1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavfilter/vf_lensfun.c
Anton Khirnov 6d75d44d90 lavfi: drop internal.h
All that remains in it are things that belong in avfilter_internal.h.

Move them there and remove internal.h
2024-08-19 21:48:04 +02:00

534 lines
26 KiB
C

/*
* Copyright (C) 2007 by Andrew Zabolotny (author of lensfun, from which this filter derives from)
* Copyright (C) 2018 Stephen Seo
*
* This file is part of FFmpeg.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
/**
* @file
* Lensfun filter, applies lens correction with parameters from the lensfun database
*
* @see https://lensfun.sourceforge.net/
*/
#include <float.h>
#include <math.h>
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "avfilter.h"
#include "filters.h"
#include "video.h"
#include <lensfun.h>
#define LANCZOS_RESOLUTION 256
enum Mode {
VIGNETTING = 0x1,
GEOMETRY_DISTORTION = 0x2,
SUBPIXEL_DISTORTION = 0x4
};
enum InterpolationType {
NEAREST,
LINEAR,
LANCZOS
};
typedef struct VignettingThreadData {
int width, height;
uint8_t *data_in;
int linesize_in;
int pixel_composition;
lfModifier *modifier;
} VignettingThreadData;
typedef struct DistortionCorrectionThreadData {
int width, height;
const float *distortion_coords;
const uint8_t *data_in;
uint8_t *data_out;
int linesize_in, linesize_out;
const float *interpolation;
int mode;
int interpolation_type;
} DistortionCorrectionThreadData;
typedef struct LensfunContext {
const AVClass *class;
const char *make, *model, *lens_model, *db_path;
int mode;
float focal_length;
float aperture;
float focus_distance;
float scale;
int target_geometry;
int reverse;
int interpolation_type;
float *distortion_coords;
float *interpolation;
lfLens *lens;
lfCamera *camera;
lfModifier *modifier;
} LensfunContext;
#define OFFSET(x) offsetof(LensfunContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
static const AVOption lensfun_options[] = {
{ "make", "set camera maker", OFFSET(make), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "model", "set camera model", OFFSET(model), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "lens_model", "set lens model", OFFSET(lens_model), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "db_path", "set path to database", OFFSET(db_path), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "mode", "set mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=GEOMETRY_DISTORTION}, 0, VIGNETTING | GEOMETRY_DISTORTION | SUBPIXEL_DISTORTION, FLAGS, .unit = "mode" },
{ "vignetting", "fix lens vignetting", 0, AV_OPT_TYPE_CONST, {.i64=VIGNETTING}, 0, 0, FLAGS, .unit = "mode" },
{ "geometry", "correct geometry distortion", 0, AV_OPT_TYPE_CONST, {.i64=GEOMETRY_DISTORTION}, 0, 0, FLAGS, .unit = "mode" },
{ "subpixel", "fix chromatic aberrations", 0, AV_OPT_TYPE_CONST, {.i64=SUBPIXEL_DISTORTION}, 0, 0, FLAGS, .unit = "mode" },
{ "vig_geo", "fix lens vignetting and correct geometry distortion", 0, AV_OPT_TYPE_CONST, {.i64=VIGNETTING | GEOMETRY_DISTORTION}, 0, 0, FLAGS, .unit = "mode" },
{ "vig_subpixel", "fix lens vignetting and chromatic aberrations", 0, AV_OPT_TYPE_CONST, {.i64=VIGNETTING | SUBPIXEL_DISTORTION}, 0, 0, FLAGS, .unit = "mode" },
{ "distortion", "correct geometry distortion and chromatic aberrations", 0, AV_OPT_TYPE_CONST, {.i64=GEOMETRY_DISTORTION | SUBPIXEL_DISTORTION}, 0, 0, FLAGS, .unit = "mode" },
{ "all", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VIGNETTING | GEOMETRY_DISTORTION | SUBPIXEL_DISTORTION}, 0, 0, FLAGS, .unit = "mode" },
{ "focal_length", "focal length of video (zoom; constant for the duration of the use of this filter)", OFFSET(focal_length), AV_OPT_TYPE_FLOAT, {.dbl=18}, 0.0, DBL_MAX, FLAGS },
{ "aperture", "aperture (constant for the duration of the use of this filter)", OFFSET(aperture), AV_OPT_TYPE_FLOAT, {.dbl=3.5}, 0.0, DBL_MAX, FLAGS },
{ "focus_distance", "focus distance (constant for the duration of the use of this filter)", OFFSET(focus_distance), AV_OPT_TYPE_FLOAT, {.dbl=1000.0f}, 0.0, DBL_MAX, FLAGS },
{ "scale", "scale factor applied after corrections (0.0 means automatic scaling)", OFFSET(scale), AV_OPT_TYPE_FLOAT, {.dbl=0.0}, 0.0, DBL_MAX, FLAGS },
{ "target_geometry", "target geometry of the lens correction (only when geometry correction is enabled)", OFFSET(target_geometry), AV_OPT_TYPE_INT, {.i64=LF_RECTILINEAR}, 0, INT_MAX, FLAGS, .unit = "lens_geometry" },
{ "rectilinear", "rectilinear lens (default)", 0, AV_OPT_TYPE_CONST, {.i64=LF_RECTILINEAR}, 0, 0, FLAGS, .unit = "lens_geometry" },
{ "fisheye", "fisheye lens", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE}, 0, 0, FLAGS, .unit = "lens_geometry" },
{ "panoramic", "panoramic (cylindrical)", 0, AV_OPT_TYPE_CONST, {.i64=LF_PANORAMIC}, 0, 0, FLAGS, .unit = "lens_geometry" },
{ "equirectangular", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=LF_EQUIRECTANGULAR}, 0, 0, FLAGS, .unit = "lens_geometry" },
{ "fisheye_orthographic", "orthographic fisheye", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_ORTHOGRAPHIC}, 0, 0, FLAGS, .unit = "lens_geometry" },
{ "fisheye_stereographic", "stereographic fisheye", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_STEREOGRAPHIC}, 0, 0, FLAGS, .unit = "lens_geometry" },
{ "fisheye_equisolid", "equisolid fisheye", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_EQUISOLID}, 0, 0, FLAGS, .unit = "lens_geometry" },
{ "fisheye_thoby", "fisheye as measured by thoby", 0, AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_THOBY}, 0, 0, FLAGS, .unit = "lens_geometry" },
{ "reverse", "Does reverse correction (regular image to lens distorted)", OFFSET(reverse), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ "interpolation", "Type of interpolation", OFFSET(interpolation_type), AV_OPT_TYPE_INT, {.i64=LINEAR}, 0, LANCZOS, FLAGS, .unit = "interpolation" },
{ "nearest", NULL, 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, .unit = "interpolation" },
{ "linear", NULL, 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, .unit = "interpolation" },
{ "lanczos", NULL, 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, .unit = "interpolation" },
{ NULL }
};
AVFILTER_DEFINE_CLASS(lensfun);
static av_cold int init(AVFilterContext *ctx)
{
LensfunContext *lensfun = ctx->priv;
lfDatabase *db;
const lfCamera **cameras;
const lfLens **lenses;
db = lf_db_create();
if ((lensfun->db_path ? lf_db_load_path(db, lensfun->db_path) : lf_db_load(db)) != LF_NO_ERROR) {
lf_db_destroy(db);
av_log(ctx, AV_LOG_FATAL, "Failed to load lensfun database from %s path\n",
lensfun->db_path ? lensfun->db_path : "default");
return AVERROR_INVALIDDATA;
}
if (!lensfun->make || !lensfun->model) {
const lfCamera *const *cameras = lf_db_get_cameras(db);
av_log(ctx, AV_LOG_FATAL, "Option \"make\" or option \"model\" not specified\n");
av_log(ctx, AV_LOG_INFO, "Available values for \"make\" and \"model\":\n");
for (int i = 0; cameras && cameras[i]; i++)
av_log(ctx, AV_LOG_INFO, "\t%s\t%s\n", cameras[i]->Maker, cameras[i]->Model);
lf_db_destroy(db);
return AVERROR(EINVAL);
} else if (!lensfun->lens_model) {
const lfLens *const *lenses = lf_db_get_lenses(db);
av_log(ctx, AV_LOG_FATAL, "Option \"lens_model\" not specified\n");
av_log(ctx, AV_LOG_INFO, "Available values for \"lens_model\":\n");
for (int i = 0; lenses && lenses[i]; i++)
av_log(ctx, AV_LOG_INFO, "\t%s\t(make %s)\n", lenses[i]->Model, lenses[i]->Maker);
lf_db_destroy(db);
return AVERROR(EINVAL);
}
lensfun->lens = lf_lens_create();
lensfun->camera = lf_camera_create();
cameras = lf_db_find_cameras(db, lensfun->make, lensfun->model);
if (cameras && *cameras) {
lf_camera_copy(lensfun->camera, *cameras);
av_log(ctx, AV_LOG_INFO, "Using camera %s\n", lensfun->camera->Model);
} else {
lf_free(cameras);
lf_db_destroy(db);
av_log(ctx, AV_LOG_FATAL, "Failed to find camera in lensfun database\n");
return AVERROR_INVALIDDATA;
}
lf_free(cameras);
lenses = lf_db_find_lenses(db, lensfun->camera, NULL, lensfun->lens_model, 0);
if (lenses && *lenses) {
lf_lens_copy(lensfun->lens, *lenses);
av_log(ctx, AV_LOG_INFO, "Using lens %s\n", lensfun->lens->Model);
} else {
lf_free(lenses);
lf_db_destroy(db);
av_log(ctx, AV_LOG_FATAL, "Failed to find lens in lensfun database\n");
return AVERROR_INVALIDDATA;
}
lf_free(lenses);
lf_db_destroy(db);
return 0;
}
static float lanczos_kernel(float x)
{
if (x == 0.0f) {
return 1.0f;
} else if (x > -2.0f && x < 2.0f) {
return (2.0f * sin(M_PI * x) * sin(M_PI / 2.0f * x)) / (M_PI * M_PI * x * x);
} else {
return 0.0f;
}
}
static int config_props(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
LensfunContext *lensfun = ctx->priv;
int index;
float a;
if (!lensfun->modifier) {
if (lensfun->camera && lensfun->lens) {
lensfun->modifier = lf_modifier_create(lensfun->lens,
lensfun->focal_length,
lensfun->camera->CropFactor,
inlink->w,
inlink->h, LF_PF_U8, lensfun->reverse);
if (lensfun->mode & VIGNETTING)
lf_modifier_enable_vignetting_correction(lensfun->modifier, lensfun->aperture, lensfun->focus_distance);
if (lensfun->mode & GEOMETRY_DISTORTION) {
lf_modifier_enable_distortion_correction(lensfun->modifier);
lf_modifier_enable_projection_transform(lensfun->modifier, lensfun->target_geometry);
lf_modifier_enable_scaling(lensfun->modifier, lensfun->scale);
}
if (lensfun->mode & SUBPIXEL_DISTORTION)
lf_modifier_enable_tca_correction(lensfun->modifier);
} else {
// lensfun->camera and lensfun->lens should have been initialized
return AVERROR_BUG;
}
}
if (!lensfun->distortion_coords) {
if (lensfun->mode & SUBPIXEL_DISTORTION) {
lensfun->distortion_coords = av_malloc_array(inlink->w * inlink->h, sizeof(float) * 2 * 3);
if (!lensfun->distortion_coords)
return AVERROR(ENOMEM);
if (lensfun->mode & GEOMETRY_DISTORTION) {
// apply both geometry and subpixel distortion
lf_modifier_apply_subpixel_geometry_distortion(lensfun->modifier,
0, 0,
inlink->w, inlink->h,
lensfun->distortion_coords);
} else {
// apply only subpixel distortion
lf_modifier_apply_subpixel_distortion(lensfun->modifier,
0, 0,
inlink->w, inlink->h,
lensfun->distortion_coords);
}
} else if (lensfun->mode & GEOMETRY_DISTORTION) {
lensfun->distortion_coords = av_malloc_array(inlink->w * inlink->h, sizeof(float) * 2);
if (!lensfun->distortion_coords)
return AVERROR(ENOMEM);
// apply only geometry distortion
lf_modifier_apply_geometry_distortion(lensfun->modifier,
0, 0,
inlink->w, inlink->h,
lensfun->distortion_coords);
}
}
if (!lensfun->interpolation)
if (lensfun->interpolation_type == LANCZOS) {
lensfun->interpolation = av_malloc_array(LANCZOS_RESOLUTION, sizeof(float) * 4);
if (!lensfun->interpolation)
return AVERROR(ENOMEM);
for (index = 0; index < 4 * LANCZOS_RESOLUTION; ++index) {
if (index == 0) {
lensfun->interpolation[index] = 1.0f;
} else {
a = sqrtf((float)index / LANCZOS_RESOLUTION);
lensfun->interpolation[index] = lanczos_kernel(a);
}
}
}
return 0;
}
static int vignetting_filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
const VignettingThreadData *thread_data = arg;
const int slice_start = thread_data->height * jobnr / nb_jobs;
const int slice_end = thread_data->height * (jobnr + 1) / nb_jobs;
lf_modifier_apply_color_modification(thread_data->modifier,
thread_data->data_in + slice_start * thread_data->linesize_in,
0,
slice_start,
thread_data->width,
slice_end - slice_start,
thread_data->pixel_composition,
thread_data->linesize_in);
return 0;
}
static float square(float x)
{
return x * x;
}
static int distortion_correction_filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
const DistortionCorrectionThreadData *thread_data = arg;
const int slice_start = thread_data->height * jobnr / nb_jobs;
const int slice_end = thread_data->height * (jobnr + 1) / nb_jobs;
int x, y, i, j, rgb_index;
float interpolated, new_x, new_y, d, norm;
int new_x_int, new_y_int;
for (y = slice_start; y < slice_end; ++y)
for (x = 0; x < thread_data->width; ++x)
for (rgb_index = 0; rgb_index < 3; ++rgb_index) {
if (thread_data->mode & SUBPIXEL_DISTORTION) {
// subpixel (and possibly geometry) distortion correction was applied, correct distortion
switch(thread_data->interpolation_type) {
case NEAREST:
new_x_int = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2] + 0.5f;
new_y_int = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2 + 1] + 0.5f;
if (new_x_int < 0 || new_x_int >= thread_data->width || new_y_int < 0 || new_y_int >= thread_data->height) {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0;
} else {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = thread_data->data_in[new_x_int * 3 + rgb_index + new_y_int * thread_data->linesize_in];
}
break;
case LINEAR:
interpolated = 0.0f;
new_x = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2];
new_x_int = new_x;
new_y = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2 + 1];
new_y_int = new_y;
if (new_x_int < 0 || new_x_int + 1 >= thread_data->width || new_y_int < 0 || new_y_int + 1 >= thread_data->height) {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0;
} else {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] =
thread_data->data_in[ new_x_int * 3 + rgb_index + new_y_int * thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y_int + 1 - new_y)
+ thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + new_y_int * thread_data->linesize_in] * (new_x - new_x_int) * (new_y_int + 1 - new_y)
+ thread_data->data_in[ new_x_int * 3 + rgb_index + (new_y_int + 1) * thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y - new_y_int)
+ thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + (new_y_int + 1) * thread_data->linesize_in] * (new_x - new_x_int) * (new_y - new_y_int);
}
break;
case LANCZOS:
interpolated = 0.0f;
norm = 0.0f;
new_x = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2];
new_x_int = new_x;
new_y = thread_data->distortion_coords[x * 2 * 3 + y * thread_data->width * 2 * 3 + rgb_index * 2 + 1];
new_y_int = new_y;
for (j = 0; j < 4; ++j)
for (i = 0; i < 4; ++i) {
if (new_x_int + i - 2 < 0 || new_x_int + i - 2 >= thread_data->width || new_y_int + j - 2 < 0 || new_y_int + j - 2 >= thread_data->height)
continue;
d = square(new_x - (new_x_int + i - 2)) * square(new_y - (new_y_int + j - 2));
if (d >= 4.0f)
continue;
d = thread_data->interpolation[(int)(d * LANCZOS_RESOLUTION)];
norm += d;
interpolated += thread_data->data_in[(new_x_int + i - 2) * 3 + rgb_index + (new_y_int + j - 2) * thread_data->linesize_in] * d;
}
if (norm == 0.0f) {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0;
} else {
interpolated /= norm;
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = interpolated < 0.0f ? 0.0f : interpolated > 255.0f ? 255.0f : interpolated;
}
break;
}
} else if (thread_data->mode & GEOMETRY_DISTORTION) {
// geometry distortion correction was applied, correct distortion
switch(thread_data->interpolation_type) {
case NEAREST:
new_x_int = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2] + 0.5f;
new_y_int = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2 + 1] + 0.5f;
if (new_x_int < 0 || new_x_int >= thread_data->width || new_y_int < 0 || new_y_int >= thread_data->height) {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0;
} else {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = thread_data->data_in[new_x_int * 3 + rgb_index + new_y_int * thread_data->linesize_in];
}
break;
case LINEAR:
interpolated = 0.0f;
new_x = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2];
new_x_int = new_x;
new_y = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2 + 1];
new_y_int = new_y;
if (new_x_int < 0 || new_x_int + 1 >= thread_data->width || new_y_int < 0 || new_y_int + 1 >= thread_data->height) {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0;
} else {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] =
thread_data->data_in[ new_x_int * 3 + rgb_index + new_y_int * thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y_int + 1 - new_y)
+ thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + new_y_int * thread_data->linesize_in] * (new_x - new_x_int) * (new_y_int + 1 - new_y)
+ thread_data->data_in[ new_x_int * 3 + rgb_index + (new_y_int + 1) * thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y - new_y_int)
+ thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + (new_y_int + 1) * thread_data->linesize_in] * (new_x - new_x_int) * (new_y - new_y_int);
}
break;
case LANCZOS:
interpolated = 0.0f;
norm = 0.0f;
new_x = thread_data->distortion_coords[x * 2 + y * thread_data->width * 2];
new_x_int = new_x;
new_y = thread_data->distortion_coords[x * 2 + 1 + y * thread_data->width * 2];
new_y_int = new_y;
for (j = 0; j < 4; ++j)
for (i = 0; i < 4; ++i) {
if (new_x_int + i - 2 < 0 || new_x_int + i - 2 >= thread_data->width || new_y_int + j - 2 < 0 || new_y_int + j - 2 >= thread_data->height)
continue;
d = square(new_x - (new_x_int + i - 2)) * square(new_y - (new_y_int + j - 2));
if (d >= 4.0f)
continue;
d = thread_data->interpolation[(int)(d * LANCZOS_RESOLUTION)];
norm += d;
interpolated += thread_data->data_in[(new_x_int + i - 2) * 3 + rgb_index + (new_y_int + j - 2) * thread_data->linesize_in] * d;
}
if (norm == 0.0f) {
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = 0;
} else {
interpolated /= norm;
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = interpolated < 0.0f ? 0.0f : interpolated > 255.0f ? 255.0f : interpolated;
}
break;
}
} else {
// no distortion correction was applied
thread_data->data_out[x * 3 + rgb_index + y * thread_data->linesize_out] = thread_data->data_in[x * 3 + rgb_index + y * thread_data->linesize_in];
}
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
LensfunContext *lensfun = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFrame *out;
VignettingThreadData vignetting_thread_data;
DistortionCorrectionThreadData distortion_correction_thread_data;
int ret;
if (lensfun->mode & VIGNETTING) {
ret = ff_inlink_make_frame_writable(inlink, &in);
if (ret < 0) {
av_frame_free(&in);
return ret;
}
vignetting_thread_data = (VignettingThreadData) {
.width = inlink->w,
.height = inlink->h,
.data_in = in->data[0],
.linesize_in = in->linesize[0],
.pixel_composition = LF_CR_3(RED, GREEN, BLUE),
.modifier = lensfun->modifier
};
ff_filter_execute(ctx, vignetting_filter_slice,
&vignetting_thread_data, NULL,
FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
}
if (lensfun->mode & (GEOMETRY_DISTORTION | SUBPIXEL_DISTORTION)) {
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
distortion_correction_thread_data = (DistortionCorrectionThreadData) {
.width = inlink->w,
.height = inlink->h,
.distortion_coords = lensfun->distortion_coords,
.data_in = in->data[0],
.data_out = out->data[0],
.linesize_in = in->linesize[0],
.linesize_out = out->linesize[0],
.interpolation = lensfun->interpolation,
.mode = lensfun->mode,
.interpolation_type = lensfun->interpolation_type
};
ff_filter_execute(ctx, distortion_correction_filter_slice,
&distortion_correction_thread_data, NULL,
FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
av_frame_free(&in);
return ff_filter_frame(outlink, out);
} else {
return ff_filter_frame(outlink, in);
}
}
static av_cold void uninit(AVFilterContext *ctx)
{
LensfunContext *lensfun = ctx->priv;
if (lensfun->camera)
lf_camera_destroy(lensfun->camera);
if (lensfun->lens)
lf_lens_destroy(lensfun->lens);
if (lensfun->modifier)
lf_modifier_destroy(lensfun->modifier);
av_freep(&lensfun->distortion_coords);
av_freep(&lensfun->interpolation);
}
static const AVFilterPad lensfun_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_props,
.filter_frame = filter_frame,
},
};
const AVFilter ff_vf_lensfun = {
.name = "lensfun",
.description = NULL_IF_CONFIG_SMALL("Apply correction to an image based on info derived from the lensfun database."),
.priv_size = sizeof(LensfunContext),
.init = init,
.uninit = uninit,
FILTER_INPUTS(lensfun_inputs),
FILTER_OUTPUTS(ff_video_default_filterpad),
FILTER_SINGLE_PIXFMT(AV_PIX_FMT_RGB24),
.priv_class = &lensfun_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};