1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-19 05:49:09 +02:00
FFmpeg/libavcodec/flacenc.c
Michael Niedermayer f33aa12011 stereo decorrelation support by (Justin Ruggles jruggle earthlink net>)
Originally committed as revision 5528 to svn://svn.ffmpeg.org/ffmpeg/trunk
2006-06-26 06:00:07 +00:00

634 lines
15 KiB
C

/**
* FLAC audio encoder
* Copyright (c) 2006 Justin Ruggles <jruggle@earthlink.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avcodec.h"
#include "bitstream.h"
#include "crc.h"
#include "golomb.h"
#define FLAC_MAX_CH 8
#define FLAC_MIN_BLOCKSIZE 16
#define FLAC_MAX_BLOCKSIZE 65535
#define FLAC_SUBFRAME_CONSTANT 0
#define FLAC_SUBFRAME_VERBATIM 1
#define FLAC_SUBFRAME_FIXED 8
#define FLAC_SUBFRAME_LPC 32
#define FLAC_CHMODE_NOT_STEREO 0
#define FLAC_CHMODE_LEFT_RIGHT 1
#define FLAC_CHMODE_LEFT_SIDE 8
#define FLAC_CHMODE_RIGHT_SIDE 9
#define FLAC_CHMODE_MID_SIDE 10
#define FLAC_STREAMINFO_SIZE 34
typedef struct FlacSubframe {
int type;
int type_code;
int obits;
int order;
int32_t samples[FLAC_MAX_BLOCKSIZE];
int32_t residual[FLAC_MAX_BLOCKSIZE];
} FlacSubframe;
typedef struct FlacFrame {
FlacSubframe subframes[FLAC_MAX_CH];
int blocksize;
int bs_code[2];
uint8_t crc8;
int ch_mode;
} FlacFrame;
typedef struct FlacEncodeContext {
PutBitContext pb;
int channels;
int ch_code;
int samplerate;
int sr_code[2];
int blocksize;
int max_framesize;
uint32_t frame_count;
FlacFrame frame;
} FlacEncodeContext;
static const int flac_samplerates[16] = {
0, 0, 0, 0,
8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
0, 0, 0, 0
};
static const int flac_blocksizes[16] = {
0,
192,
576, 1152, 2304, 4608,
0, 0,
256, 512, 1024, 2048, 4096, 8192, 16384, 32768
};
/**
* Writes streaminfo metadata block to byte array
*/
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
{
PutBitContext pb;
memset(header, 0, FLAC_STREAMINFO_SIZE);
init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
/* streaminfo metadata block */
put_bits(&pb, 16, s->blocksize);
put_bits(&pb, 16, s->blocksize);
put_bits(&pb, 24, 0);
put_bits(&pb, 24, s->max_framesize);
put_bits(&pb, 20, s->samplerate);
put_bits(&pb, 3, s->channels-1);
put_bits(&pb, 5, 15); /* bits per sample - 1 */
flush_put_bits(&pb);
/* total samples = 0 */
/* MD5 signature = 0 */
}
#define BLOCK_TIME_MS 105
/**
* Sets blocksize based on samplerate
* Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
*/
static int select_blocksize(int samplerate)
{
int i;
int target;
int blocksize;
assert(samplerate > 0);
blocksize = flac_blocksizes[1];
target = (samplerate * BLOCK_TIME_MS) / 1000;
for(i=0; i<16; i++) {
if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) {
blocksize = flac_blocksizes[i];
}
}
return blocksize;
}
static int flac_encode_init(AVCodecContext *avctx)
{
int freq = avctx->sample_rate;
int channels = avctx->channels;
FlacEncodeContext *s = avctx->priv_data;
int i;
uint8_t *streaminfo;
if(avctx->sample_fmt != SAMPLE_FMT_S16) {
return -1;
}
if(channels < 1 || channels > FLAC_MAX_CH) {
return -1;
}
s->channels = channels;
s->ch_code = s->channels-1;
/* find samplerate in table */
if(freq < 1)
return -1;
for(i=4; i<12; i++) {
if(freq == flac_samplerates[i]) {
s->samplerate = flac_samplerates[i];
s->sr_code[0] = i;
s->sr_code[1] = 0;
break;
}
}
/* if not in table, samplerate is non-standard */
if(i == 12) {
if(freq % 1000 == 0 && freq < 255000) {
s->sr_code[0] = 12;
s->sr_code[1] = freq / 1000;
} else if(freq % 10 == 0 && freq < 655350) {
s->sr_code[0] = 14;
s->sr_code[1] = freq / 10;
} else if(freq < 65535) {
s->sr_code[0] = 13;
s->sr_code[1] = freq;
} else {
return -1;
}
s->samplerate = freq;
}
s->blocksize = select_blocksize(s->samplerate);
avctx->frame_size = s->blocksize;
/* set maximum encoded frame size in verbatim mode */
if(s->channels == 2) {
s->max_framesize = 14 + ((s->blocksize * 33 + 7) >> 3);
} else {
s->max_framesize = 14 + (s->blocksize * s->channels * 2);
}
streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
write_streaminfo(s, streaminfo);
avctx->extradata = streaminfo;
avctx->extradata_size = FLAC_STREAMINFO_SIZE;
s->frame_count = 0;
avctx->coded_frame = avcodec_alloc_frame();
avctx->coded_frame->key_frame = 1;
return 0;
}
static void init_frame(FlacEncodeContext *s)
{
int i, ch;
FlacFrame *frame;
frame = &s->frame;
for(i=0; i<16; i++) {
if(s->blocksize == flac_blocksizes[i]) {
frame->blocksize = flac_blocksizes[i];
frame->bs_code[0] = i;
frame->bs_code[1] = 0;
break;
}
}
if(i == 16) {
frame->blocksize = s->blocksize;
if(frame->blocksize <= 256) {
frame->bs_code[0] = 6;
frame->bs_code[1] = frame->blocksize-1;
} else {
frame->bs_code[0] = 7;
frame->bs_code[1] = frame->blocksize-1;
}
}
for(ch=0; ch<s->channels; ch++) {
frame->subframes[ch].obits = 16;
}
}
/**
* Copy channel-interleaved input samples into separate subframes
*/
static void copy_samples(FlacEncodeContext *s, int16_t *samples)
{
int i, j, ch;
FlacFrame *frame;
frame = &s->frame;
for(i=0,j=0; i<frame->blocksize; i++) {
for(ch=0; ch<s->channels; ch++,j++) {
frame->subframes[ch].samples[i] = samples[j];
}
}
}
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
{
int i, best;
int32_t lt, rt;
uint64_t left, right, mid, side;
uint64_t score[4];
/* calculate sum of squares for each channel */
left = right = mid = side = 0;
for(i=2; i<n; i++) {
lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
mid += ABS((lt + rt) >> 1);
side += ABS(lt - rt);
left += ABS(lt);
right += ABS(rt);
}
/* calculate score for each mode */
score[0] = left + right;
score[1] = left + side;
score[2] = right + side;
score[3] = mid + side;
/* return mode with lowest score */
best = 0;
for(i=1; i<4; i++) {
if(score[i] < score[best]) {
best = i;
}
}
if(best == 0) {
return FLAC_CHMODE_LEFT_RIGHT;
} else if(best == 1) {
return FLAC_CHMODE_LEFT_SIDE;
} else if(best == 2) {
return FLAC_CHMODE_RIGHT_SIDE;
} else {
return FLAC_CHMODE_MID_SIDE;
}
}
/**
* Perform stereo channel decorrelation
*/
static void channel_decorrelation(FlacEncodeContext *ctx)
{
FlacFrame *frame;
int32_t *left, *right;
int i, n;
frame = &ctx->frame;
n = frame->blocksize;
left = frame->subframes[0].samples;
right = frame->subframes[1].samples;
if(ctx->channels != 2) {
frame->ch_mode = FLAC_CHMODE_NOT_STEREO;
return;
}
frame->ch_mode = estimate_stereo_mode(left, right, n);
/* perform decorrelation and adjust bits-per-sample */
if(frame->ch_mode == FLAC_CHMODE_LEFT_RIGHT) {
return;
}
if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
int32_t tmp;
for(i=0; i<n; i++) {
tmp = left[i];
left[i] = (tmp + right[i]) >> 1;
right[i] = tmp - right[i];
}
frame->subframes[1].obits++;
} else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
for(i=0; i<n; i++) {
right[i] = left[i] - right[i];
}
frame->subframes[1].obits++;
} else {
for(i=0; i<n; i++) {
left[i] -= right[i];
}
frame->subframes[0].obits++;
}
}
static void encode_residual_verbatim(FlacEncodeContext *s, int ch)
{
FlacFrame *frame;
FlacSubframe *sub;
int32_t *res;
int32_t *smp;
int n;
frame = &s->frame;
sub = &frame->subframes[ch];
res = sub->residual;
smp = sub->samples;
n = frame->blocksize;
sub->order = 0;
sub->type = FLAC_SUBFRAME_VERBATIM;
sub->type_code = sub->type;
memcpy(res, smp, n * sizeof(int32_t));
}
static void encode_residual_fixed(int32_t *res, int32_t *smp, int n, int order)
{
int i;
for(i=0; i<order; i++) {
res[i] = smp[i];
}
if(order==0){
for(i=order; i<n; i++)
res[i]= smp[i];
}else if(order==1){
for(i=order; i<n; i++)
res[i]= smp[i] - smp[i-1];
}else if(order==2){
for(i=order; i<n; i++)
res[i]= smp[i] - 2*smp[i-1] + smp[i-2];
}else if(order==3){
for(i=order; i<n; i++)
res[i]= smp[i] - 3*smp[i-1] + 3*smp[i-2] - smp[i-3];
}else{
for(i=order; i<n; i++)
res[i]= smp[i] - 4*smp[i-1] + 6*smp[i-2] - 4*smp[i-3] + smp[i-4];
}
}
static void encode_residual(FlacEncodeContext *s, int ch)
{
FlacFrame *frame;
FlacSubframe *sub;
int32_t *res;
int32_t *smp;
int n;
frame = &s->frame;
sub = &frame->subframes[ch];
res = sub->residual;
smp = sub->samples;
n = frame->blocksize;
sub->order = 2;
sub->type = FLAC_SUBFRAME_FIXED;
sub->type_code = sub->type | sub->order;
encode_residual_fixed(res, smp, n, sub->order);
}
static void
put_sbits(PutBitContext *pb, int bits, int32_t val)
{
assert(bits >= 0 && bits <= 31);
put_bits(pb, bits, val & ((1<<bits)-1));
}
static void
write_utf8(PutBitContext *pb, uint32_t val)
{
int bytes, shift;
if(val < 0x80){
put_bits(pb, 8, val);
return;
}
bytes= (av_log2(val)+4) / 5;
shift = (bytes - 1) * 6;
put_bits(pb, 8, (256 - (256>>bytes)) | (val >> shift));
while(shift >= 6){
shift -= 6;
put_bits(pb, 8, 0x80 | ((val >> shift) & 0x3F));
}
}
static void
output_frame_header(FlacEncodeContext *s)
{
FlacFrame *frame;
int crc;
frame = &s->frame;
put_bits(&s->pb, 16, 0xFFF8);
put_bits(&s->pb, 4, frame->bs_code[0]);
put_bits(&s->pb, 4, s->sr_code[0]);
if(frame->ch_mode == FLAC_CHMODE_NOT_STEREO) {
put_bits(&s->pb, 4, s->ch_code);
} else {
put_bits(&s->pb, 4, frame->ch_mode);
}
put_bits(&s->pb, 3, 4); /* bits-per-sample code */
put_bits(&s->pb, 1, 0);
write_utf8(&s->pb, s->frame_count);
if(frame->bs_code[0] == 6) {
put_bits(&s->pb, 8, frame->bs_code[1]);
} else if(frame->bs_code[0] == 7) {
put_bits(&s->pb, 16, frame->bs_code[1]);
}
if(s->sr_code[0] == 12) {
put_bits(&s->pb, 8, s->sr_code[1]);
} else if(s->sr_code[0] > 12) {
put_bits(&s->pb, 16, s->sr_code[1]);
}
flush_put_bits(&s->pb);
crc = av_crc(av_crc07, 0, s->pb.buf, put_bits_count(&s->pb)>>3);
put_bits(&s->pb, 8, crc);
}
static void output_subframe_verbatim(FlacEncodeContext *s, int ch)
{
int i;
FlacFrame *frame;
FlacSubframe *sub;
int32_t res;
frame = &s->frame;
sub = &frame->subframes[ch];
for(i=0; i<frame->blocksize; i++) {
res = sub->residual[i];
put_sbits(&s->pb, sub->obits, res);
}
}
static void
output_residual(FlacEncodeContext *ctx, int ch)
{
int i, j, p;
int k, porder, psize, res_cnt;
FlacFrame *frame;
FlacSubframe *sub;
frame = &ctx->frame;
sub = &frame->subframes[ch];
/* rice-encoded block */
put_bits(&ctx->pb, 2, 0);
/* partition order */
porder = 0;
psize = frame->blocksize;
//porder = sub->rc.porder;
//psize = frame->blocksize >> porder;
put_bits(&ctx->pb, 4, porder);
res_cnt = psize - sub->order;
/* residual */
j = sub->order;
for(p=0; p<(1 << porder); p++) {
//k = sub->rc.params[p];
k = 9;
put_bits(&ctx->pb, 4, k);
if(p == 1) res_cnt = psize;
for(i=0; i<res_cnt && j<frame->blocksize; i++, j++) {
set_sr_golomb_flac(&ctx->pb, sub->residual[j], k, INT32_MAX, 0);
}
}
}
static void
output_subframe_fixed(FlacEncodeContext *ctx, int ch)
{
int i;
FlacFrame *frame;
FlacSubframe *sub;
frame = &ctx->frame;
sub = &frame->subframes[ch];
/* warm-up samples */
for(i=0; i<sub->order; i++) {
put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
}
/* residual */
output_residual(ctx, ch);
}
static void output_subframes(FlacEncodeContext *s)
{
FlacFrame *frame;
FlacSubframe *sub;
int ch;
frame = &s->frame;
for(ch=0; ch<s->channels; ch++) {
sub = &frame->subframes[ch];
/* subframe header */
put_bits(&s->pb, 1, 0);
put_bits(&s->pb, 6, sub->type_code);
put_bits(&s->pb, 1, 0); /* no wasted bits */
/* subframe */
if(sub->type == FLAC_SUBFRAME_VERBATIM) {
output_subframe_verbatim(s, ch);
} else {
output_subframe_fixed(s, ch);
}
}
}
static void output_frame_footer(FlacEncodeContext *s)
{
int crc;
flush_put_bits(&s->pb);
crc = bswap_16(av_crc(av_crc8005, 0, s->pb.buf, put_bits_count(&s->pb)>>3));
put_bits(&s->pb, 16, crc);
flush_put_bits(&s->pb);
}
static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
int buf_size, void *data)
{
int ch;
FlacEncodeContext *s;
int16_t *samples = data;
int out_bytes;
s = avctx->priv_data;
s->blocksize = avctx->frame_size;
init_frame(s);
copy_samples(s, samples);
channel_decorrelation(s);
for(ch=0; ch<s->channels; ch++) {
encode_residual(s, ch);
}
init_put_bits(&s->pb, frame, buf_size);
output_frame_header(s);
output_subframes(s);
output_frame_footer(s);
out_bytes = put_bits_count(&s->pb) >> 3;
if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
/* frame too large. use verbatim mode */
for(ch=0; ch<s->channels; ch++) {
encode_residual_verbatim(s, ch);
}
init_put_bits(&s->pb, frame, buf_size);
output_frame_header(s);
output_subframes(s);
output_frame_footer(s);
out_bytes = put_bits_count(&s->pb) >> 3;
if(out_bytes > s->max_framesize || out_bytes >= buf_size) {
/* still too large. must be an error. */
av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
return -1;
}
}
s->frame_count++;
return out_bytes;
}
static int flac_encode_close(AVCodecContext *avctx)
{
av_freep(&avctx->extradata);
avctx->extradata_size = 0;
av_freep(&avctx->coded_frame);
return 0;
}
AVCodec flac_encoder = {
"flac",
CODEC_TYPE_AUDIO,
CODEC_ID_FLAC,
sizeof(FlacEncodeContext),
flac_encode_init,
flac_encode_frame,
flac_encode_close,
NULL,
.capabilities = CODEC_CAP_SMALL_LAST_FRAME,
};