1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavcodec/h264dsp_template.c
Oskar Arvidsson 19a0729b4c Adds 8-, 9- and 10-bit versions of some of the functions used by the h264 decoder.
This patch lets e.g. dsputil_init chose dsp functions with respect to
the bit depth to decode. The naming scheme of bit depth dependent
functions is <base name>_<bit depth>[_<prefix>] (i.e. the old
clear_blocks_c is now named clear_blocks_8_c).

Note: Some of the functions for high bit depth is not dependent on the
bit depth, but only on the pixel size. This leaves some room for
optimizing binary size.

Preparatory patch for high bit depth h264 decoding support.

Signed-off-by: Ronald S. Bultje <rsbultje@gmail.com>
2011-05-10 07:24:36 -04:00

314 lines
11 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
* Copyright (c) 2003-2010 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG4 part10 DSP functions.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "high_bit_depth.h"
#define op_scale1(x) block[x] = av_clip_pixel( (block[x]*weight + offset) >> log2_denom )
#define op_scale2(x) dst[x] = av_clip_pixel( (src[x]*weights + dst[x]*weightd + offset) >> (log2_denom+1))
#define H264_WEIGHT(W,H) \
static void FUNCC(weight_h264_pixels ## W ## x ## H)(uint8_t *_block, int stride, int log2_denom, int weight, int offset){ \
int y; \
pixel *block = (pixel*)_block; \
stride /= sizeof(pixel); \
offset <<= (log2_denom + (BIT_DEPTH-8)); \
if(log2_denom) offset += 1<<(log2_denom-1); \
for(y=0; y<H; y++, block += stride){ \
op_scale1(0); \
op_scale1(1); \
if(W==2) continue; \
op_scale1(2); \
op_scale1(3); \
if(W==4) continue; \
op_scale1(4); \
op_scale1(5); \
op_scale1(6); \
op_scale1(7); \
if(W==8) continue; \
op_scale1(8); \
op_scale1(9); \
op_scale1(10); \
op_scale1(11); \
op_scale1(12); \
op_scale1(13); \
op_scale1(14); \
op_scale1(15); \
} \
} \
static void FUNCC(biweight_h264_pixels ## W ## x ## H)(uint8_t *_dst, uint8_t *_src, int stride, int log2_denom, int weightd, int weights, int offset){ \
int y; \
pixel *dst = (pixel*)_dst; \
pixel *src = (pixel*)_src; \
stride /= sizeof(pixel); \
offset = ((offset + 1) | 1) << log2_denom; \
for(y=0; y<H; y++, dst += stride, src += stride){ \
op_scale2(0); \
op_scale2(1); \
if(W==2) continue; \
op_scale2(2); \
op_scale2(3); \
if(W==4) continue; \
op_scale2(4); \
op_scale2(5); \
op_scale2(6); \
op_scale2(7); \
if(W==8) continue; \
op_scale2(8); \
op_scale2(9); \
op_scale2(10); \
op_scale2(11); \
op_scale2(12); \
op_scale2(13); \
op_scale2(14); \
op_scale2(15); \
} \
}
H264_WEIGHT(16,16)
H264_WEIGHT(16,8)
H264_WEIGHT(8,16)
H264_WEIGHT(8,8)
H264_WEIGHT(8,4)
H264_WEIGHT(4,8)
H264_WEIGHT(4,4)
H264_WEIGHT(4,2)
H264_WEIGHT(2,4)
H264_WEIGHT(2,2)
#undef op_scale1
#undef op_scale2
#undef H264_WEIGHT
static av_always_inline av_flatten void FUNCC(h264_loop_filter_luma)(uint8_t *_pix, int xstride, int ystride, int inner_iters, int alpha, int beta, int8_t *tc0)
{
pixel *pix = (pixel*)_pix;
int i, d;
xstride /= sizeof(pixel);
ystride /= sizeof(pixel);
alpha <<= BIT_DEPTH - 8;
beta <<= BIT_DEPTH - 8;
for( i = 0; i < 4; i++ ) {
const int tc_orig = tc0[i] << (BIT_DEPTH - 8);
if( tc_orig < 0 ) {
pix += inner_iters*ystride;
continue;
}
for( d = 0; d < inner_iters; d++ ) {
const int p0 = pix[-1*xstride];
const int p1 = pix[-2*xstride];
const int p2 = pix[-3*xstride];
const int q0 = pix[0];
const int q1 = pix[1*xstride];
const int q2 = pix[2*xstride];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
int tc = tc_orig;
int i_delta;
if( FFABS( p2 - p0 ) < beta ) {
if(tc_orig)
pix[-2*xstride] = p1 + av_clip( (( p2 + ( ( p0 + q0 + 1 ) >> 1 ) ) >> 1) - p1, -tc_orig, tc_orig );
tc++;
}
if( FFABS( q2 - q0 ) < beta ) {
if(tc_orig)
pix[ xstride] = q1 + av_clip( (( q2 + ( ( p0 + q0 + 1 ) >> 1 ) ) >> 1) - q1, -tc_orig, tc_orig );
tc++;
}
i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
pix[-xstride] = av_clip_pixel( p0 + i_delta ); /* p0' */
pix[0] = av_clip_pixel( q0 - i_delta ); /* q0' */
}
pix += ystride;
}
}
}
static void FUNCC(h264_v_loop_filter_luma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
{
FUNCC(h264_loop_filter_luma)(pix, stride, sizeof(pixel), 4, alpha, beta, tc0);
}
static void FUNCC(h264_h_loop_filter_luma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
{
FUNCC(h264_loop_filter_luma)(pix, sizeof(pixel), stride, 4, alpha, beta, tc0);
}
static void FUNCC(h264_h_loop_filter_luma_mbaff)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
{
FUNCC(h264_loop_filter_luma)(pix, sizeof(pixel), stride, 2, alpha, beta, tc0);
}
static av_always_inline av_flatten void FUNCC(h264_loop_filter_luma_intra)(uint8_t *_pix, int xstride, int ystride, int inner_iters, int alpha, int beta)
{
pixel *pix = (pixel*)_pix;
int d;
xstride /= sizeof(pixel);
ystride /= sizeof(pixel);
alpha <<= BIT_DEPTH - 8;
beta <<= BIT_DEPTH - 8;
for( d = 0; d < 4 * inner_iters; d++ ) {
const int p2 = pix[-3*xstride];
const int p1 = pix[-2*xstride];
const int p0 = pix[-1*xstride];
const int q0 = pix[ 0*xstride];
const int q1 = pix[ 1*xstride];
const int q2 = pix[ 2*xstride];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
if( FFABS( p2 - p0 ) < beta)
{
const int p3 = pix[-4*xstride];
/* p0', p1', p2' */
pix[-1*xstride] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
pix[-2*xstride] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
pix[-3*xstride] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
} else {
/* p0' */
pix[-1*xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
}
if( FFABS( q2 - q0 ) < beta)
{
const int q3 = pix[3*xstride];
/* q0', q1', q2' */
pix[0*xstride] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
pix[1*xstride] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
pix[2*xstride] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
} else {
/* q0' */
pix[0*xstride] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
}
}else{
/* p0', q0' */
pix[-1*xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
pix[ 0*xstride] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
}
}
pix += ystride;
}
}
static void FUNCC(h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta)
{
FUNCC(h264_loop_filter_luma_intra)(pix, stride, sizeof(pixel), 4, alpha, beta);
}
static void FUNCC(h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta)
{
FUNCC(h264_loop_filter_luma_intra)(pix, sizeof(pixel), stride, 4, alpha, beta);
}
static void FUNCC(h264_h_loop_filter_luma_mbaff_intra)(uint8_t *pix, int stride, int alpha, int beta)
{
FUNCC(h264_loop_filter_luma_intra)(pix, sizeof(pixel), stride, 2, alpha, beta);
}
static av_always_inline av_flatten void FUNCC(h264_loop_filter_chroma)(uint8_t *_pix, int xstride, int ystride, int inner_iters, int alpha, int beta, int8_t *tc0)
{
pixel *pix = (pixel*)_pix;
int i, d;
xstride /= sizeof(pixel);
ystride /= sizeof(pixel);
alpha <<= BIT_DEPTH - 8;
beta <<= BIT_DEPTH - 8;
for( i = 0; i < 4; i++ ) {
const int tc = ((tc0[i] - 1) << (BIT_DEPTH - 8)) + 1;
if( tc <= 0 ) {
pix += inner_iters*ystride;
continue;
}
for( d = 0; d < inner_iters; d++ ) {
const int p0 = pix[-1*xstride];
const int p1 = pix[-2*xstride];
const int q0 = pix[0];
const int q1 = pix[1*xstride];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
int delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
pix[-xstride] = av_clip_pixel( p0 + delta ); /* p0' */
pix[0] = av_clip_pixel( q0 - delta ); /* q0' */
}
pix += ystride;
}
}
}
static void FUNCC(h264_v_loop_filter_chroma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
{
FUNCC(h264_loop_filter_chroma)(pix, stride, sizeof(pixel), 2, alpha, beta, tc0);
}
static void FUNCC(h264_h_loop_filter_chroma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
{
FUNCC(h264_loop_filter_chroma)(pix, sizeof(pixel), stride, 2, alpha, beta, tc0);
}
static void FUNCC(h264_h_loop_filter_chroma_mbaff)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
{
FUNCC(h264_loop_filter_chroma)(pix, sizeof(pixel), stride, 1, alpha, beta, tc0);
}
static av_always_inline av_flatten void FUNCC(h264_loop_filter_chroma_intra)(uint8_t *_pix, int xstride, int ystride, int inner_iters, int alpha, int beta)
{
pixel *pix = (pixel*)_pix;
int d;
xstride /= sizeof(pixel);
ystride /= sizeof(pixel);
alpha <<= BIT_DEPTH - 8;
beta <<= BIT_DEPTH - 8;
for( d = 0; d < 4 * inner_iters; d++ ) {
const int p0 = pix[-1*xstride];
const int p1 = pix[-2*xstride];
const int q0 = pix[0];
const int q1 = pix[1*xstride];
if( FFABS( p0 - q0 ) < alpha &&
FFABS( p1 - p0 ) < beta &&
FFABS( q1 - q0 ) < beta ) {
pix[-xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
}
pix += ystride;
}
}
static void FUNCC(h264_v_loop_filter_chroma_intra)(uint8_t *pix, int stride, int alpha, int beta)
{
FUNCC(h264_loop_filter_chroma_intra)(pix, stride, sizeof(pixel), 2, alpha, beta);
}
static void FUNCC(h264_h_loop_filter_chroma_intra)(uint8_t *pix, int stride, int alpha, int beta)
{
FUNCC(h264_loop_filter_chroma_intra)(pix, sizeof(pixel), stride, 2, alpha, beta);
}
static void FUNCC(h264_h_loop_filter_chroma_mbaff_intra)(uint8_t *pix, int stride, int alpha, int beta)
{
FUNCC(h264_loop_filter_chroma_intra)(pix, sizeof(pixel), stride, 1, alpha, beta);
}