1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavfilter/vf_unsharp.c
Andreas Rheinhardt 8be701d9f7 avfilter/avfilter: Add numbers of (in|out)pads directly to AVFilter
Up until now, an AVFilter's lists of input and output AVFilterPads
were terminated by a sentinel and the only way to get the length
of these lists was by using avfilter_pad_count(). This has two
drawbacks: first, sizeof(AVFilterPad) is not negligible
(i.e. 64B on 64bit systems); second, getting the size involves
a function call instead of just reading the data.

This commit therefore changes this. The sentinels are removed and new
private fields nb_inputs and nb_outputs are added to AVFilter that
contain the number of elements of the respective AVFilterPad array.

Given that AVFilter.(in|out)puts are the only arrays of zero-terminated
AVFilterPads an API user has access to (AVFilterContext.(in|out)put_pads
are not zero-terminated and they already have a size field) the argument
to avfilter_pad_count() is always one of these lists, so it just has to
find the filter the list belongs to and read said number. This is slower
than before, but a replacement function that just reads the internal numbers
that users are expected to switch to will be added soon; and furthermore,
avfilter_pad_count() is probably never called in hot loops anyway.

This saves about 49KiB from the binary; notice that these sentinels are
not in .bss despite being zeroed: they are in .data.rel.ro due to the
non-sentinels.

Reviewed-by: Nicolas George <george@nsup.org>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2021-08-20 12:53:58 +02:00

367 lines
18 KiB
C

/*
* Original copyright (c) 2002 Remi Guyomarch <rguyom@pobox.com>
* Port copyright (c) 2010 Daniel G. Taylor <dan@programmer-art.org>
* Relicensed to the LGPL with permission from Remi Guyomarch.
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* blur / sharpen filter, ported to FFmpeg from MPlayer
* libmpcodecs/unsharp.c.
*
* This code is based on:
*
* An Efficient algorithm for Gaussian blur using finite-state machines
* Frederick M. Waltz and John W. V. Miller
*
* SPIE Conf. on Machine Vision Systems for Inspection and Metrology VII
* Originally published Boston, Nov 98
*
* http://www.engin.umd.umich.edu/~jwvm/ece581/21_GBlur.pdf
*/
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "unsharp.h"
typedef struct TheadData {
UnsharpFilterParam *fp;
uint8_t *dst;
const uint8_t *src;
int dst_stride;
int src_stride;
int width;
int height;
} ThreadData;
#define DEF_UNSHARP_SLICE_FUNC(name, nbits) \
static int name##_##nbits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
{ \
ThreadData *td = arg; \
UnsharpFilterParam *fp = td->fp; \
UnsharpContext *s = ctx->priv; \
uint32_t **sc = fp->sc; \
uint32_t *sr = fp->sr; \
const uint##nbits##_t *src2 = NULL; \
const int amount = fp->amount; \
const int steps_x = fp->steps_x; \
const int steps_y = fp->steps_y; \
const int scalebits = fp->scalebits; \
const int32_t halfscale = fp->halfscale; \
\
uint##nbits##_t *dst = (uint##nbits##_t*)td->dst; \
const uint##nbits##_t *src = (const uint##nbits##_t *)td->src; \
int dst_stride = td->dst_stride; \
int src_stride = td->src_stride; \
const int width = td->width; \
const int height = td->height; \
const int sc_offset = jobnr * 2 * steps_y; \
const int sr_offset = jobnr * (MAX_MATRIX_SIZE - 1); \
const int slice_start = (height * jobnr) / nb_jobs; \
const int slice_end = (height * (jobnr+1)) / nb_jobs; \
\
int32_t res; \
int x, y, z; \
uint32_t tmp1, tmp2; \
\
if (!amount) { \
av_image_copy_plane(td->dst + slice_start * dst_stride, dst_stride, \
td->src + slice_start * src_stride, src_stride, \
width * s->bps, slice_end - slice_start); \
return 0; \
} \
\
for (y = 0; y < 2 * steps_y; y++) \
memset(sc[sc_offset + y], 0, sizeof(sc[y][0]) * (width + 2 * steps_x)); \
\
dst_stride = dst_stride / s->bps; \
src_stride = src_stride / s->bps; \
/* if this is not the first tile, we start from (slice_start - steps_y) */ \
/* so we can get smooth result at slice boundary */ \
if (slice_start > steps_y) { \
src += (slice_start - steps_y) * src_stride; \
dst += (slice_start - steps_y) * dst_stride; \
} \
\
for (y = -steps_y + slice_start; y < steps_y + slice_end; y++) { \
if (y < height) \
src2 = src; \
\
memset(sr + sr_offset, 0, sizeof(sr[0]) * (2 * steps_x - 1)); \
for (x = -steps_x; x < width + steps_x; x++) { \
tmp1 = x <= 0 ? src2[0] : x >= width ? src2[width-1] : src2[x]; \
for (z = 0; z < steps_x * 2; z += 2) { \
tmp2 = sr[sr_offset + z + 0] + tmp1; sr[sr_offset + z + 0] = tmp1; \
tmp1 = sr[sr_offset + z + 1] + tmp2; sr[sr_offset + z + 1] = tmp2; \
} \
for (z = 0; z < steps_y * 2; z += 2) { \
tmp2 = sc[sc_offset + z + 0][x + steps_x] + tmp1; \
sc[sc_offset + z + 0][x + steps_x] = tmp1; \
tmp1 = sc[sc_offset + z + 1][x + steps_x] + tmp2; \
sc[sc_offset + z + 1][x + steps_x] = tmp2; \
} \
if (x >= steps_x && y >= (steps_y + slice_start)) { \
const uint##nbits##_t *srx = src - steps_y * src_stride + x - steps_x; \
uint##nbits##_t *dsx = dst - steps_y * dst_stride + x - steps_x; \
\
res = (int32_t)*srx + ((((int32_t) * srx - \
(int32_t)((tmp1 + halfscale) >> scalebits)) * amount) >> (8+nbits)); \
*dsx = av_clip_uint##nbits(res); \
} \
} \
if (y >= 0) { \
dst += dst_stride; \
src += src_stride; \
} \
} \
return 0; \
}
DEF_UNSHARP_SLICE_FUNC(unsharp_slice, 16)
DEF_UNSHARP_SLICE_FUNC(unsharp_slice, 8)
static int apply_unsharp_c(AVFilterContext *ctx, AVFrame *in, AVFrame *out)
{
AVFilterLink *inlink = ctx->inputs[0];
UnsharpContext *s = ctx->priv;
int i, plane_w[3], plane_h[3];
UnsharpFilterParam *fp[3];
ThreadData td;
plane_w[0] = inlink->w;
plane_w[1] = plane_w[2] = AV_CEIL_RSHIFT(inlink->w, s->hsub);
plane_h[0] = inlink->h;
plane_h[1] = plane_h[2] = AV_CEIL_RSHIFT(inlink->h, s->vsub);
fp[0] = &s->luma;
fp[1] = fp[2] = &s->chroma;
for (i = 0; i < 3; i++) {
td.fp = fp[i];
td.dst = out->data[i];
td.src = in->data[i];
td.width = plane_w[i];
td.height = plane_h[i];
td.dst_stride = out->linesize[i];
td.src_stride = in->linesize[i];
ff_filter_execute(ctx, s->unsharp_slice, &td, NULL,
FFMIN(plane_h[i], s->nb_threads));
}
return 0;
}
static void set_filter_param(UnsharpFilterParam *fp, int msize_x, int msize_y, float amount)
{
fp->msize_x = msize_x;
fp->msize_y = msize_y;
fp->amount = amount * 65536.0;
fp->steps_x = msize_x / 2;
fp->steps_y = msize_y / 2;
fp->scalebits = (fp->steps_x + fp->steps_y) * 2;
fp->halfscale = 1 << (fp->scalebits - 1);
}
static av_cold int init(AVFilterContext *ctx)
{
UnsharpContext *s = ctx->priv;
set_filter_param(&s->luma, s->lmsize_x, s->lmsize_y, s->lamount);
set_filter_param(&s->chroma, s->cmsize_x, s->cmsize_y, s->camount);
if (s->luma.scalebits >= 26 || s->chroma.scalebits >= 26) {
av_log(ctx, AV_LOG_ERROR, "luma or chroma matrix size too big\n");
return AVERROR(EINVAL);
}
s->apply_unsharp = apply_unsharp_c;
return 0;
}
static int query_formats(AVFilterContext *ctx)
{
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P,
AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_NONE
};
return ff_set_common_formats_from_list(ctx, pix_fmts);
}
static int init_filter_param(AVFilterContext *ctx, UnsharpFilterParam *fp, const char *effect_type, int width)
{
int z;
UnsharpContext *s = ctx->priv;
const char *effect = fp->amount == 0 ? "none" : fp->amount < 0 ? "blur" : "sharpen";
if (!(fp->msize_x & fp->msize_y & 1)) {
av_log(ctx, AV_LOG_ERROR,
"Invalid even size for %s matrix size %dx%d\n",
effect_type, fp->msize_x, fp->msize_y);
return AVERROR(EINVAL);
}
av_log(ctx, AV_LOG_VERBOSE, "effect:%s type:%s msize_x:%d msize_y:%d amount:%0.2f\n",
effect, effect_type, fp->msize_x, fp->msize_y, fp->amount / 65535.0);
fp->sr = av_malloc_array((MAX_MATRIX_SIZE - 1) * s->nb_threads, sizeof(uint32_t));
fp->sc = av_mallocz_array(2 * fp->steps_y * s->nb_threads, sizeof(uint32_t *));
if (!fp->sr || !fp->sc)
return AVERROR(ENOMEM);
for (z = 0; z < 2 * fp->steps_y * s->nb_threads; z++)
if (!(fp->sc[z] = av_malloc_array(width + 2 * fp->steps_x,
sizeof(*(fp->sc[z])))))
return AVERROR(ENOMEM);
return 0;
}
static int config_input(AVFilterLink *inlink)
{
UnsharpContext *s = inlink->dst->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
int ret;
s->hsub = desc->log2_chroma_w;
s->vsub = desc->log2_chroma_h;
s->bitdepth = desc->comp[0].depth;
s->bps = s->bitdepth > 8 ? 2 : 1;
s->unsharp_slice = s->bitdepth > 8 ? unsharp_slice_16 : unsharp_slice_8;
// ensure (height / nb_threads) > 4 * steps_y,
// so that we don't have too much overlap between two threads
s->nb_threads = FFMIN(ff_filter_get_nb_threads(inlink->dst),
inlink->h / (4 * s->luma.steps_y));
ret = init_filter_param(inlink->dst, &s->luma, "luma", inlink->w);
if (ret < 0)
return ret;
ret = init_filter_param(inlink->dst, &s->chroma, "chroma", AV_CEIL_RSHIFT(inlink->w, s->hsub));
if (ret < 0)
return ret;
return 0;
}
static void free_filter_param(UnsharpFilterParam *fp, int nb_threads)
{
int z;
if (fp->sc) {
for (z = 0; z < 2 * fp->steps_y * nb_threads; z++)
av_freep(&fp->sc[z]);
av_freep(&fp->sc);
}
av_freep(&fp->sr);
}
static av_cold void uninit(AVFilterContext *ctx)
{
UnsharpContext *s = ctx->priv;
free_filter_param(&s->luma, s->nb_threads);
free_filter_param(&s->chroma, s->nb_threads);
}
static int filter_frame(AVFilterLink *link, AVFrame *in)
{
UnsharpContext *s = link->dst->priv;
AVFilterLink *outlink = link->dst->outputs[0];
AVFrame *out;
int ret = 0;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
ret = s->apply_unsharp(link->dst, in, out);
av_frame_free(&in);
if (ret < 0) {
av_frame_free(&out);
return ret;
}
return ff_filter_frame(outlink, out);
}
#define OFFSET(x) offsetof(UnsharpContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
#define MIN_SIZE 3
#define MAX_SIZE 23
static const AVOption unsharp_options[] = {
{ "luma_msize_x", "set luma matrix horizontal size", OFFSET(lmsize_x), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
{ "lx", "set luma matrix horizontal size", OFFSET(lmsize_x), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
{ "luma_msize_y", "set luma matrix vertical size", OFFSET(lmsize_y), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
{ "ly", "set luma matrix vertical size", OFFSET(lmsize_y), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
{ "luma_amount", "set luma effect strength", OFFSET(lamount), AV_OPT_TYPE_FLOAT, { .dbl = 1 }, -2, 5, FLAGS },
{ "la", "set luma effect strength", OFFSET(lamount), AV_OPT_TYPE_FLOAT, { .dbl = 1 }, -2, 5, FLAGS },
{ "chroma_msize_x", "set chroma matrix horizontal size", OFFSET(cmsize_x), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
{ "cx", "set chroma matrix horizontal size", OFFSET(cmsize_x), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
{ "chroma_msize_y", "set chroma matrix vertical size", OFFSET(cmsize_y), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
{ "cy", "set chroma matrix vertical size", OFFSET(cmsize_y), AV_OPT_TYPE_INT, { .i64 = 5 }, MIN_SIZE, MAX_SIZE, FLAGS },
{ "chroma_amount", "set chroma effect strength", OFFSET(camount), AV_OPT_TYPE_FLOAT, { .dbl = 0 }, -2, 5, FLAGS },
{ "ca", "set chroma effect strength", OFFSET(camount), AV_OPT_TYPE_FLOAT, { .dbl = 0 }, -2, 5, FLAGS },
{ "opencl", "ignored", OFFSET(opencl), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(unsharp);
static const AVFilterPad avfilter_vf_unsharp_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad avfilter_vf_unsharp_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
};
const AVFilter ff_vf_unsharp = {
.name = "unsharp",
.description = NULL_IF_CONFIG_SMALL("Sharpen or blur the input video."),
.priv_size = sizeof(UnsharpContext),
.priv_class = &unsharp_class,
.init = init,
.uninit = uninit,
.query_formats = query_formats,
FILTER_INPUTS(avfilter_vf_unsharp_inputs),
FILTER_OUTPUTS(avfilter_vf_unsharp_outputs),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};