s, k, subband_samples[k], &s->samples[256 * s->channel_order_tab[k]],
M_SQRT1_2*s->scale_bias /*pcm_to_double[s->source_pcm_res] */ ,
s->add_bias );
}
/* Down mixing */
if (s->avctx->request_channels == 2 && s->prim_channels > 2) {
dca_downmix(s->samples, s->amode, s->downmix_coef, s->channel_order_tab, s->add_bias);
}
/* Generate LFE samples for this subsubframe FIXME!!! */
if (s->output & DCA_LFE) {
lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
s->lfe_data + 2 * s->lfe * (block_index + 4),
&s->samples[256 * dca_lfe_index[s->amode]],
(1.0/256.0)*s->scale_bias, s->add_bias);
/* Outputs 20bits pcm samples */
}
return 0;
}
static int dca_subframe_footer(DCAContext * s, int base_channel)
{
int aux_data_count = 0, i;
/*
* Unpack optional information
*/
/* presumably optional information only appears in the core? */
if (!base_channel) {
if (s->timestamp)
get_bits(&s->gb, 32);
if (s->aux_data)
aux_data_count = get_bits(&s->gb, 6);
for (i = 0; i < aux_data_count; i++)
get_bits(&s->gb, 8);
if (s->crc_present && (s->downmix || s->dynrange))
get_bits(&s->gb, 16);
}
return 0;
}
/**
* Decode a dca frame block
*
* @param s pointer to the DCAContext
*/
static int dca_decode_block(DCAContext * s, int base_channel, int block_index)
{
/* Sanity check */
if (s->current_subframe >= s->subframes) {
av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
s->current_subframe, s->subframes);
return -1;
}
if (!s->current_subsubframe) {
#ifdef TRACE
av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
#endif
/* Read subframe header */
if (dca_subframe_header(s, base_channel, block_index))
return -1;
}
/* Read subsubframe */
#ifdef TRACE
av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
#endif
if (dca_subsubframe(s, base_channel, block_index))
return -1;
/* Update state */
s->current_subsubframe++;
if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
s->current_subsubframe = 0;
s->current_subframe++;
}
if (s->current_subframe >= s->subframes) {
#ifdef TRACE
av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
#endif
/* Read subframe footer */
if (dca_subframe_footer(s, base_channel))
return -1;
}
return 0;
}
/**
* Convert bitstream to one representation based on sync marker
*/
static int dca_convert_bitstream(const uint8_t * src, int src_size, uint8_t * dst,
int max_size)
{
uint32_t mrk;
int i, tmp;
const uint16_t *ssrc = (const uint16_t *) src;
uint16_t *sdst = (uint16_t *) dst;
PutBitContext pb;
if ((unsigned)src_size > (unsigned)max_size) {
// av_log(NULL, AV_LOG_ERROR, "Input frame size larger then DCA_MAX_FRAME_SIZE!\n");
// return -1;
src_size = max_size;
}
mrk = AV_RB32(src);
switch (mrk) {
case DCA_MARKER_RAW_BE:
memcpy(dst, src, src_size);
return src_size;
case DCA_MARKER_RAW_LE:
for (i = 0; i < (src_size + 1) >> 1; i++)
*sdst++ = av_bswap16(*ssrc++);
return src_size;
case DCA_MARKER_14B_BE:
case DCA_MARKER_14B_LE:
init_put_bits(&pb, dst, max_size);
for (i = 0; i < (src_size + 1) >> 1; i++, src += 2) {
tmp = ((mrk == DCA_MARKER_14B_BE) ? AV_RB16(src) : AV_RL16(src)) & 0x3FFF;
put_bits(&pb, 14, tmp);
}
flush_put_bits(&pb);
return (put_bits_count(&pb) + 7) >> 3;
default:
return -1;
}
}
/**
* Return the number of channels in an ExSS speaker mask (HD)
*/
static int dca_exss_mask2count(int mask)
{
/* count bits that mean speaker pairs twice */
return av_popcount(mask)
+ av_popcount(mask & (
DCA_EXSS_CENTER_LEFT_RIGHT
| DCA_EXSS_FRONT_LEFT_RIGHT
| DCA_EXSS_FRONT_HIGH_LEFT_RIGHT
| DCA_EXSS_WIDE_LEFT_RIGHT
| DCA_EXSS_SIDE_LEFT_RIGHT
| DCA_EXSS_SIDE_HIGH_LEFT_RIGHT
| DCA_EXSS_SIDE_REAR_LEFT_RIGHT
| DCA_EXSS_REAR_LEFT_RIGHT
| DCA_EXSS_REAR_HIGH_LEFT_RIGHT
));
}
/**
* Skip mixing coefficients of a single mix out configuration (HD)
*/
static void dca_exss_skip_mix_coeffs(GetBitContext *gb, int channels, int out_ch)
{
for (int i = 0; i < channels; i++) {
int mix_map_mask = get_bits(gb, out_ch);
int num_coeffs = av_popcount(mix_map_mask);
skip_bits_long(gb, num_coeffs * 6);
}
}
/**
* Parse extension substream asset header (HD)
*/
static int dca_exss_parse_asset_header(DCAContext *s)
{
int header_pos = get_bits_count(&s->gb);
int header_size;
int channels;
int embedded_stereo = 0;
int embedded_6ch = 0;
int drc_code_present;
int extensions_mask;
int i, j;
if (get_bits_left(&s->gb) < 16)
return -1;
/* We will parse just enough to get to the extensions bitmask with which
* we can set the profile value. */
header_size = get_bits(&s->gb, 9) + 1;
skip_bits(&s->gb, 3); // asset index
if (s->static_fields) {
if (get_bits1(&s->gb))
skip_bits(&s->gb, 4); // asset type descriptor
if (get_bits1(&s->gb))
skip_bits_long(&s->gb, 24); // language descriptor
if (get_bits1(&s->gb)) {
/* How can one fit 1024 bytes of text here if the maximum value
* for the asset header size field above was 512 bytes? */
int text_length = get_bits(&s->gb, 10) + 1;
if (get_bits_left(&s->gb) < text_length * 8)
return -1;
skip_bits_long(&s->gb, text_length * 8); // info text
}
skip_bits(&s->gb, 5); // bit resolution - 1
skip_bits(&s->gb, 4); // max sample rate code
channels = get_bits(&s->gb, 8) + 1;
if (get_bits1(&s->gb)) { // 1-to-1 channels to speakers
int spkr_remap_sets;
int spkr_mask_size = 16;
int num_spkrs[7];
if (channels > 2)
embedded_stereo = get_bits1(&s->gb);
if (channels > 6)
embedded_6ch = get_bits1(&s->gb);
if (get_bits1(&s->gb)) {
spkr_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
skip_bits(&s->gb, spkr_mask_size); // spkr activity mask
}
spkr_remap_sets = get_bits(&s->gb, 3);
for (i = 0; i < spkr_remap_sets; i++) {
/* std layout mask for each remap set */
num_spkrs[i] = dca_exss_mask2count(get_bits(&s->gb, spkr_mask_size));
}
for (i = 0; i < spkr_remap_sets; i++) {
int num_dec_ch_remaps = get_bits(&s->gb, 5) + 1;
if (get_bits_left(&s->gb) < 0)
return -1;
for (j = 0; j < num_spkrs[i]; j++) {
int remap_dec_ch_mask = get_bits_long(&s->gb, num_dec_ch_remaps);
int num_dec_ch = av_popcount(remap_dec_ch_mask);
skip_bits_long(&s->gb, num_dec_ch * 5); // remap codes
}
}
} else {
skip_bits(&s->gb, 3); // representation type
}
}
drc_code_present = get_bits1(&s->gb);
if (drc_code_present)
get_bits(&s->gb, 8); // drc code
if (get_bits1(&s->gb))
skip_bits(&s->gb, 5); // dialog normalization code
if (drc_code_present && embedded_stereo)
get_bits(&s->gb, 8); // drc stereo code
if (s->mix_metadata && get_bits1(&s->gb)) {
skip_bits(&s->gb, 1); // external mix
skip_bits(&s->gb, 6); // post mix gain code
if (get_bits(&s->gb, 2) != 3) // mixer drc code
skip_bits(&s->gb, 3); // drc limit
else
skip_bits(&s->gb, 8); // custom drc code
if (get_bits1(&s->gb)) // channel specific scaling
for (i = 0; i < s->num_mix_configs; i++)
skip_bits_long(&s->gb, s->mix_config_num_ch[i] * 6); // scale codes
else
skip_bits_long(&s->gb, s->num_mix_configs * 6); // scale codes
for (i = 0; i < s->num_mix_configs; i++) {
if (get_bits_left(&s->gb) < 0)
return -1;
dca_exss_skip_mix_coeffs(&s->gb, channels, s->mix_config_num_ch[i]);
if (embedded_6ch)
dca_exss_skip_mix_coeffs(&s->gb, 6, s->mix_config_num_ch[i]);
if (embedded_stereo)
dca_exss_skip_mix_coeffs(&s->gb, 2, s->mix_config_num_ch[i]);
}
}
switch (get_bits(&s->gb, 2)) {
case 0: extensions_mask = get_bits(&s->gb, 12); break;
case 1: extensions_mask = DCA_EXT_EXSS_XLL; break;
case 2: extensions_mask = DCA_EXT_EXSS_LBR; break;
case 3: extensions_mask = 0; /* aux coding */ break;
}
/* not parsed further, we were only interested in the extensions mask */
if (get_bits_left(&s->gb) < 0)
return -1;
if (get_bits_count(&s->gb) - header_pos > header_size * 8) {
av_log(s->avctx, AV_LOG_WARNING, "Asset header size mismatch.\n");
return -1;
}
skip_bits_long(&s->gb, header_pos + header_size * 8 - get_bits_count(&s->gb));
if (extensions_mask & DCA_EXT_EXSS_XLL)
s->profile = FF_PROFILE_DTS_HD_MA;
else if (extensions_mask & DCA_EXT_EXSS_XBR)
s->profile = FF_PROFILE_DTS_HD_HRA;
else if (extensions_mask & DCA_EXT_EXSS_X96)
s->profile = FF_PROFILE_DTS_96_24;
else if (extensions_mask & DCA_EXT_EXSS_XXCH)
s->profile = FFMAX(s->profile, FF_PROFILE_DTS_ES);
if (!(extensions_mask & DCA_EXT_CORE))
av_log(s->avctx, AV_LOG_WARNING, "DTS core detection mismatch.\n");
if (!!(extensions_mask & DCA_EXT_XCH) != s->xch_present)
av_log(s->avctx, AV_LOG_WARNING, "DTS XCh detection mismatch.\n");
if (!!(extensions_mask & DCA_EXT_XXCH) != s->xxch_present)
av_log(s->avctx, AV_LOG_WARNING, "DTS XXCh detection mismatch.\n");
if (!!(extensions_mask & DCA_EXT_X96) != s->x96_present)
av_log(s->avctx, AV_LOG_WARNING, "DTS X96 detection mismatch.\n");
return 0;
}
/**
* Parse extension substream header (HD)
*/
static void dca_exss_parse_header(DCAContext *s)
{
int ss_index;
int blownup;
int header_size;
int hd_size;
int num_audiop = 1;
int num_assets = 1;
int active_ss_mask[8];
int i, j;
if (get_bits_left(&s->gb) < 52)
return;
skip_bits(&s->gb, 8); // user data
ss_index = get_bits(&s->gb, 2);
blownup = get_bits1(&s->gb);
header_size = get_bits(&s->gb, 8 + 4 * blownup) + 1;
hd_size = get_bits_long(&s->gb, 16 + 4 * blownup) + 1;
s->static_fields = get_bits1(&s->gb);
if (s->static_fields) {
skip_bits(&s->gb, 2); // reference clock code
skip_bits(&s->gb, 3); // frame duration code
if (get_bits1(&s->gb))
skip_bits_long(&s->gb, 36); // timestamp
/* a single stream can contain multiple audio assets that can be
* combined to form multiple audio presentations */
num_audiop = get_bits(&s->gb, 3) + 1;
if (num_audiop > 1) {
av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio presentations.");
/* ignore such streams for now */
return;
}
num_assets = get_bits(&s->gb, 3) + 1;
if (num_assets > 1) {
av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio assets.");
/* ignore such streams for now */
return;
}
for (i = 0; i < num_audiop; i++)
active_ss_mask[i] = get_bits(&s->gb, ss_index + 1);
for (i = 0; i < num_audiop; i++)
for (j = 0; j <= ss_index; j++)
if (active_ss_mask[i] & (1 << j))
skip_bits(&s->gb, 8); // active asset mask
s->mix_metadata = get_bits1(&s->gb);
if (s->mix_metadata) {
int mix_out_mask_size;
skip_bits(&s->gb, 2); // adjustment level
mix_out_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
s->num_mix_configs = get_bits(&s->gb, 2) + 1;
for (i = 0; i < s->num_mix_configs; i++) {
int mix_out_mask = get_bits(&s->gb, mix_out_mask_size);
s->mix_config_num_ch[i] = dca_exss_mask2count(mix_out_mask);
}
}
}
for (i = 0; i < num_assets; i++)
skip_bits_long(&s->gb, 16 + 4 * blownup); // asset size
for (i = 0; i < num_assets; i++) {
if (dca_exss_parse_asset_header(s))
return;
}
/* not parsed further, we were only interested in the extensions mask
* from the asset header */
}
/**
* Main frame decoding function
* FIXME add arguments
*/
static int dca_decode_frame(AVCodecContext * avctx,
void *data, int *data_size,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
int lfe_samples;
int num_core_channels = 0;
int i;
int16_t *samples = data;
DCAContext *s = avctx->priv_data;
int channels;
int core_ss_end;
s->xch_present = 0;
s->x96_present = 0;
s->xxch_present = 0;
s->dca_buffer_size = dca_convert_bitstream(buf, buf_size, s->dca_buffer,
DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
if (s->dca_buffer_size == -1) {
av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
return -1;
}
init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
if (dca_parse_frame_header(s) < 0) {
//seems like the frame is corrupt, try with the next one
*data_size=0;
return buf_size;
}
//set AVCodec values with parsed data
avctx->sample_rate = s->sample_rate;
avctx->bit_rate = s->bit_rate;
s->profile = FF_PROFILE_DTS;
for (i = 0; i < (s->sample_blocks / 8); i++) {
dca_decode_block(s, 0, i);
}
/* record number of core channels incase less than max channels are requested */
num_core_channels = s->prim_channels;
/* extensions start at 32-bit boundaries into bitstream */
skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
while(core_ss_end - get_bits_count(&s->gb) >= 32) {
uint32_t bits = get_bits_long(&s->gb, 32);
switch(bits) {
case 0x5a5a5a5a: {
int ext_amode, xch_fsize;
s->xch_base_channel = s->prim_channels;
/* validate sync word using XCHFSIZE field */
xch_fsize = show_bits(&s->gb, 10);
if((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
(s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
continue;
/* skip length-to-end-of-frame field for the moment */
skip_bits(&s->gb, 10);
s->profile = FFMAX(s->profile, FF_PROFILE_DTS_ES);
/* extension amode should == 1, number of channels in extension */
/* AFAIK XCh is not used for more channels */
if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
av_log(avctx, AV_LOG_ERROR, "XCh extension amode %d not"
" supported!\n",ext_amode);
continue;
}
/* much like core primary audio coding header */
dca_parse_audio_coding_header(s, s->xch_base_channel);
for (i = 0; i < (s->sample_blocks / 8); i++) {
dca_decode_block(s, s->xch_base_channel, i);
}
s->xch_present = 1;
break;
}
case 0x47004a03:
/* XXCh: extended channels */
/* usually found either in core or HD part in DTS-HD HRA streams,
* but not in DTS-ES which contains XCh extensions instead */
s->xxch_present = 1;
s->profile = FFMAX(s->profile, FF_PROFILE_DTS_ES);
break;
case 0x1d95f262: {
int fsize96 = show_bits(&s->gb, 12) + 1;
if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
continue;
av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n", get_bits_count(&s->gb));
skip_bits(&s->gb, 12);
av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
s->x96_present = 1;
s->profile = FFMAX(s->profile, FF_PROFILE_DTS_96_24);
break;
}
}
skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
}
/* check for ExSS (HD part) */
if (s->dca_buffer_size - s->frame_size > 32
&& get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
dca_exss_parse_header(s);
avctx->profile = s->profile;
channels = s->prim_channels + !!s->lfe;
if (s->amode<16) {
avctx->channel_layout = dca_core_channel_layout[s->amode];
if (s->xch_present && (!avctx->request_channels ||
avctx->request_channels > num_core_channels + !!s->lfe)) {
avctx->channel_layout |= AV_CH_BACK_CENTER;
if (s->lfe) {
avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
} else {
s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
}
} else {
channels = num_core_channels + !!s->lfe;
s->xch_present = 0; /* disable further xch processing */
if (s->lfe) {
avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
} else
s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
}
if (channels > !!s->lfe &&
s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
return -1;
if (avctx->request_channels == 2 && s->prim_channels > 2) {
channels = 2;
s->output = DCA_STEREO;
avctx->channel_layout = AV_CH_LAYOUT_STEREO;
}
} else {
av_log(avctx, AV_LOG_ERROR, "Non standard configuration %d !\n",s->amode);
return -1;
}
/* There is nothing that prevents a dts frame to change channel configuration
but FFmpeg doesn't support that so only set the channels if it is previously
unset. Ideally during the first probe for channels the crc should be checked
and only set avctx->channels when the crc is ok. Right now the decoder could
set the channels based on a broken first frame.*/
avctx->channels = channels;
if (*data_size < (s->sample_blocks / 8) * 256 * sizeof(int16_t) * channels)
return -1;
*data_size = 256 / 8 * s->sample_blocks * sizeof(int16_t) * channels;
/* filter to get final output */
for (i = 0; i < (s->sample_blocks / 8); i++) {
dca_filter_channels(s, i);
/* If this was marked as a DTS-ES stream we need to subtract back- */
/* channel from SL & SR to remove matrixed back-channel signal */
if((s->source_pcm_res & 1) && s->xch_present) {
float* back_chan = s->samples + s->channel_order_tab[s->xch_base_channel] * 256;
float* lt_chan = s->samples + s->channel_order_tab[s->xch_base_channel - 2] * 256;
float* rt_chan = s->samples + s->channel_order_tab[s->xch_base_channel - 1] * 256;
int j;
for(j = 0; j < 256; ++j) {
lt_chan[j] -= (back_chan[j] - s->add_bias) * M_SQRT1_2;
rt_chan[j] -= (back_chan[j] - s->add_bias) * M_SQRT1_2;
}
}
s->dsp.float_to_int16_interleave(samples, s->samples_chanptr, 256, channels);
samples += 256 * channels;
}
/* update lfe history */
lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
for (i = 0; i < 2 * s->lfe * 4; i++) {
s->lfe_data[i] = s->lfe_data[i + lfe_samples];
}
return buf_size;
}
/**
* DCA initialization
*
* @param avctx pointer to the AVCodecContext
*/
static av_cold int dca_decode_init(AVCodecContext * avctx)
{
DCAContext *s = avctx->priv_data;
int i;
s->avctx = avctx;
dca_init_vlcs();
dsputil_init(&s->dsp, avctx);
ff_mdct_init(&s->imdct, 6, 1, 1.0);
ff_synth_filter_init(&s->synth);
ff_dcadsp_init(&s->dcadsp);
for (i = 0; i < DCA_PRIM_CHANNELS_MAX+1; i++)
s->samples_chanptr[i] = s->samples + i * 256;
avctx->sample_fmt = AV_SAMPLE_FMT_S16;
if (s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
s->add_bias = 385.0f;
s->scale_bias = 1.0 / 32768.0;
} else {
s->add_bias = 0.0f;
s->scale_bias = 1.0;
/* allow downmixing to stereo */
if (avctx->channels > 0 && avctx->request_channels < avctx->channels &&
avctx->request_channels == 2) {
avctx->channels = avctx->request_channels;
}
}
return 0;
}
static av_cold int dca_decode_end(AVCodecContext * avctx)
{
DCAContext *s = avctx->priv_data;
ff_mdct_end(&s->imdct);
return 0;
}
AVCodec dca_decoder = {
.name = "dca",
.type = AVMEDIA_TYPE_AUDIO,
.id = CODEC_ID_DTS,
.priv_data_size = sizeof(DCAContext),
.init = dca_decode_init,
.decode = dca_decode_frame,
.close = dca_decode_end,
.long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
.capabilities = CODEC_CAP_CHANNEL_CONF,
};