1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-26 19:01:44 +02:00
FFmpeg/libavfilter/avf_showfreqs.c
Andreas Rheinhardt b4f5201967 avfilter: Replace query_formats callback with union of list and callback
If one looks at the many query_formats callbacks in existence,
one will immediately recognize that there is one type of default
callback for video and a slightly different default callback for
audio: It is "return ff_set_common_formats_from_list(ctx, pix_fmts);"
for video with a filter-specific pix_fmts list. For audio, it is
the same with a filter-specific sample_fmts list together with
ff_set_common_all_samplerates() and ff_set_common_all_channel_counts().

This commit allows to remove the boilerplate query_formats callbacks
by replacing said callback with a union consisting the old callback
and pointers for pixel and sample format arrays. For the not uncommon
case in which these lists only contain a single entry (besides the
sentinel) enum AVPixelFormat and enum AVSampleFormat fields are also
added to the union to store them directly in the AVFilter,
thereby avoiding a relocation.

The state of said union will be contained in a new, dedicated AVFilter
field (the nb_inputs and nb_outputs fields have been shrunk to uint8_t
in order to create a hole for this new field; this is no problem, as
the maximum of all the nb_inputs is four; for nb_outputs it is only
two).

The state's default value coincides with the earlier default of
query_formats being unset, namely that the filter accepts all formats
(and also sample rates and channel counts/layouts for audio)
provided that these properties agree coincide for all inputs and
outputs.

By using different union members for audio and video filters
the type-unsafety of using the same functions for audio and video
lists will furthermore be more confined to formats.c than before.

When the new fields are used, they will also avoid allocations:
Currently something nearly equivalent to ff_default_query_formats()
is called after every successful call to a query_formats callback;
yet in the common case that the newly allocated AVFilterFormats
are not used at all (namely if there are no free links) these newly
allocated AVFilterFormats are freed again without ever being used.
Filters no longer using the callback will not exhibit this any more.

Reviewed-by: Paul B Mahol <onemda@gmail.com>
Reviewed-by: Nicolas George <george@nsup.org>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-10-05 17:48:25 +02:00

577 lines
20 KiB
C

/*
* Copyright (c) 2015 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include <math.h>
#include "libavutil/tx.h"
#include "libavutil/audio_fifo.h"
#include "libavutil/avassert.h"
#include "libavutil/avstring.h"
#include "libavutil/channel_layout.h"
#include "libavutil/intreadwrite.h"
#include "libavutil/opt.h"
#include "libavutil/parseutils.h"
#include "audio.h"
#include "filters.h"
#include "video.h"
#include "avfilter.h"
#include "internal.h"
#include "window_func.h"
enum DataMode { MAGNITUDE, PHASE, DELAY, NB_DATA };
enum DisplayMode { LINE, BAR, DOT, NB_MODES };
enum ChannelMode { COMBINED, SEPARATE, NB_CMODES };
enum FrequencyScale { FS_LINEAR, FS_LOG, FS_RLOG, NB_FSCALES };
enum AmplitudeScale { AS_LINEAR, AS_SQRT, AS_CBRT, AS_LOG, NB_ASCALES };
typedef struct ShowFreqsContext {
const AVClass *class;
int w, h;
int mode;
int data_mode;
int cmode;
int fft_size;
int ascale, fscale;
int avg;
int win_func;
AVTXContext *fft;
av_tx_fn tx_fn;
AVComplexFloat **fft_input;
AVComplexFloat **fft_data;
float **avg_data;
float *window_func_lut;
float overlap;
float minamp;
int hop_size;
int nb_channels;
int nb_freq;
int win_size;
float scale;
char *colors;
AVAudioFifo *fifo;
int64_t pts;
} ShowFreqsContext;
#define OFFSET(x) offsetof(ShowFreqsContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption showfreqs_options[] = {
{ "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "1024x512"}, 0, 0, FLAGS },
{ "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "1024x512"}, 0, 0, FLAGS },
{ "mode", "set display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=BAR}, 0, NB_MODES-1, FLAGS, "mode" },
{ "line", "show lines", 0, AV_OPT_TYPE_CONST, {.i64=LINE}, 0, 0, FLAGS, "mode" },
{ "bar", "show bars", 0, AV_OPT_TYPE_CONST, {.i64=BAR}, 0, 0, FLAGS, "mode" },
{ "dot", "show dots", 0, AV_OPT_TYPE_CONST, {.i64=DOT}, 0, 0, FLAGS, "mode" },
{ "ascale", "set amplitude scale", OFFSET(ascale), AV_OPT_TYPE_INT, {.i64=AS_LOG}, 0, NB_ASCALES-1, FLAGS, "ascale" },
{ "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=AS_LINEAR}, 0, 0, FLAGS, "ascale" },
{ "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=AS_SQRT}, 0, 0, FLAGS, "ascale" },
{ "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=AS_CBRT}, 0, 0, FLAGS, "ascale" },
{ "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=AS_LOG}, 0, 0, FLAGS, "ascale" },
{ "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=FS_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" },
{ "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=FS_LINEAR}, 0, 0, FLAGS, "fscale" },
{ "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=FS_LOG}, 0, 0, FLAGS, "fscale" },
{ "rlog", "reverse logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=FS_RLOG}, 0, 0, FLAGS, "fscale" },
{ "win_size", "set window size", OFFSET(fft_size), AV_OPT_TYPE_INT, {.i64=2048}, 16, 65536, FLAGS },
{ "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64=WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" },
{ "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, FLAGS, "win_func" },
{ "bartlett", "Bartlett", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" },
{ "hanning", "Hanning", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" },
{ "hamming", "Hamming", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING}, 0, 0, FLAGS, "win_func" },
{ "blackman", "Blackman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" },
{ "welch", "Welch", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH}, 0, 0, FLAGS, "win_func" },
{ "flattop", "Flat-top", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP}, 0, 0, FLAGS, "win_func" },
{ "bharris", "Blackman-Harris", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS}, 0, 0, FLAGS, "win_func" },
{ "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" },
{ "bhann", "Bartlett-Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN}, 0, 0, FLAGS, "win_func" },
{ "sine", "Sine", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE}, 0, 0, FLAGS, "win_func" },
{ "nuttall", "Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL}, 0, 0, FLAGS, "win_func" },
{ "lanczos", "Lanczos", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS}, 0, 0, FLAGS, "win_func" },
{ "gauss", "Gauss", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS}, 0, 0, FLAGS, "win_func" },
{ "tukey", "Tukey", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY}, 0, 0, FLAGS, "win_func" },
{ "dolph", "Dolph-Chebyshev", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH}, 0, 0, FLAGS, "win_func" },
{ "cauchy", "Cauchy", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY}, 0, 0, FLAGS, "win_func" },
{ "parzen", "Parzen", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN}, 0, 0, FLAGS, "win_func" },
{ "poisson", "Poisson", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON}, 0, 0, FLAGS, "win_func" },
{ "bohman", "Bohman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BOHMAN} , 0, 0, FLAGS, "win_func" },
{ "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=1.}, 0., 1., FLAGS },
{ "averaging", "set time averaging", OFFSET(avg), AV_OPT_TYPE_INT, {.i64=1}, 0, INT32_MAX, FLAGS },
{ "colors", "set channels colors", OFFSET(colors), AV_OPT_TYPE_STRING, {.str = "red|green|blue|yellow|orange|lime|pink|magenta|brown" }, 0, 0, FLAGS },
{ "cmode", "set channel mode", OFFSET(cmode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_CMODES-1, FLAGS, "cmode" },
{ "combined", "show all channels in same window", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "cmode" },
{ "separate", "show each channel in own window", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "cmode" },
{ "minamp", "set minimum amplitude", OFFSET(minamp), AV_OPT_TYPE_FLOAT, {.dbl=1e-6}, FLT_MIN, 1e-6, FLAGS },
{ "data", "set data mode", OFFSET(data_mode), AV_OPT_TYPE_INT, {.i64=MAGNITUDE}, 0, NB_DATA-1, FLAGS, "data" },
{ "magnitude", "show magnitude", 0, AV_OPT_TYPE_CONST, {.i64=MAGNITUDE}, 0, 0, FLAGS, "data" },
{ "phase", "show phase", 0, AV_OPT_TYPE_CONST, {.i64=PHASE}, 0, 0, FLAGS, "data" },
{ "delay", "show group delay",0, AV_OPT_TYPE_CONST, {.i64=DELAY}, 0, 0, FLAGS, "data" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(showfreqs);
static int query_formats(AVFilterContext *ctx)
{
AVFilterFormats *formats = NULL;
AVFilterChannelLayouts *layouts = NULL;
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE };
static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGBA, AV_PIX_FMT_NONE };
int ret;
/* set input audio formats */
formats = ff_make_format_list(sample_fmts);
if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0)
return ret;
layouts = ff_all_channel_layouts();
if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0)
return ret;
formats = ff_all_samplerates();
if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0)
return ret;
/* set output video format */
formats = ff_make_format_list(pix_fmts);
if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
return ret;
return 0;
}
static av_cold int init(AVFilterContext *ctx)
{
ShowFreqsContext *s = ctx->priv;
s->pts = AV_NOPTS_VALUE;
return 0;
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
AVFilterLink *inlink = ctx->inputs[0];
ShowFreqsContext *s = ctx->priv;
float overlap, scale;
int i, ret;
s->nb_freq = s->fft_size / 2;
s->win_size = s->fft_size;
av_audio_fifo_free(s->fifo);
av_tx_uninit(&s->fft);
ret = av_tx_init(&s->fft, &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->fft_size, &scale, 0);
if (ret < 0) {
av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. "
"The window size might be too high.\n");
return ret;
}
/* FFT buffers: x2 for each (display) channel buffer.
* Note: we use free and malloc instead of a realloc-like function to
* make sure the buffer is aligned in memory for the FFT functions. */
for (i = 0; i < s->nb_channels; i++) {
av_freep(&s->fft_input[i]);
av_freep(&s->fft_data[i]);
av_freep(&s->avg_data[i]);
}
av_freep(&s->fft_input);
av_freep(&s->fft_data);
av_freep(&s->avg_data);
s->nb_channels = inlink->channels;
s->fft_input = av_calloc(s->nb_channels, sizeof(*s->fft_input));
if (!s->fft_input)
return AVERROR(ENOMEM);
s->fft_data = av_calloc(s->nb_channels, sizeof(*s->fft_data));
if (!s->fft_data)
return AVERROR(ENOMEM);
s->avg_data = av_calloc(s->nb_channels, sizeof(*s->avg_data));
if (!s->avg_data)
return AVERROR(ENOMEM);
for (i = 0; i < s->nb_channels; i++) {
s->fft_input[i] = av_calloc(FFALIGN(s->win_size, 512), sizeof(**s->fft_input));
s->fft_data[i] = av_calloc(FFALIGN(s->win_size, 512), sizeof(**s->fft_data));
s->avg_data[i] = av_calloc(s->nb_freq, sizeof(**s->avg_data));
if (!s->fft_data[i] || !s->avg_data[i] || !s->fft_input[i])
return AVERROR(ENOMEM);
}
/* pre-calc windowing function */
s->window_func_lut = av_realloc_f(s->window_func_lut, s->win_size,
sizeof(*s->window_func_lut));
if (!s->window_func_lut)
return AVERROR(ENOMEM);
generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap);
if (s->overlap == 1.)
s->overlap = overlap;
s->hop_size = (1. - s->overlap) * s->win_size;
if (s->hop_size < 1) {
av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap);
return AVERROR(EINVAL);
}
for (s->scale = 0, i = 0; i < s->win_size; i++) {
s->scale += s->window_func_lut[i] * s->window_func_lut[i];
}
outlink->frame_rate = av_make_q(inlink->sample_rate, s->win_size * (1.-s->overlap));
outlink->sample_aspect_ratio = (AVRational){1,1};
outlink->w = s->w;
outlink->h = s->h;
s->fifo = av_audio_fifo_alloc(inlink->format, inlink->channels, s->win_size);
if (!s->fifo)
return AVERROR(ENOMEM);
return 0;
}
static inline void draw_dot(AVFrame *out, int x, int y, uint8_t fg[4])
{
uint32_t color = AV_RL32(out->data[0] + y * out->linesize[0] + x * 4);
if ((color & 0xffffff) != 0)
AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg) | color);
else
AV_WL32(out->data[0] + y * out->linesize[0] + x * 4, AV_RL32(fg));
}
static int get_sx(ShowFreqsContext *s, int f)
{
switch (s->fscale) {
case FS_LINEAR:
return (s->w/(float)s->nb_freq)*f;
case FS_LOG:
return s->w-pow(s->w, (s->nb_freq-f-1)/(s->nb_freq-1.));
case FS_RLOG:
return pow(s->w, f/(s->nb_freq-1.));
}
return 0;
}
static float get_bsize(ShowFreqsContext *s, int f)
{
switch (s->fscale) {
case FS_LINEAR:
return s->w/(float)s->nb_freq;
case FS_LOG:
return pow(s->w, (s->nb_freq-f-1)/(s->nb_freq-1.))-
pow(s->w, (s->nb_freq-f-2)/(s->nb_freq-1.));
case FS_RLOG:
return pow(s->w, (f+1)/(s->nb_freq-1.))-
pow(s->w, f /(s->nb_freq-1.));
}
return 1.;
}
static inline void plot_freq(ShowFreqsContext *s, int ch,
double a, int f, uint8_t fg[4], int *prev_y,
AVFrame *out, AVFilterLink *outlink)
{
const int w = s->w;
const float min = s->minamp;
const float avg = s->avg_data[ch][f];
const float bsize = get_bsize(s, f);
const int sx = get_sx(s, f);
int end = outlink->h;
int x, y, i;
switch(s->ascale) {
case AS_SQRT:
a = 1.0 - sqrt(a);
break;
case AS_CBRT:
a = 1.0 - cbrt(a);
break;
case AS_LOG:
a = log(av_clipd(a, min, 1)) / log(min);
break;
case AS_LINEAR:
a = 1.0 - a;
break;
}
switch (s->cmode) {
case COMBINED:
y = a * outlink->h - 1;
break;
case SEPARATE:
end = (outlink->h / s->nb_channels) * (ch + 1);
y = (outlink->h / s->nb_channels) * ch + a * (outlink->h / s->nb_channels) - 1;
break;
default:
av_assert0(0);
}
if (y < 0)
return;
switch (s->avg) {
case 0:
y = s->avg_data[ch][f] = !outlink->frame_count_in ? y : FFMIN(avg, y);
break;
case 1:
break;
default:
s->avg_data[ch][f] = avg + y * (y - avg) / (FFMIN(outlink->frame_count_in + 1, s->avg) * y);
y = s->avg_data[ch][f];
break;
}
switch(s->mode) {
case LINE:
if (*prev_y == -1) {
*prev_y = y;
}
if (y <= *prev_y) {
for (x = sx + 1; x < sx + bsize && x < w; x++)
draw_dot(out, x, y, fg);
for (i = y; i <= *prev_y; i++)
draw_dot(out, sx, i, fg);
} else {
for (i = *prev_y; i <= y; i++)
draw_dot(out, sx, i, fg);
for (x = sx + 1; x < sx + bsize && x < w; x++)
draw_dot(out, x, i - 1, fg);
}
*prev_y = y;
break;
case BAR:
for (x = sx; x < sx + bsize && x < w; x++)
for (i = y; i < end; i++)
draw_dot(out, x, i, fg);
break;
case DOT:
for (x = sx; x < sx + bsize && x < w; x++)
draw_dot(out, x, y, fg);
break;
}
}
static int plot_freqs(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
ShowFreqsContext *s = ctx->priv;
const int win_size = s->win_size;
char *colors, *color, *saveptr = NULL;
AVFrame *out;
int ch, n;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out)
return AVERROR(ENOMEM);
for (n = 0; n < outlink->h; n++)
memset(out->data[0] + out->linesize[0] * n, 0, outlink->w * 4);
/* fill FFT input with the number of samples available */
for (ch = 0; ch < s->nb_channels; ch++) {
const float *p = (float *)in->extended_data[ch];
for (n = 0; n < in->nb_samples; n++) {
s->fft_input[ch][n].re = p[n] * s->window_func_lut[n];
s->fft_input[ch][n].im = 0;
}
for (; n < win_size; n++) {
s->fft_input[ch][n].re = 0;
s->fft_input[ch][n].im = 0;
}
}
/* run FFT on each samples set */
for (ch = 0; ch < s->nb_channels; ch++) {
s->tx_fn(s->fft, s->fft_data[ch], s->fft_input[ch], sizeof(float));
}
#define RE(x, ch) s->fft_data[ch][x].re
#define IM(x, ch) s->fft_data[ch][x].im
#define M(a, b) (sqrt((a) * (a) + (b) * (b)))
#define P(a, b) (atan2((b), (a)))
colors = av_strdup(s->colors);
if (!colors) {
av_frame_free(&out);
return AVERROR(ENOMEM);
}
for (ch = 0; ch < s->nb_channels; ch++) {
uint8_t fg[4] = { 0xff, 0xff, 0xff, 0xff };
int prev_y = -1, f;
double a;
color = av_strtok(ch == 0 ? colors : NULL, " |", &saveptr);
if (color)
av_parse_color(fg, color, -1, ctx);
switch (s->data_mode) {
case MAGNITUDE:
a = av_clipd(M(RE(0, ch), 0) / s->scale, 0, 1);
plot_freq(s, ch, a, 0, fg, &prev_y, out, outlink);
for (f = 1; f < s->nb_freq; f++) {
a = av_clipd(M(RE(f, ch), IM(f, ch)) / s->scale, 0, 1);
plot_freq(s, ch, a, f, fg, &prev_y, out, outlink);
}
break;
case PHASE:
a = av_clipd((M_PI + P(RE(0, ch), 0)) / (2. * M_PI), 0, 1);
plot_freq(s, ch, a, 0, fg, &prev_y, out, outlink);
for (f = 1; f < s->nb_freq; f++) {
a = av_clipd((M_PI + P(RE(f, ch), IM(f, ch))) / (2. * M_PI), 0, 1);
plot_freq(s, ch, a, f, fg, &prev_y, out, outlink);
}
break;
case DELAY:
plot_freq(s, ch, 0, 0, fg, &prev_y, out, outlink);
for (f = 1; f < s->nb_freq; f++) {
a = av_clipd((M_PI - P(IM(f, ch) * RE(f-1, ch) - IM(f-1, ch) * RE(f, ch),
RE(f, ch) * RE(f-1, ch) + IM(f, ch) * IM(f-1, ch))) / (2. * M_PI), 0, 1);
plot_freq(s, ch, a, f, fg, &prev_y, out, outlink);
}
break;
}
}
av_free(colors);
out->pts = in->pts;
out->sample_aspect_ratio = (AVRational){1,1};
return ff_filter_frame(outlink, out);
}
static int filter_frame(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
ShowFreqsContext *s = ctx->priv;
AVFrame *fin = NULL;
int ret = 0;
fin = ff_get_audio_buffer(inlink, s->win_size);
if (!fin) {
ret = AVERROR(ENOMEM);
goto fail;
}
fin->pts = s->pts;
s->pts += s->hop_size;
ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data, s->win_size);
if (ret < 0)
goto fail;
ret = plot_freqs(inlink, fin);
av_frame_free(&fin);
av_audio_fifo_drain(s->fifo, s->hop_size);
fail:
av_frame_free(&fin);
return ret;
}
static int activate(AVFilterContext *ctx)
{
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
ShowFreqsContext *s = ctx->priv;
AVFrame *in = NULL;
int ret = 0;
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
if (av_audio_fifo_size(s->fifo) < s->win_size)
ret = ff_inlink_consume_samples(inlink, s->win_size, s->win_size, &in);
if (ret < 0)
return ret;
if (ret > 0) {
av_audio_fifo_write(s->fifo, (void **)in->extended_data, in->nb_samples);
if (s->pts == AV_NOPTS_VALUE)
s->pts = in->pts;
av_frame_free(&in);
}
if (av_audio_fifo_size(s->fifo) >= s->win_size) {
ret = filter_frame(inlink);
if (ret <= 0)
return ret;
}
FF_FILTER_FORWARD_STATUS(inlink, outlink);
FF_FILTER_FORWARD_WANTED(outlink, inlink);
return FFERROR_NOT_READY;
}
static av_cold void uninit(AVFilterContext *ctx)
{
ShowFreqsContext *s = ctx->priv;
int i;
av_tx_uninit(&s->fft);
for (i = 0; i < s->nb_channels; i++) {
if (s->fft_input)
av_freep(&s->fft_input[i]);
if (s->fft_data)
av_freep(&s->fft_data[i]);
if (s->avg_data)
av_freep(&s->avg_data[i]);
}
av_freep(&s->fft_input);
av_freep(&s->fft_data);
av_freep(&s->avg_data);
av_freep(&s->window_func_lut);
av_audio_fifo_free(s->fifo);
}
static const AVFilterPad showfreqs_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
},
};
static const AVFilterPad showfreqs_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
};
const AVFilter ff_avf_showfreqs = {
.name = "showfreqs",
.description = NULL_IF_CONFIG_SMALL("Convert input audio to a frequencies video output."),
.init = init,
.uninit = uninit,
.priv_size = sizeof(ShowFreqsContext),
.activate = activate,
FILTER_INPUTS(showfreqs_inputs),
FILTER_OUTPUTS(showfreqs_outputs),
FILTER_QUERY_FUNC(query_formats),
.priv_class = &showfreqs_class,
};