1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavfilter/dnn_interface.h
Zhao Zhili 6de951923b avfilter/dnn: Remove a level of dereference
For code such as 'model->model = ov_model' is confusing. We can
just drop the member variable and use cast to get the subclass.

Signed-off-by: Zhao Zhili <zhilizhao@tencent.com>
Reviewed-by: Wenbin Chen <wenbin.chen@intel.com>
Reviewed-by: Guo Yejun <yejun.guo@intel.com>
2024-05-30 18:14:31 +08:00

213 lines
6.3 KiB
C

/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DNN inference engine interface.
*/
#ifndef AVFILTER_DNN_INTERFACE_H
#define AVFILTER_DNN_INTERFACE_H
#include <stdint.h>
#include "libavutil/frame.h"
#include "avfilter.h"
#define DNN_GENERIC_ERROR FFERRTAG('D','N','N','!')
typedef enum {
DNN_TF = 1,
DNN_OV = 1 << 1,
DNN_TH = 1 << 2
} DNNBackendType;
typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType;
typedef enum {
DCO_NONE,
DCO_BGR,
DCO_RGB,
} DNNColorOrder;
typedef enum {
DAST_FAIL, // something wrong
DAST_EMPTY_QUEUE, // no more inference result to get
DAST_NOT_READY, // all queued inferences are not finished
DAST_SUCCESS // got a result frame successfully
} DNNAsyncStatusType;
typedef enum {
DFT_NONE,
DFT_PROCESS_FRAME, // process the whole frame
DFT_ANALYTICS_DETECT, // detect from the whole frame
DFT_ANALYTICS_CLASSIFY, // classify for each bounding box
}DNNFunctionType;
typedef enum {
DL_NONE,
DL_NCHW,
DL_NHWC,
} DNNLayout;
typedef struct DNNData{
void *data;
int dims[4];
// dt and order together decide the color format
DNNDataType dt;
DNNColorOrder order;
DNNLayout layout;
float scale;
float mean;
} DNNData;
typedef struct DNNExecBaseParams {
const char *input_name;
const char **output_names;
uint32_t nb_output;
AVFrame *in_frame;
AVFrame *out_frame;
} DNNExecBaseParams;
typedef struct DNNExecClassificationParams {
DNNExecBaseParams base;
const char *target;
} DNNExecClassificationParams;
typedef int (*FramePrePostProc)(AVFrame *frame, DNNData *model, AVFilterContext *filter_ctx);
typedef int (*DetectPostProc)(AVFrame *frame, DNNData *output, uint32_t nb, AVFilterContext *filter_ctx);
typedef int (*ClassifyPostProc)(AVFrame *frame, DNNData *output, uint32_t bbox_index, AVFilterContext *filter_ctx);
typedef struct DNNModel{
// Stores FilterContext used for the interaction between AVFrame and DNNData
AVFilterContext *filter_ctx;
// Stores function type of the model
DNNFunctionType func_type;
// Gets model input information
// Just reuse struct DNNData here, actually the DNNData.data field is not needed.
int (*get_input)(struct DNNModel *model, DNNData *input, const char *input_name);
// Gets model output width/height with given input w/h
int (*get_output)(struct DNNModel *model, const char *input_name, int input_width, int input_height,
const char *output_name, int *output_width, int *output_height);
// set the pre process to transfer data from AVFrame to DNNData
// the default implementation within DNN is used if it is not provided by the filter
FramePrePostProc frame_pre_proc;
// set the post process to transfer data from DNNData to AVFrame
// the default implementation within DNN is used if it is not provided by the filter
FramePrePostProc frame_post_proc;
// set the post process to interpret detect result from DNNData
DetectPostProc detect_post_proc;
// set the post process to interpret classify result from DNNData
ClassifyPostProc classify_post_proc;
} DNNModel;
typedef struct TFOptions{
const AVClass *clazz;
char *sess_config;
} TFOptions;
typedef struct OVOptions {
const AVClass *clazz;
int batch_size;
int input_resizable;
DNNLayout layout;
float scale;
float mean;
} OVOptions;
typedef struct THOptions {
const AVClass *clazz;
int optimize;
} THOptions;
typedef struct DNNModule DNNModule;
typedef struct DnnContext {
const AVClass *clazz;
DNNModel *model;
char *model_filename;
DNNBackendType backend_type;
char *model_inputname;
char *model_outputnames_string;
char *backend_options;
int async;
char **model_outputnames;
uint32_t nb_outputs;
const DNNModule *dnn_module;
int nireq;
char *device;
#if CONFIG_LIBTENSORFLOW
TFOptions tf_option;
#endif
#if CONFIG_LIBOPENVINO
OVOptions ov_option;
#endif
#if CONFIG_LIBTORCH
THOptions torch_option;
#endif
} DnnContext;
// Stores pointers to functions for loading, executing, freeing DNN models for one of the backends.
struct DNNModule {
const AVClass clazz;
DNNBackendType type;
// Loads model and parameters from given file. Returns NULL if it is not possible.
DNNModel *(*load_model)(DnnContext *ctx, DNNFunctionType func_type, AVFilterContext *filter_ctx);
// Executes model with specified input and output. Returns the error code otherwise.
int (*execute_model)(const DNNModel *model, DNNExecBaseParams *exec_params);
// Retrieve inference result.
DNNAsyncStatusType (*get_result)(const DNNModel *model, AVFrame **in, AVFrame **out);
// Flush all the pending tasks.
int (*flush)(const DNNModel *model);
// Frees memory allocated for model.
void (*free_model)(DNNModel **model);
};
// Initializes DNNModule depending on chosen backend.
const DNNModule *ff_get_dnn_module(DNNBackendType backend_type, void *log_ctx);
void ff_dnn_init_child_class(DnnContext *ctx);
void *ff_dnn_child_next(DnnContext *obj, void *prev);
const AVClass *ff_dnn_child_class_iterate_with_mask(void **iter, uint32_t backend_mask);
static inline int dnn_get_width_idx_by_layout(DNNLayout layout)
{
return layout == DL_NHWC ? 2 : 3;
}
static inline int dnn_get_height_idx_by_layout(DNNLayout layout)
{
return layout == DL_NHWC ? 1 : 2;
}
static inline int dnn_get_channel_idx_by_layout(DNNLayout layout)
{
return layout == DL_NHWC ? 3 : 1;
}
#endif