1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-24 13:56:33 +02:00
FFmpeg/libavfilter/vf_convolve.c
2017-09-12 11:03:51 +02:00

419 lines
14 KiB
C

/*
* Copyright (c) 2017 Paul B Mahol
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavcodec/avfft.h"
#include "avfilter.h"
#include "formats.h"
#include "framesync.h"
#include "internal.h"
#include "video.h"
typedef struct ConvolveContext {
const AVClass *class;
FFFrameSync fs;
FFTContext *fft[4];
FFTContext *ifft[4];
int fft_bits[4];
int fft_len[4];
int planewidth[4];
int planeheight[4];
FFTComplex *fft_hdata[4];
FFTComplex *fft_vdata[4];
FFTComplex *fft_hdata_impulse[4];
FFTComplex *fft_vdata_impulse[4];
int depth;
int planes;
int impulse;
int nb_planes;
int got_impulse[4];
} ConvolveContext;
#define OFFSET(x) offsetof(ConvolveContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption convolve_options[] = {
{ "planes", "set planes to convolve", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, FLAGS },
{ "impulse", "when to process impulses", OFFSET(impulse), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "impulse" },
{ "first", "process only first impulse, ignore rest", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "impulse" },
{ "all", "process all impulses", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "impulse" },
{ NULL },
};
FRAMESYNC_DEFINE_CLASS(convolve, ConvolveContext, fs);
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pixel_fmts_fftfilt[] = {
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9,
AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10,
AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_NONE
};
AVFilterFormats *fmts_list = ff_make_format_list(pixel_fmts_fftfilt);
if (!fmts_list)
return AVERROR(ENOMEM);
return ff_set_common_formats(ctx, fmts_list);
}
static int config_input_main(AVFilterLink *inlink)
{
ConvolveContext *s = inlink->dst->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
int fft_bits, i;
s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planewidth[0] = s->planewidth[3] = inlink->w;
s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planeheight[0] = s->planeheight[3] = inlink->h;
s->nb_planes = desc->nb_components;
s->depth = desc->comp[0].depth;
for (i = 0; i < s->nb_planes; i++) {
int w = s->planewidth[i];
int h = s->planeheight[i];
int n = FFMAX(w, h) * 10/9;
for (fft_bits = 1; 1 << fft_bits < n; fft_bits++);
s->fft_bits[i] = fft_bits;
s->fft_len[i] = 1 << s->fft_bits[i];
if (!(s->fft_hdata[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(FFTComplex))))
return AVERROR(ENOMEM);
if (!(s->fft_vdata[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(FFTComplex))))
return AVERROR(ENOMEM);
if (!(s->fft_hdata_impulse[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(FFTComplex))))
return AVERROR(ENOMEM);
if (!(s->fft_vdata_impulse[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(FFTComplex))))
return AVERROR(ENOMEM);
}
return 0;
}
static int config_input_impulse(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
if (ctx->inputs[0]->w != ctx->inputs[1]->w ||
ctx->inputs[0]->h != ctx->inputs[1]->h) {
av_log(ctx, AV_LOG_ERROR, "Width and height of input videos must be same.\n");
return AVERROR(EINVAL);
}
if (ctx->inputs[0]->format != ctx->inputs[1]->format) {
av_log(ctx, AV_LOG_ERROR, "Inputs must be of same pixel format.\n");
return AVERROR(EINVAL);
}
return 0;
}
static void fft_horizontal(ConvolveContext *s, FFTComplex *fft_hdata,
AVFrame *in, int w, int h, int n, int plane, float scale)
{
int y, x;
for (y = 0; y < h; y++) {
if (s->depth == 8) {
const uint8_t *src = in->data[plane] + in->linesize[plane] * y;
for (x = 0; x < w; x++) {
fft_hdata[y * n + x].re = src[x] * scale;
fft_hdata[y * n + x].im = 0;
}
} else {
const uint16_t *src = (const uint16_t *)(in->data[plane] + in->linesize[plane] * y);
for (x = 0; x < w; x++) {
fft_hdata[y * n + x].re = src[x] * scale;
fft_hdata[y * n + x].im = 0;
}
}
for (; x < n; x++) {
fft_hdata[y * n + x].re = 0;
fft_hdata[y * n + x].im = 0;
}
}
for (; y < n; y++) {
for (x = 0; x < n; x++) {
fft_hdata[y * n + x].re = 0;
fft_hdata[y * n + x].im = 0;
}
}
for (y = 0; y < n; y++) {
av_fft_permute(s->fft[plane], fft_hdata + y * n);
av_fft_calc(s->fft[plane], fft_hdata + y * n);
}
}
static void fft_vertical(ConvolveContext *s, FFTComplex *fft_hdata, FFTComplex *fft_vdata,
int n, int plane)
{
int y, x;
for (y = 0; y < n; y++) {
for (x = 0; x < n; x++) {
fft_vdata[y * n + x].re = fft_hdata[x * n + y].re;
fft_vdata[y * n + x].im = fft_hdata[x * n + y].im;
}
for (; x < n; x++) {
fft_vdata[y * n + x].re = 0;
fft_vdata[y * n + x].im = 0;
}
av_fft_permute(s->fft[plane], fft_vdata + y * n);
av_fft_calc(s->fft[plane], fft_vdata + y * n);
}
}
static void ifft_vertical(ConvolveContext *s, int n, int plane)
{
int y, x;
for (y = 0; y < n; y++) {
av_fft_permute(s->ifft[plane], s->fft_vdata[plane] + y * n);
av_fft_calc(s->ifft[plane], s->fft_vdata[plane] + y * n);
for (x = 0; x < n; x++) {
s->fft_hdata[plane][x * n + y].re = s->fft_vdata[plane][y * n + x].re;
s->fft_hdata[plane][x * n + y].im = s->fft_vdata[plane][y * n + x].im;
}
}
}
static void ifft_horizontal(ConvolveContext *s, AVFrame *out,
int w, int h, int n, int plane)
{
const float scale = 1.f / (n * n);
const int max = (1 << s->depth) - 1;
const int oh = h / 2;
const int ow = w / 2;
int y, x;
for (y = 0; y < n; y++) {
av_fft_permute(s->ifft[plane], s->fft_hdata[plane] + y * n);
av_fft_calc(s->ifft[plane], s->fft_hdata[plane] + y * n);
}
if (s->depth == 8) {
for (y = 0; y < h; y++) {
uint8_t *dst = out->data[plane] + y * out->linesize[plane];
for (x = 0; x < w; x++)
dst[x] = av_clip_uint8(s->fft_hdata[plane][(y+oh) * n + x+ow].re * scale);
}
} else {
for (y = 0; y < h; y++) {
uint16_t *dst = (uint16_t *)(out->data[plane] + y * out->linesize[plane]);
for (x = 0; x < w; x++)
dst[x] = av_clip(s->fft_hdata[plane][(y+oh) * n + x+ow].re * scale, 0, max);
}
}
}
static int do_convolve(FFFrameSync *fs)
{
AVFilterContext *ctx = fs->parent;
AVFilterLink *outlink = ctx->outputs[0];
ConvolveContext *s = ctx->priv;
AVFrame *mainpic = NULL, *impulsepic = NULL;
int ret, y, x, plane;
ret = ff_framesync_dualinput_get(fs, &mainpic, &impulsepic);
if (ret < 0)
return ret;
if (!impulsepic)
return ff_filter_frame(outlink, mainpic);
for (plane = 0; plane < s->nb_planes; plane++) {
const int n = s->fft_len[plane];
const int w = s->planewidth[plane];
const int h = s->planeheight[plane];
float total = 0;
if (!(s->planes & (1 << plane))) {
continue;
}
fft_horizontal(s, s->fft_hdata[plane], mainpic, w, h, n, plane, 1.f);
fft_vertical(s, s->fft_hdata[plane], s->fft_vdata[plane],
n, plane);
if ((!s->impulse && !s->got_impulse[plane]) || s->impulse) {
if (s->depth == 8) {
for (y = 0; y < h; y++) {
const uint8_t *src = (const uint8_t *)(impulsepic->data[plane] + y * impulsepic->linesize[plane]) ;
for (x = 0; x < w; x++) {
total += src[x];
}
}
} else {
for (y = 0; y < h; y++) {
const uint16_t *src = (const uint16_t *)(impulsepic->data[plane] + y * impulsepic->linesize[plane]) ;
for (x = 0; x < w; x++) {
total += src[x];
}
}
}
total = FFMAX(1, total);
fft_horizontal(s, s->fft_hdata_impulse[plane], impulsepic, w, h, n, plane, 1 / total);
fft_vertical(s, s->fft_hdata_impulse[plane], s->fft_vdata_impulse[plane],
n, plane);
s->got_impulse[plane] = 1;
}
for (y = 0; y < n; y++) {
for (x = 0; x < n; x++) {
FFTSample re, im, ire, iim;
re = s->fft_vdata[plane][y*n + x].re;
im = s->fft_vdata[plane][y*n + x].im;
ire = s->fft_vdata_impulse[plane][y*n + x].re;
iim = s->fft_vdata_impulse[plane][y*n + x].im;
s->fft_vdata[plane][y*n + x].re = ire * re - iim * im;
s->fft_vdata[plane][y*n + x].im = iim * re + ire * im;
}
}
ifft_vertical(s, n, plane);
ifft_horizontal(s, mainpic, w, h, n, plane);
}
return ff_filter_frame(outlink, mainpic);
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
ConvolveContext *s = ctx->priv;
AVFilterLink *mainlink = ctx->inputs[0];
int ret, i;
s->fs.on_event = do_convolve;
ret = ff_framesync_init_dualinput(&s->fs, ctx);
if (ret < 0)
return ret;
outlink->w = mainlink->w;
outlink->h = mainlink->h;
outlink->time_base = mainlink->time_base;
outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio;
outlink->frame_rate = mainlink->frame_rate;
if ((ret = ff_framesync_configure(&s->fs)) < 0)
return ret;
for (i = 0; i < s->nb_planes; i++) {
s->fft[i] = av_fft_init(s->fft_bits[i], 0);
s->ifft[i] = av_fft_init(s->fft_bits[i], 1);
if (!s->fft[i] || !s->ifft[i])
return AVERROR(ENOMEM);
}
return 0;
}
static int activate(AVFilterContext *ctx)
{
ConvolveContext *s = ctx->priv;
return ff_framesync_activate(&s->fs);
}
static av_cold void uninit(AVFilterContext *ctx)
{
ConvolveContext *s = ctx->priv;
int i;
for (i = 0; i < 4; i++) {
av_freep(&s->fft_hdata[i]);
av_freep(&s->fft_vdata[i]);
av_freep(&s->fft_hdata_impulse[i]);
av_freep(&s->fft_vdata_impulse[i]);
av_fft_end(s->fft[i]);
av_fft_end(s->ifft[i]);
}
ff_framesync_uninit(&s->fs);
}
static const AVFilterPad convolve_inputs[] = {
{
.name = "main",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input_main,
},{
.name = "impulse",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_input_impulse,
},
{ NULL }
};
static const AVFilterPad convolve_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_output,
},
{ NULL }
};
AVFilter ff_vf_convolve = {
.name = "convolve",
.description = NULL_IF_CONFIG_SMALL("Convolve first video stream with second video stream."),
.preinit = convolve_framesync_preinit,
.uninit = uninit,
.query_formats = query_formats,
.activate = activate,
.priv_size = sizeof(ConvolveContext),
.priv_class = &convolve_class,
.inputs = convolve_inputs,
.outputs = convolve_outputs,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
};