1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavcodec/dvenc.c
Andreas Rheinhardt 4243da4ff4 avcodec/codec_internal: Use union for FFCodec decode/encode callbacks
This is possible, because every given FFCodec has to implement
exactly one of these. Doing so decreases sizeof(FFCodec) and
therefore decreases the size of the binary.
Notice that in case of position-independent code the decrease
is in .data.rel.ro, so that this translates to decreased
memory consumption.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2022-04-05 20:02:37 +02:00

1226 lines
45 KiB
C

/*
* DV encoder
* Copyright (c) 2003 Roman Shaposhnik
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* quant_deadzone code and fixes sponsored by NOA GmbH
*/
/**
* @file
* DV encoder
*/
#include "config.h"
#include "libavutil/attributes.h"
#include "libavutil/internal.h"
#include "libavutil/mem_internal.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/thread.h"
#include "avcodec.h"
#include "codec_internal.h"
#include "dv.h"
#include "dv_profile_internal.h"
#include "dv_tablegen.h"
#include "encode.h"
#include "fdctdsp.h"
#include "mathops.h"
#include "me_cmp.h"
#include "pixblockdsp.h"
#include "put_bits.h"
static av_cold int dvvideo_encode_init(AVCodecContext *avctx)
{
DVVideoContext *s = avctx->priv_data;
FDCTDSPContext fdsp;
MECmpContext mecc;
PixblockDSPContext pdsp;
int ret;
s->sys = av_dv_codec_profile2(avctx->width, avctx->height, avctx->pix_fmt, avctx->time_base);
if (!s->sys) {
av_log(avctx, AV_LOG_ERROR, "Found no DV profile for %ix%i %s video. "
"Valid DV profiles are:\n",
avctx->width, avctx->height, av_get_pix_fmt_name(avctx->pix_fmt));
ff_dv_print_profiles(avctx, AV_LOG_ERROR);
return AVERROR(EINVAL);
}
ret = ff_dv_init_dynamic_tables(s, s->sys);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR, "Error initializing work tables.\n");
return ret;
}
memset(&fdsp,0, sizeof(fdsp));
memset(&mecc,0, sizeof(mecc));
memset(&pdsp,0, sizeof(pdsp));
ff_fdctdsp_init(&fdsp, avctx);
ff_me_cmp_init(&mecc, avctx);
ff_pixblockdsp_init(&pdsp, avctx);
ff_set_cmp(&mecc, mecc.ildct_cmp, avctx->ildct_cmp);
s->get_pixels = pdsp.get_pixels;
s->ildct_cmp = mecc.ildct_cmp[5];
s->fdct[0] = fdsp.fdct;
s->fdct[1] = fdsp.fdct248;
#if !CONFIG_HARDCODED_TABLES
{
static AVOnce init_static_once = AV_ONCE_INIT;
ff_thread_once(&init_static_once, dv_vlc_map_tableinit);
}
#endif
return ff_dvvideo_init(avctx);
}
/* bit budget for AC only in 5 MBs */
static const int vs_total_ac_bits_hd = (68 * 6 + 52*2) * 5;
static const int vs_total_ac_bits = (100 * 4 + 68 * 2) * 5;
static const int mb_area_start[5] = { 1, 6, 21, 43, 64 };
#if CONFIG_SMALL
/* Convert run and level (where level != 0) pair into VLC, returning bit size */
static av_always_inline int dv_rl2vlc(int run, int level, int sign,
uint32_t *vlc)
{
int size;
if (run < DV_VLC_MAP_RUN_SIZE && level < DV_VLC_MAP_LEV_SIZE) {
*vlc = dv_vlc_map[run][level].vlc | sign;
size = dv_vlc_map[run][level].size;
} else {
if (level < DV_VLC_MAP_LEV_SIZE) {
*vlc = dv_vlc_map[0][level].vlc | sign;
size = dv_vlc_map[0][level].size;
} else {
*vlc = 0xfe00 | (level << 1) | sign;
size = 16;
}
if (run) {
*vlc |= ((run < 16) ? dv_vlc_map[run - 1][0].vlc :
(0x1f80 | (run - 1))) << size;
size += (run < 16) ? dv_vlc_map[run - 1][0].size : 13;
}
}
return size;
}
static av_always_inline int dv_rl2vlc_size(int run, int level)
{
int size;
if (run < DV_VLC_MAP_RUN_SIZE && level < DV_VLC_MAP_LEV_SIZE) {
size = dv_vlc_map[run][level].size;
} else {
size = (level < DV_VLC_MAP_LEV_SIZE) ? dv_vlc_map[0][level].size : 16;
if (run)
size += (run < 16) ? dv_vlc_map[run - 1][0].size : 13;
}
return size;
}
#else
static av_always_inline int dv_rl2vlc(int run, int l, int sign, uint32_t *vlc)
{
*vlc = dv_vlc_map[run][l].vlc | sign;
return dv_vlc_map[run][l].size;
}
static av_always_inline int dv_rl2vlc_size(int run, int l)
{
return dv_vlc_map[run][l].size;
}
#endif
typedef struct EncBlockInfo {
int area_q[4];
int bit_size[4];
int prev[5];
int cur_ac;
int cno;
int dct_mode;
int16_t mb[64];
uint8_t next[64];
uint8_t sign[64];
uint8_t partial_bit_count;
uint32_t partial_bit_buffer; /* we can't use uint16_t here */
/* used by DV100 only: a copy of the weighted and classified but
not-yet-quantized AC coefficients. This is necessary for
re-quantizing at different steps. */
int16_t save[64];
int min_qlevel; /* DV100 only: minimum qlevel (for AC coefficients >255) */
} EncBlockInfo;
static av_always_inline PutBitContext *dv_encode_ac(EncBlockInfo *bi,
PutBitContext *pb_pool,
PutBitContext *pb_end)
{
int prev, bits_left;
PutBitContext *pb = pb_pool;
int size = bi->partial_bit_count;
uint32_t vlc = bi->partial_bit_buffer;
bi->partial_bit_count =
bi->partial_bit_buffer = 0;
for (;;) {
/* Find suitable storage space */
for (; size > (bits_left = put_bits_left(pb)); pb++) {
if (bits_left) {
size -= bits_left;
put_bits(pb, bits_left, vlc >> size);
vlc = av_mod_uintp2(vlc, size);
}
if (pb + 1 >= pb_end) {
bi->partial_bit_count = size;
bi->partial_bit_buffer = vlc;
return pb;
}
}
/* Store VLC */
put_bits(pb, size, vlc);
if (bi->cur_ac >= 64)
break;
/* Construct the next VLC */
prev = bi->cur_ac;
bi->cur_ac = bi->next[prev];
if (bi->cur_ac < 64) {
size = dv_rl2vlc(bi->cur_ac - prev - 1, bi->mb[bi->cur_ac],
bi->sign[bi->cur_ac], &vlc);
} else {
size = 4;
vlc = 6; /* End Of Block stamp */
}
}
return pb;
}
static av_always_inline int dv_guess_dct_mode(DVVideoContext *s, uint8_t *data,
ptrdiff_t linesize)
{
if (s->avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
int ps = s->ildct_cmp(NULL, data, NULL, linesize, 8) - 400;
if (ps > 0) {
int is = s->ildct_cmp(NULL, data, NULL, linesize * 2, 4) +
s->ildct_cmp(NULL, data + linesize, NULL, linesize * 2, 4);
return ps > is;
}
}
return 0;
}
static const int dv_weight_bits = 18;
static const int dv_weight_88[64] = {
131072, 257107, 257107, 242189, 252167, 242189, 235923, 237536,
237536, 235923, 229376, 231390, 223754, 231390, 229376, 222935,
224969, 217965, 217965, 224969, 222935, 200636, 218652, 211916,
212325, 211916, 218652, 200636, 188995, 196781, 205965, 206433,
206433, 205965, 196781, 188995, 185364, 185364, 200636, 200704,
200636, 185364, 185364, 174609, 180568, 195068, 195068, 180568,
174609, 170091, 175557, 189591, 175557, 170091, 165371, 170627,
170627, 165371, 160727, 153560, 160727, 144651, 144651, 136258,
};
static const int dv_weight_248[64] = {
131072, 262144, 257107, 257107, 242189, 242189, 242189, 242189,
237536, 237536, 229376, 229376, 200636, 200636, 224973, 224973,
223754, 223754, 235923, 235923, 229376, 229376, 217965, 217965,
211916, 211916, 196781, 196781, 185364, 185364, 206433, 206433,
211916, 211916, 222935, 222935, 200636, 200636, 205964, 205964,
200704, 200704, 180568, 180568, 175557, 175557, 195068, 195068,
185364, 185364, 188995, 188995, 174606, 174606, 175557, 175557,
170627, 170627, 153560, 153560, 165371, 165371, 144651, 144651,
};
/* setting this to 1 results in a faster codec but
* somewhat lower image quality */
#define DV100_SACRIFICE_QUALITY_FOR_SPEED 1
#define DV100_ENABLE_FINER 1
/* pack combination of QNO and CNO into a single 8-bit value */
#define DV100_MAKE_QLEVEL(qno,cno) ((qno<<2) | (cno))
#define DV100_QLEVEL_QNO(qlevel) (qlevel>>2)
#define DV100_QLEVEL_CNO(qlevel) (qlevel&0x3)
#define DV100_NUM_QLEVELS 31
/* The quantization step is determined by a combination of QNO and
CNO. We refer to these combinations as "qlevels" (this term is our
own, it's not mentioned in the spec). We use CNO, a multiplier on
the quantization step, to "fill in the gaps" between quantization
steps associated with successive values of QNO. e.g. there is no
QNO for a quantization step of 10, but we can use QNO=5 CNO=1 to
get the same result. The table below encodes combinations of QNO
and CNO in order of increasing quantization coarseness. */
static const uint8_t dv100_qlevels[DV100_NUM_QLEVELS] = {
DV100_MAKE_QLEVEL( 1,0), // 1*1= 1
DV100_MAKE_QLEVEL( 1,0), // 1*1= 1
DV100_MAKE_QLEVEL( 2,0), // 2*1= 2
DV100_MAKE_QLEVEL( 3,0), // 3*1= 3
DV100_MAKE_QLEVEL( 4,0), // 4*1= 4
DV100_MAKE_QLEVEL( 5,0), // 5*1= 5
DV100_MAKE_QLEVEL( 6,0), // 6*1= 6
DV100_MAKE_QLEVEL( 7,0), // 7*1= 7
DV100_MAKE_QLEVEL( 8,0), // 8*1= 8
DV100_MAKE_QLEVEL( 5,1), // 5*2=10
DV100_MAKE_QLEVEL( 6,1), // 6*2=12
DV100_MAKE_QLEVEL( 7,1), // 7*2=14
DV100_MAKE_QLEVEL( 9,0), // 16*1=16
DV100_MAKE_QLEVEL(10,0), // 18*1=18
DV100_MAKE_QLEVEL(11,0), // 20*1=20
DV100_MAKE_QLEVEL(12,0), // 22*1=22
DV100_MAKE_QLEVEL(13,0), // 24*1=24
DV100_MAKE_QLEVEL(14,0), // 28*1=28
DV100_MAKE_QLEVEL( 9,1), // 16*2=32
DV100_MAKE_QLEVEL(10,1), // 18*2=36
DV100_MAKE_QLEVEL(11,1), // 20*2=40
DV100_MAKE_QLEVEL(12,1), // 22*2=44
DV100_MAKE_QLEVEL(13,1), // 24*2=48
DV100_MAKE_QLEVEL(15,0), // 52*1=52
DV100_MAKE_QLEVEL(14,1), // 28*2=56
DV100_MAKE_QLEVEL( 9,2), // 16*4=64
DV100_MAKE_QLEVEL(10,2), // 18*4=72
DV100_MAKE_QLEVEL(11,2), // 20*4=80
DV100_MAKE_QLEVEL(12,2), // 22*4=88
DV100_MAKE_QLEVEL(13,2), // 24*4=96
// ...
DV100_MAKE_QLEVEL(15,3), // 52*8=416
};
static const int dv100_min_bias = 0;
static const int dv100_chroma_bias = 0;
static const int dv100_starting_qno = 1;
#if DV100_SACRIFICE_QUALITY_FOR_SPEED
static const int dv100_qlevel_inc = 4;
#else
static const int dv100_qlevel_inc = 1;
#endif
// 1/qstep, shifted up by 16 bits
static const int dv100_qstep_bits = 16;
static const int dv100_qstep_inv[16] = {
65536, 65536, 32768, 21845, 16384, 13107, 10923, 9362, 8192, 4096, 3641, 3277, 2979, 2731, 2341, 1260,
};
/* DV100 weights are pre-zigzagged, inverted and multiplied by 2^16
(in DV100 the AC components are divided by the spec weights) */
static const int dv_weight_1080[2][64] = {
{ 8192, 65536, 65536, 61681, 61681, 61681, 58254, 58254,
58254, 58254, 58254, 58254, 55188, 58254, 58254, 55188,
55188, 55188, 55188, 55188, 55188, 24966, 27594, 26214,
26214, 26214, 27594, 24966, 23831, 24385, 25575, 25575,
25575, 25575, 24385, 23831, 23302, 23302, 24966, 24966,
24966, 23302, 23302, 21845, 22795, 24385, 24385, 22795,
21845, 21400, 21845, 23831, 21845, 21400, 10382, 10700,
10700, 10382, 10082, 9620, 10082, 9039, 9039, 8525, },
{ 8192, 65536, 65536, 61681, 61681, 61681, 41943, 41943,
41943, 41943, 40330, 41943, 40330, 41943, 40330, 40330,
40330, 38836, 38836, 40330, 40330, 24966, 27594, 26214,
26214, 26214, 27594, 24966, 23831, 24385, 25575, 25575,
25575, 25575, 24385, 23831, 11523, 11523, 12483, 12483,
12483, 11523, 11523, 10923, 11275, 12193, 12193, 11275,
10923, 5323, 5490, 5924, 5490, 5323, 5165, 5323,
5323, 5165, 5017, 4788, 5017, 4520, 4520, 4263, }
};
static const int dv_weight_720[2][64] = {
{ 8192, 65536, 65536, 61681, 61681, 61681, 58254, 58254,
58254, 58254, 58254, 58254, 55188, 58254, 58254, 55188,
55188, 55188, 55188, 55188, 55188, 24966, 27594, 26214,
26214, 26214, 27594, 24966, 23831, 24385, 25575, 25575,
25575, 25575, 24385, 23831, 15420, 15420, 16644, 16644,
16644, 15420, 15420, 10923, 11398, 12193, 12193, 11398,
10923, 10700, 10923, 11916, 10923, 10700, 5191, 5350,
5350, 5191, 5041, 4810, 5041, 4520, 4520, 4263, },
{ 8192, 43691, 43691, 40330, 40330, 40330, 29127, 29127,
29127, 29127, 29127, 29127, 27594, 29127, 29127, 27594,
27594, 27594, 27594, 27594, 27594, 12483, 13797, 13107,
13107, 13107, 13797, 12483, 11916, 12193, 12788, 12788,
12788, 12788, 12193, 11916, 5761, 5761, 6242, 6242,
6242, 5761, 5761, 5461, 5638, 5461, 6096, 5638,
5461, 2661, 2745, 2962, 2745, 2661, 2583, 2661,
2661, 2583, 2509, 2394, 2509, 2260, 2260, 2131, }
};
static av_always_inline int dv_set_class_number_sd(DVVideoContext *s,
int16_t *blk, EncBlockInfo *bi,
const uint8_t *zigzag_scan,
const int *weight, int bias)
{
int i, area;
/* We offer two different methods for class number assignment: the
* method suggested in SMPTE 314M Table 22, and an improved
* method. The SMPTE method is very conservative; it assigns class
* 3 (i.e. severe quantization) to any block where the largest AC
* component is greater than 36. FFmpeg's DV encoder tracks AC bit
* consumption precisely, so there is no need to bias most blocks
* towards strongly lossy compression. Instead, we assign class 2
* to most blocks, and use class 3 only when strictly necessary
* (for blocks whose largest AC component exceeds 255). */
#if 0 /* SMPTE spec method */
static const int classes[] = { 12, 24, 36, 0xffff };
#else /* improved FFmpeg method */
static const int classes[] = { -1, -1, 255, 0xffff };
#endif
int max = classes[0];
int prev = 0;
const unsigned deadzone = s->quant_deadzone;
const unsigned threshold = 2 * deadzone;
bi->mb[0] = blk[0];
for (area = 0; area < 4; area++) {
bi->prev[area] = prev;
bi->bit_size[area] = 1; // 4 areas 4 bits for EOB :)
for (i = mb_area_start[area]; i < mb_area_start[area + 1]; i++) {
int level = blk[zigzag_scan[i]];
if (level + deadzone > threshold) {
bi->sign[i] = (level >> 31) & 1;
/* Weight it and shift down into range, adding for rounding.
* The extra division by a factor of 2^4 reverses the 8x
* expansion of the DCT AND the 2x doubling of the weights. */
level = (FFABS(level) * weight[i] + (1 << (dv_weight_bits + 3))) >>
(dv_weight_bits + 4);
if (!level)
continue;
bi->mb[i] = level;
if (level > max)
max = level;
bi->bit_size[area] += dv_rl2vlc_size(i - prev - 1, level);
bi->next[prev] = i;
prev = i;
}
}
}
bi->next[prev] = i;
for (bi->cno = 0; max > classes[bi->cno]; bi->cno++)
;
bi->cno += bias;
if (bi->cno >= 3) {
bi->cno = 3;
prev = 0;
i = bi->next[prev];
for (area = 0; area < 4; area++) {
bi->prev[area] = prev;
bi->bit_size[area] = 1; // 4 areas 4 bits for EOB :)
for (; i < mb_area_start[area + 1]; i = bi->next[i]) {
bi->mb[i] >>= 1;
if (bi->mb[i]) {
bi->bit_size[area] += dv_rl2vlc_size(i - prev - 1, bi->mb[i]);
bi->next[prev] = i;
prev = i;
}
}
}
bi->next[prev] = i;
}
return bi->bit_size[0] + bi->bit_size[1] +
bi->bit_size[2] + bi->bit_size[3];
}
/* this function just copies the DCT coefficients and performs
the initial (non-)quantization. */
static inline void dv_set_class_number_hd(DVVideoContext *s,
int16_t *blk, EncBlockInfo *bi,
const uint8_t *zigzag_scan,
const int *weight, int bias)
{
int i, max = 0;
/* the first quantization (none at all) */
bi->area_q[0] = 1;
/* weigh AC components and store to save[] */
/* (i=0 is the DC component; we only include it to make the
number of loop iterations even, for future possible SIMD optimization) */
for (i = 0; i < 64; i += 2) {
int level0, level1;
/* get the AC component (in zig-zag order) */
level0 = blk[zigzag_scan[i+0]];
level1 = blk[zigzag_scan[i+1]];
/* extract sign and make it the lowest bit */
bi->sign[i+0] = (level0>>31)&1;
bi->sign[i+1] = (level1>>31)&1;
/* take absolute value of the level */
level0 = FFABS(level0);
level1 = FFABS(level1);
/* weigh it */
level0 = (level0*weight[i+0] + 4096 + (1<<17)) >> 18;
level1 = (level1*weight[i+1] + 4096 + (1<<17)) >> 18;
/* save unquantized value */
bi->save[i+0] = level0;
bi->save[i+1] = level1;
/* find max component */
if (bi->save[i+0] > max)
max = bi->save[i+0];
if (bi->save[i+1] > max)
max = bi->save[i+1];
}
/* copy DC component */
bi->mb[0] = blk[0];
/* the EOB code is 4 bits */
bi->bit_size[0] = 4;
bi->bit_size[1] = bi->bit_size[2] = bi->bit_size[3] = 0;
/* ensure that no AC coefficients are cut off */
bi->min_qlevel = ((max+256) >> 8);
bi->area_q[0] = 25; /* set to an "impossible" value */
bi->cno = 0;
}
static av_always_inline int dv_init_enc_block(EncBlockInfo* bi, uint8_t *data, int linesize,
DVVideoContext *s, int chroma)
{
LOCAL_ALIGNED_16(int16_t, blk, [64]);
bi->area_q[0] = bi->area_q[1] = bi->area_q[2] = bi->area_q[3] = 0;
bi->partial_bit_count = 0;
bi->partial_bit_buffer = 0;
bi->cur_ac = 0;
if (data) {
if (DV_PROFILE_IS_HD(s->sys)) {
s->get_pixels(blk, data, linesize * (1 << bi->dct_mode));
s->fdct[0](blk);
} else {
bi->dct_mode = dv_guess_dct_mode(s, data, linesize);
s->get_pixels(blk, data, linesize);
s->fdct[bi->dct_mode](blk);
}
} else {
/* We rely on the fact that encoding all zeros leads to an immediate EOB,
which is precisely what the spec calls for in the "dummy" blocks. */
memset(blk, 0, 64*sizeof(*blk));
bi->dct_mode = 0;
}
if (DV_PROFILE_IS_HD(s->sys)) {
const int *weights;
if (s->sys->height == 1080) {
weights = dv_weight_1080[chroma];
} else { /* 720p */
weights = dv_weight_720[chroma];
}
dv_set_class_number_hd(s, blk, bi,
ff_zigzag_direct,
weights,
dv100_min_bias+chroma*dv100_chroma_bias);
} else {
dv_set_class_number_sd(s, blk, bi,
bi->dct_mode ? ff_dv_zigzag248_direct : ff_zigzag_direct,
bi->dct_mode ? dv_weight_248 : dv_weight_88,
chroma);
}
return bi->bit_size[0] + bi->bit_size[1] + bi->bit_size[2] + bi->bit_size[3];
}
/* DV100 quantize
Perform quantization by divinding the AC component by the qstep.
As an optimization we use a fixed-point integer multiply instead
of a divide. */
static av_always_inline int dv100_quantize(int level, int qsinv)
{
/* this code is equivalent to */
/* return (level + qs/2) / qs; */
return (level * qsinv + 1024 + (1<<(dv100_qstep_bits-1))) >> dv100_qstep_bits;
/* the extra +1024 is needed to make the rounding come out right. */
/* I (DJM) have verified that the results are exactly the same as
division for level 0-2048 at all QNOs. */
}
static int dv100_actual_quantize(EncBlockInfo *b, int qlevel)
{
int prev, k, qsinv;
int qno = DV100_QLEVEL_QNO(dv100_qlevels[qlevel]);
int cno = DV100_QLEVEL_CNO(dv100_qlevels[qlevel]);
if (b->area_q[0] == qno && b->cno == cno)
return b->bit_size[0];
qsinv = dv100_qstep_inv[qno];
/* record the new qstep */
b->area_q[0] = qno;
b->cno = cno;
/* reset encoded size (EOB = 4 bits) */
b->bit_size[0] = 4;
/* visit nonzero components and quantize */
prev = 0;
for (k = 1; k < 64; k++) {
/* quantize */
int ac = dv100_quantize(b->save[k], qsinv) >> cno;
if (ac) {
if (ac > 255)
ac = 255;
b->mb[k] = ac;
b->bit_size[0] += dv_rl2vlc_size(k - prev - 1, ac);
b->next[prev] = k;
prev = k;
}
}
b->next[prev] = k;
return b->bit_size[0];
}
static inline void dv_guess_qnos_hd(EncBlockInfo *blks, int *qnos)
{
EncBlockInfo *b;
int min_qlevel[5];
int qlevels[5];
int size[5];
int i, j;
/* cache block sizes at hypothetical qlevels */
uint16_t size_cache[5*8][DV100_NUM_QLEVELS] = {{0}};
/* get minimum qlevels */
for (i = 0; i < 5; i++) {
min_qlevel[i] = 1;
for (j = 0; j < 8; j++) {
if (blks[8*i+j].min_qlevel > min_qlevel[i])
min_qlevel[i] = blks[8*i+j].min_qlevel;
}
}
/* initialize sizes */
for (i = 0; i < 5; i++) {
qlevels[i] = dv100_starting_qno;
if (qlevels[i] < min_qlevel[i])
qlevels[i] = min_qlevel[i];
qnos[i] = DV100_QLEVEL_QNO(dv100_qlevels[qlevels[i]]);
size[i] = 0;
for (j = 0; j < 8; j++) {
size_cache[8*i+j][qlevels[i]] = dv100_actual_quantize(&blks[8*i+j], qlevels[i]);
size[i] += size_cache[8*i+j][qlevels[i]];
}
}
/* must we go coarser? */
if (size[0]+size[1]+size[2]+size[3]+size[4] > vs_total_ac_bits_hd) {
int largest = size[0] % 5; /* 'random' number */
int qlevels_done = 0;
do {
/* find the macroblock with the lowest qlevel */
for (i = 0; i < 5; i++) {
if (qlevels[i] < qlevels[largest])
largest = i;
}
i = largest;
/* ensure that we don't enter infinite loop */
largest = (largest+1) % 5;
/* quantize a little bit more */
qlevels[i] += dv100_qlevel_inc;
if (qlevels[i] > DV100_NUM_QLEVELS-1) {
qlevels[i] = DV100_NUM_QLEVELS-1;
qlevels_done++;
}
qnos[i] = DV100_QLEVEL_QNO(dv100_qlevels[qlevels[i]]);
size[i] = 0;
/* for each block */
b = &blks[8*i];
for (j = 0; j < 8; j++, b++) {
/* accumulate block size into macroblock */
if(size_cache[8*i+j][qlevels[i]] == 0) {
/* it is safe to use actual_quantize() here because we only go from finer to coarser,
and it saves the final actual_quantize() down below */
size_cache[8*i+j][qlevels[i]] = dv100_actual_quantize(b, qlevels[i]);
}
size[i] += size_cache[8*i+j][qlevels[i]];
} /* for each block */
} while (vs_total_ac_bits_hd < size[0] + size[1] + size[2] + size[3] + size[4] && qlevels_done < 5);
// can we go finer?
} else if (DV100_ENABLE_FINER &&
size[0]+size[1]+size[2]+size[3]+size[4] < vs_total_ac_bits_hd) {
int save_qlevel;
int largest = size[0] % 5; /* 'random' number */
while (qlevels[0] > min_qlevel[0] ||
qlevels[1] > min_qlevel[1] ||
qlevels[2] > min_qlevel[2] ||
qlevels[3] > min_qlevel[3] ||
qlevels[4] > min_qlevel[4]) {
/* find the macroblock with the highest qlevel */
for (i = 0; i < 5; i++) {
if (qlevels[i] > min_qlevel[i] && qlevels[i] > qlevels[largest])
largest = i;
}
i = largest;
/* ensure that we don't enter infinite loop */
largest = (largest+1) % 5;
if (qlevels[i] <= min_qlevel[i]) {
/* can't unquantize any more */
continue;
}
/* quantize a little bit less */
save_qlevel = qlevels[i];
qlevels[i] -= dv100_qlevel_inc;
if (qlevels[i] < min_qlevel[i])
qlevels[i] = min_qlevel[i];
qnos[i] = DV100_QLEVEL_QNO(dv100_qlevels[qlevels[i]]);
size[i] = 0;
/* for each block */
b = &blks[8*i];
for (j = 0; j < 8; j++, b++) {
/* accumulate block size into macroblock */
if(size_cache[8*i+j][qlevels[i]] == 0) {
size_cache[8*i+j][qlevels[i]] = dv100_actual_quantize(b, qlevels[i]);
}
size[i] += size_cache[8*i+j][qlevels[i]];
} /* for each block */
/* did we bust the limit? */
if (vs_total_ac_bits_hd < size[0] + size[1] + size[2] + size[3] + size[4]) {
/* go back down and exit */
qlevels[i] = save_qlevel;
qnos[i] = DV100_QLEVEL_QNO(dv100_qlevels[qlevels[i]]);
break;
}
}
}
/* now do the actual quantization */
for (i = 0; i < 5; i++) {
/* for each block */
b = &blks[8*i];
size[i] = 0;
for (j = 0; j < 8; j++, b++) {
/* accumulate block size into macroblock */
size[i] += dv100_actual_quantize(b, qlevels[i]);
} /* for each block */
}
}
static inline void dv_guess_qnos(EncBlockInfo *blks, int *qnos)
{
int size[5];
int i, j, k, a, prev, a2;
EncBlockInfo *b;
size[0] =
size[1] =
size[2] =
size[3] =
size[4] = 1 << 24;
do {
b = blks;
for (i = 0; i < 5; i++) {
if (!qnos[i])
continue;
qnos[i]--;
size[i] = 0;
for (j = 0; j < 6; j++, b++) {
for (a = 0; a < 4; a++) {
if (b->area_q[a] != ff_dv_quant_shifts[qnos[i] + ff_dv_quant_offset[b->cno]][a]) {
b->bit_size[a] = 1; // 4 areas 4 bits for EOB :)
b->area_q[a]++;
prev = b->prev[a];
av_assert2(b->next[prev] >= mb_area_start[a + 1] || b->mb[prev]);
for (k = b->next[prev]; k < mb_area_start[a + 1]; k = b->next[k]) {
b->mb[k] >>= 1;
if (b->mb[k]) {
b->bit_size[a] += dv_rl2vlc_size(k - prev - 1, b->mb[k]);
prev = k;
} else {
if (b->next[k] >= mb_area_start[a + 1] && b->next[k] < 64) {
for (a2 = a + 1; b->next[k] >= mb_area_start[a2 + 1]; a2++)
b->prev[a2] = prev;
av_assert2(a2 < 4);
av_assert2(b->mb[b->next[k]]);
b->bit_size[a2] += dv_rl2vlc_size(b->next[k] - prev - 1, b->mb[b->next[k]]) -
dv_rl2vlc_size(b->next[k] - k - 1, b->mb[b->next[k]]);
av_assert2(b->prev[a2] == k && (a2 + 1 >= 4 || b->prev[a2 + 1] != k));
b->prev[a2] = prev;
}
b->next[prev] = b->next[k];
}
}
b->prev[a + 1] = prev;
}
size[i] += b->bit_size[a];
}
}
if (vs_total_ac_bits >= size[0] + size[1] + size[2] + size[3] + size[4])
return;
}
} while (qnos[0] | qnos[1] | qnos[2] | qnos[3] | qnos[4]);
for (a = 2; a == 2 || vs_total_ac_bits < size[0]; a += a) {
b = blks;
size[0] = 5 * 6 * 4; // EOB
for (j = 0; j < 6 * 5; j++, b++) {
prev = b->prev[0];
for (k = b->next[prev]; k < 64; k = b->next[k]) {
if (b->mb[k] < a && b->mb[k] > -a) {
b->next[prev] = b->next[k];
} else {
size[0] += dv_rl2vlc_size(k - prev - 1, b->mb[k]);
prev = k;
}
}
}
}
}
/* update all cno values into the blocks, over-writing the old values without
touching anything else. (only used for DV100) */
static inline void dv_revise_cnos(uint8_t *dif, EncBlockInfo *blk, const AVDVProfile *profile)
{
uint8_t *data;
int mb_index, i;
for (mb_index = 0; mb_index < 5; mb_index++) {
data = dif + mb_index*80 + 4;
for (i = 0; i < profile->bpm; i++) {
/* zero out the class number */
data[1] &= 0xCF;
/* add the new one */
data[1] |= blk[profile->bpm*mb_index+i].cno << 4;
data += profile->block_sizes[i] >> 3;
}
}
}
static int dv_encode_video_segment(AVCodecContext *avctx, void *arg)
{
DVVideoContext *s = avctx->priv_data;
DVwork_chunk *work_chunk = arg;
int mb_index, i, j;
int mb_x, mb_y, c_offset;
ptrdiff_t linesize, y_stride;
uint8_t *y_ptr;
uint8_t *dif, *p;
LOCAL_ALIGNED_8(uint8_t, scratch, [128]);
EncBlockInfo enc_blks[5 * DV_MAX_BPM];
PutBitContext pbs[5 * DV_MAX_BPM];
PutBitContext *pb;
EncBlockInfo *enc_blk;
int vs_bit_size = 0;
int qnos[5];
int *qnosp = &qnos[0];
p = dif = &s->buf[work_chunk->buf_offset * 80];
enc_blk = &enc_blks[0];
for (mb_index = 0; mb_index < 5; mb_index++) {
dv_calculate_mb_xy(s, work_chunk, mb_index, &mb_x, &mb_y);
qnos[mb_index] = DV_PROFILE_IS_HD(s->sys) ? 1 : 15;
y_ptr = s->frame->data[0] + (mb_y * s->frame->linesize[0] + mb_x) * 8;
linesize = s->frame->linesize[0];
if (s->sys->height == 1080 && mb_y < 134)
enc_blk->dct_mode = dv_guess_dct_mode(s, y_ptr, linesize);
else
enc_blk->dct_mode = 0;
for (i = 1; i < 8; i++)
enc_blk[i].dct_mode = enc_blk->dct_mode;
/* initializing luminance blocks */
if ((s->sys->pix_fmt == AV_PIX_FMT_YUV420P) ||
(s->sys->pix_fmt == AV_PIX_FMT_YUV411P && mb_x >= (704 / 8)) ||
(s->sys->height >= 720 && mb_y != 134)) {
y_stride = s->frame->linesize[0] * (1 << (3*!enc_blk->dct_mode));
} else {
y_stride = 16;
}
y_ptr = s->frame->data[0] +
(mb_y * s->frame->linesize[0] + mb_x) * 8;
linesize = s->frame->linesize[0];
if (s->sys->video_stype == 4) { /* SD 422 */
vs_bit_size +=
dv_init_enc_block(enc_blk + 0, y_ptr, linesize, s, 0) +
dv_init_enc_block(enc_blk + 1, NULL, linesize, s, 0) +
dv_init_enc_block(enc_blk + 2, y_ptr + 8, linesize, s, 0) +
dv_init_enc_block(enc_blk + 3, NULL, linesize, s, 0);
} else {
vs_bit_size +=
dv_init_enc_block(enc_blk + 0, y_ptr, linesize, s, 0) +
dv_init_enc_block(enc_blk + 1, y_ptr + 8, linesize, s, 0) +
dv_init_enc_block(enc_blk + 2, y_ptr + y_stride, linesize, s, 0) +
dv_init_enc_block(enc_blk + 3, y_ptr + 8 + y_stride, linesize, s, 0);
}
enc_blk += 4;
/* initializing chrominance blocks */
c_offset = ((mb_y >> (s->sys->pix_fmt == AV_PIX_FMT_YUV420P)) * s->frame->linesize[1] +
(mb_x >> ((s->sys->pix_fmt == AV_PIX_FMT_YUV411P) ? 2 : 1))) * 8;
for (j = 2; j; j--) {
uint8_t *c_ptr = s->frame->data[j] + c_offset;
linesize = s->frame->linesize[j];
y_stride = (mb_y == 134) ? 8 : (s->frame->linesize[j] * (1 << (3*!enc_blk->dct_mode)));
if (s->sys->pix_fmt == AV_PIX_FMT_YUV411P && mb_x >= (704 / 8)) {
uint8_t *d;
uint8_t *b = scratch;
for (i = 0; i < 8; i++) {
d = c_ptr + linesize * 8;
b[0] = c_ptr[0];
b[1] = c_ptr[1];
b[2] = c_ptr[2];
b[3] = c_ptr[3];
b[4] = d[0];
b[5] = d[1];
b[6] = d[2];
b[7] = d[3];
c_ptr += linesize;
b += 16;
}
c_ptr = scratch;
linesize = 16;
}
vs_bit_size += dv_init_enc_block(enc_blk++, c_ptr, linesize, s, 1);
if (s->sys->bpm == 8)
vs_bit_size += dv_init_enc_block(enc_blk++, c_ptr + y_stride,
linesize, s, 1);
}
}
if (DV_PROFILE_IS_HD(s->sys)) {
/* unconditional */
dv_guess_qnos_hd(&enc_blks[0], qnosp);
} else if (vs_total_ac_bits < vs_bit_size) {
dv_guess_qnos(&enc_blks[0], qnosp);
}
/* DIF encoding process */
for (j = 0; j < 5 * s->sys->bpm;) {
int start_mb = j;
p[3] = *qnosp++;
p += 4;
/* First pass over individual cells only */
for (i = 0; i < s->sys->bpm; i++, j++) {
int sz = s->sys->block_sizes[i] >> 3;
init_put_bits(&pbs[j], p, sz);
put_sbits(&pbs[j], 9, ((enc_blks[j].mb[0] >> 3) - 1024 + 2) >> 2);
put_bits(&pbs[j], 1, DV_PROFILE_IS_HD(s->sys) && i ? 1 : enc_blks[j].dct_mode);
put_bits(&pbs[j], 2, enc_blks[j].cno);
dv_encode_ac(&enc_blks[j], &pbs[j], &pbs[j + 1]);
p += sz;
}
/* Second pass over each MB space */
pb = &pbs[start_mb];
for (i = 0; i < s->sys->bpm; i++)
if (enc_blks[start_mb + i].partial_bit_count)
pb = dv_encode_ac(&enc_blks[start_mb + i], pb,
&pbs[start_mb + s->sys->bpm]);
}
/* Third and final pass over the whole video segment space */
pb = &pbs[0];
for (j = 0; j < 5 * s->sys->bpm; j++) {
if (enc_blks[j].partial_bit_count)
pb = dv_encode_ac(&enc_blks[j], pb, &pbs[s->sys->bpm * 5]);
if (enc_blks[j].partial_bit_count)
av_log(avctx, AV_LOG_ERROR, "ac bitstream overflow\n");
}
for (j = 0; j < 5 * s->sys->bpm; j++) {
flush_put_bits(&pbs[j]);
memset(put_bits_ptr(&pbs[j]), 0xff, put_bytes_left(&pbs[j], 0));
}
if (DV_PROFILE_IS_HD(s->sys))
dv_revise_cnos(dif, enc_blks, s->sys);
return 0;
}
static inline int dv_write_pack(enum dv_pack_type pack_id, DVVideoContext *c,
uint8_t *buf)
{
/*
* Here's what SMPTE314M says about these two:
* (page 6) APTn, AP1n, AP2n, AP3n: These data shall be identical
* as track application IDs (APTn = 001, AP1n =
* 001, AP2n = 001, AP3n = 001), if the source signal
* comes from a digital VCR. If the signal source is
* unknown, all bits for these data shall be set to 1.
* (page 12) STYPE: STYPE defines a signal type of video signal
* 00000b = 4:1:1 compression
* 00100b = 4:2:2 compression
* XXXXXX = Reserved
* Now, I've got two problems with these statements:
* 1. it looks like APT == 111b should be a safe bet, but it isn't.
* It seems that for PAL as defined in IEC 61834 we have to set
* APT to 000 and for SMPTE314M to 001.
* 2. It is not at all clear what STYPE is used for 4:2:0 PAL
* compression scheme (if any).
*/
uint8_t aspect = 0;
int apt = (c->sys->pix_fmt == AV_PIX_FMT_YUV420P ? 0 : 1);
int fs;
if (c->avctx->height >= 720)
fs = c->avctx->height == 720 || c->frame->top_field_first ? 0x40 : 0x00;
else
fs = c->frame->top_field_first ? 0x00 : 0x40;
if (DV_PROFILE_IS_HD(c->sys) ||
(int)(av_q2d(c->avctx->sample_aspect_ratio) *
c->avctx->width / c->avctx->height * 10) >= 17)
/* HD formats are always 16:9 */
aspect = 0x02;
buf[0] = (uint8_t) pack_id;
switch (pack_id) {
case dv_header525: /* I can't imagine why these two weren't defined as real */
case dv_header625: /* packs in SMPTE314M -- they definitely look like ones */
buf[1] = 0xf8 | /* reserved -- always 1 */
(apt & 0x07); /* APT: Track application ID */
buf[2] = (0 << 7) | /* TF1: audio data is 0 - valid; 1 - invalid */
(0x0f << 3) | /* reserved -- always 1 */
(apt & 0x07); /* AP1: Audio application ID */
buf[3] = (0 << 7) | /* TF2: video data is 0 - valid; 1 - invalid */
(0x0f << 3) | /* reserved -- always 1 */
(apt & 0x07); /* AP2: Video application ID */
buf[4] = (0 << 7) | /* TF3: subcode(SSYB) is 0 - valid; 1 - invalid */
(0x0f << 3) | /* reserved -- always 1 */
(apt & 0x07); /* AP3: Subcode application ID */
break;
case dv_video_source:
buf[1] = 0xff; /* reserved -- always 1 */
buf[2] = (1 << 7) | /* B/W: 0 - b/w, 1 - color */
(1 << 6) | /* following CLF is valid - 0, invalid - 1 */
(3 << 4) | /* CLF: color frames ID (see ITU-R BT.470-4) */
0xf; /* reserved -- always 1 */
buf[3] = (3 << 6) | /* reserved -- always 1 */
(c->sys->dsf << 5) | /* system: 60fields/50fields */
c->sys->video_stype; /* signal type video compression */
buf[4] = 0xff; /* VISC: 0xff -- no information */
break;
case dv_video_control:
buf[1] = (0 << 6) | /* Copy generation management (CGMS) 0 -- free */
0x3f; /* reserved -- always 1 */
buf[2] = 0xc8 | /* reserved -- always b11001xxx */
aspect;
buf[3] = (1 << 7) | /* frame/field flag 1 -- frame, 0 -- field */
fs | /* first/second field flag 0 -- field 2, 1 -- field 1 */
(1 << 5) | /* frame change flag 0 -- same picture as before, 1 -- different */
(1 << 4) | /* 1 - interlaced, 0 - noninterlaced */
0xc; /* reserved -- always b1100 */
buf[4] = 0xff; /* reserved -- always 1 */
break;
default:
buf[1] =
buf[2] =
buf[3] =
buf[4] = 0xff;
}
return 5;
}
static inline int dv_write_dif_id(enum dv_section_type t, uint8_t chan_num,
uint8_t seq_num, uint8_t dif_num,
uint8_t *buf)
{
int fsc = chan_num & 1;
int fsp = 1 - (chan_num >> 1);
buf[0] = (uint8_t) t; /* Section type */
buf[1] = (seq_num << 4) | /* DIF seq number 0-9 for 525/60; 0-11 for 625/50 */
(fsc << 3) | /* FSC: for 50 and 100Mb/s 0 - first channel; 1 - second */
(fsp << 2) | /* FSP: for 100Mb/s 1 - channels 0-1; 0 - channels 2-3 */
3; /* reserved -- always 1 */
buf[2] = dif_num; /* DIF block number Video: 0-134, Audio: 0-8 */
return 3;
}
static inline int dv_write_ssyb_id(uint8_t syb_num, uint8_t fr, uint8_t *buf)
{
if (syb_num == 0 || syb_num == 6) {
buf[0] = (fr << 7) | /* FR ID 1 - first half of each channel; 0 - second */
(0 << 4) | /* AP3 (Subcode application ID) */
0x0f; /* reserved -- always 1 */
} else if (syb_num == 11) {
buf[0] = (fr << 7) | /* FR ID 1 - first half of each channel; 0 - second */
0x7f; /* reserved -- always 1 */
} else {
buf[0] = (fr << 7) | /* FR ID 1 - first half of each channel; 0 - second */
(0 << 4) | /* APT (Track application ID) */
0x0f; /* reserved -- always 1 */
}
buf[1] = 0xf0 | /* reserved -- always 1 */
(syb_num & 0x0f); /* SSYB number 0 - 11 */
buf[2] = 0xff; /* reserved -- always 1 */
return 3;
}
static void dv_format_frame(DVVideoContext *c, uint8_t *buf)
{
int chan, i, j, k;
/* We work with 720p frames split in half. The odd half-frame is chan 2,3 */
int chan_offset = 2*(c->sys->height == 720 && c->avctx->frame_number & 1);
for (chan = 0; chan < c->sys->n_difchan; chan++) {
for (i = 0; i < c->sys->difseg_size; i++) {
memset(buf, 0xff, 80 * 6); /* first 6 DIF blocks are for control data */
/* DV header: 1DIF */
buf += dv_write_dif_id(dv_sect_header, chan+chan_offset, i, 0, buf);
buf += dv_write_pack((c->sys->dsf ? dv_header625 : dv_header525),
c, buf);
buf += 72; /* unused bytes */
/* DV subcode: 2DIFs */
for (j = 0; j < 2; j++) {
buf += dv_write_dif_id(dv_sect_subcode, chan+chan_offset, i, j, buf);
for (k = 0; k < 6; k++)
buf += dv_write_ssyb_id(k, (i < c->sys->difseg_size / 2), buf) + 5;
buf += 29; /* unused bytes */
}
/* DV VAUX: 3DIFS */
for (j = 0; j < 3; j++) {
buf += dv_write_dif_id(dv_sect_vaux, chan+chan_offset, i, j, buf);
buf += dv_write_pack(dv_video_source, c, buf);
buf += dv_write_pack(dv_video_control, c, buf);
buf += 7 * 5;
buf += dv_write_pack(dv_video_source, c, buf);
buf += dv_write_pack(dv_video_control, c, buf);
buf += 4 * 5 + 2; /* unused bytes */
}
/* DV Audio/Video: 135 Video DIFs + 9 Audio DIFs */
for (j = 0; j < 135; j++) {
if (j % 15 == 0) {
memset(buf, 0xff, 80);
buf += dv_write_dif_id(dv_sect_audio, chan+chan_offset, i, j/15, buf);
buf += 77; /* audio control & shuffled PCM audio */
}
buf += dv_write_dif_id(dv_sect_video, chan+chan_offset, i, j, buf);
buf += 77; /* 1 video macroblock: 1 bytes control
* 4 * 14 bytes Y 8x8 data
* 10 bytes Cr 8x8 data
* 10 bytes Cb 8x8 data */
}
}
}
}
static int dvvideo_encode_frame(AVCodecContext *c, AVPacket *pkt,
const AVFrame *frame, int *got_packet)
{
DVVideoContext *s = c->priv_data;
int ret;
if ((ret = ff_get_encode_buffer(c, pkt, s->sys->frame_size, 0)) < 0)
return ret;
/* Fixme: Only zero the part that is not overwritten later. */
memset(pkt->data, 0, pkt->size);
c->pix_fmt = s->sys->pix_fmt;
s->frame = frame;
s->buf = pkt->data;
dv_format_frame(s, pkt->data);
c->execute(c, dv_encode_video_segment, s->work_chunks, NULL,
dv_work_pool_size(s->sys), sizeof(DVwork_chunk));
emms_c();
*got_packet = 1;
return 0;
}
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
#define OFFSET(x) offsetof(DVVideoContext, x)
static const AVOption dv_options[] = {
{ "quant_deadzone", "Quantizer dead zone", OFFSET(quant_deadzone), AV_OPT_TYPE_INT, { .i64 = 7 }, 0, 1024, VE },
{ NULL },
};
static const AVClass dvvideo_encode_class = {
.class_name = "dvvideo encoder",
.item_name = av_default_item_name,
.option = dv_options,
.version = LIBAVUTIL_VERSION_INT,
};
const FFCodec ff_dvvideo_encoder = {
.p.name = "dvvideo",
.p.long_name = NULL_IF_CONFIG_SMALL("DV (Digital Video)"),
.p.type = AVMEDIA_TYPE_VIDEO,
.p.id = AV_CODEC_ID_DVVIDEO,
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
AV_CODEC_CAP_SLICE_THREADS,
.priv_data_size = sizeof(DVVideoContext),
.init = dvvideo_encode_init,
FF_CODEC_ENCODE_CB(dvvideo_encode_frame),
.p.pix_fmts = (const enum AVPixelFormat[]) {
AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE
},
.p.priv_class = &dvvideo_encode_class,
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
};