1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavfilter/vf_srcnn.c
Sergey Lavrushkin 9479955c62 Adds SRCNN filter.
Signed-off-by: Pedro Arthur <bygrandao@gmail.com>
2018-05-04 14:24:56 +00:00

421 lines
16 KiB
C

/*
* Copyright (c) 2018 Sergey Lavrushkin
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Filter implementing image super-resolution using deep convolutional networks.
* https://arxiv.org/abs/1501.00092
*/
#include "avfilter.h"
#include "formats.h"
#include "internal.h"
#include "libavutil/opt.h"
#include "unistd.h"
#include "vf_srcnn.h"
#include "libavformat/avio.h"
typedef struct Convolution
{
double* kernel;
double* biases;
int32_t size, input_channels, output_channels;
} Convolution;
typedef struct SRCNNContext {
const AVClass *class;
/// SRCNN convolutions
struct Convolution conv1, conv2, conv3;
/// Path to binary file with kernels specifications
char* config_file_path;
/// Buffers for network input/output and feature maps
double* input_output_buf;
double* conv1_buf;
double* conv2_buf;
} SRCNNContext;
#define OFFSET(x) offsetof(SRCNNContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM
static const AVOption srcnn_options[] = {
{ "config_file", "path to configuration file with network parameters", OFFSET(config_file_path), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(srcnn);
#define CHECK_FILE_SIZE(file_size, srcnn_size, avio_context) if (srcnn_size > file_size){ \
av_log(context, AV_LOG_ERROR, "error reading configuration file\n");\
avio_closep(&avio_context); \
return AVERROR(EIO); \
}
#define CHECK_ALLOCATION(call, end_call) if (call){ \
av_log(context, AV_LOG_ERROR, "could not allocate memory for convolutions\n"); \
end_call; \
return AVERROR(ENOMEM); \
}
static int allocate_read_conv_data(Convolution* conv, AVIOContext* config_file_context)
{
int32_t kernel_size = conv->output_channels * conv->size * conv->size * conv->input_channels;
int32_t i;
conv->kernel = av_malloc(kernel_size * sizeof(double));
if (!conv->kernel){
return AVERROR(ENOMEM);
}
for (i = 0; i < kernel_size; ++i){
conv->kernel[i] = av_int2double(avio_rl64(config_file_context));
}
conv->biases = av_malloc(conv->output_channels * sizeof(double));
if (!conv->biases){
return AVERROR(ENOMEM);
}
for (i = 0; i < conv->output_channels; ++i){
conv->biases[i] = av_int2double(avio_rl64(config_file_context));
}
return 0;
}
static int allocate_copy_conv_data(Convolution* conv, const double* kernel, const double* biases)
{
int32_t kernel_size = conv->output_channels * conv->size * conv->size * conv->input_channels;
conv->kernel = av_malloc(kernel_size * sizeof(double));
if (!conv->kernel){
return AVERROR(ENOMEM);
}
memcpy(conv->kernel, kernel, kernel_size * sizeof(double));
conv->biases = av_malloc(conv->output_channels * sizeof(double));
if (!conv->kernel){
return AVERROR(ENOMEM);
}
memcpy(conv->biases, biases, conv->output_channels * sizeof(double));
return 0;
}
static av_cold int init(AVFilterContext* context)
{
SRCNNContext *srcnn_context = context->priv;
AVIOContext* config_file_context;
int64_t file_size, srcnn_size;
/// Check specified confguration file name and read network weights from it
if (!srcnn_context->config_file_path){
av_log(context, AV_LOG_INFO, "configuration file for network was not specified, using default weights for x2 upsampling\n");
/// Create convolution kernels and copy default weights
srcnn_context->conv1.input_channels = 1;
srcnn_context->conv1.output_channels = 64;
srcnn_context->conv1.size = 9;
CHECK_ALLOCATION(allocate_copy_conv_data(&srcnn_context->conv1, conv1_kernel, conv1_biases), )
srcnn_context->conv2.input_channels = 64;
srcnn_context->conv2.output_channels = 32;
srcnn_context->conv2.size = 1;
CHECK_ALLOCATION(allocate_copy_conv_data(&srcnn_context->conv2, conv2_kernel, conv2_biases), )
srcnn_context->conv3.input_channels = 32;
srcnn_context->conv3.output_channels = 1;
srcnn_context->conv3.size = 5;
CHECK_ALLOCATION(allocate_copy_conv_data(&srcnn_context->conv3, conv3_kernel, conv3_biases), )
}
else if (access(srcnn_context->config_file_path, R_OK) != -1){
if (avio_open(&config_file_context, srcnn_context->config_file_path, AVIO_FLAG_READ) < 0){
av_log(context, AV_LOG_ERROR, "failed to open configuration file\n");
return AVERROR(EIO);
}
file_size = avio_size(config_file_context);
/// Create convolution kernels and read weights from file
srcnn_context->conv1.input_channels = 1;
srcnn_context->conv1.size = (int32_t)avio_rl32(config_file_context);
srcnn_context->conv1.output_channels = (int32_t)avio_rl32(config_file_context);
srcnn_size = 8 + (srcnn_context->conv1.output_channels * srcnn_context->conv1.size *
srcnn_context->conv1.size * srcnn_context->conv1.input_channels +
srcnn_context->conv1.output_channels << 3);
CHECK_FILE_SIZE(file_size, srcnn_size, config_file_context)
CHECK_ALLOCATION(allocate_read_conv_data(&srcnn_context->conv1, config_file_context), avio_closep(&config_file_context))
srcnn_context->conv2.input_channels = (int32_t)avio_rl32(config_file_context);
srcnn_context->conv2.size = (int32_t)avio_rl32(config_file_context);
srcnn_context->conv2.output_channels = (int32_t)avio_rl32(config_file_context);
srcnn_size += 12 + (srcnn_context->conv2.output_channels * srcnn_context->conv2.size *
srcnn_context->conv2.size * srcnn_context->conv2.input_channels +
srcnn_context->conv2.output_channels << 3);
CHECK_FILE_SIZE(file_size, srcnn_size, config_file_context)
CHECK_ALLOCATION(allocate_read_conv_data(&srcnn_context->conv2, config_file_context), avio_closep(&config_file_context))
srcnn_context->conv3.input_channels = (int32_t)avio_rl32(config_file_context);
srcnn_context->conv3.size = (int32_t)avio_rl32(config_file_context);
srcnn_context->conv3.output_channels = 1;
srcnn_size += 8 + (srcnn_context->conv3.output_channels * srcnn_context->conv3.size *
srcnn_context->conv3.size * srcnn_context->conv3.input_channels
+ srcnn_context->conv3.output_channels << 3);
if (file_size != srcnn_size){
av_log(context, AV_LOG_ERROR, "error reading configuration file\n");
avio_closep(&config_file_context);
return AVERROR(EIO);
}
CHECK_ALLOCATION(allocate_read_conv_data(&srcnn_context->conv3, config_file_context), avio_closep(&config_file_context))
avio_closep(&config_file_context);
}
else{
av_log(context, AV_LOG_ERROR, "specified configuration file does not exist or not readable\n");
return AVERROR(EIO);
}
return 0;
}
static int query_formats(AVFilterContext* context)
{
const enum AVPixelFormat pixel_formats[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8,
AV_PIX_FMT_NONE};
AVFilterFormats *formats_list;
formats_list = ff_make_format_list(pixel_formats);
if (!formats_list){
av_log(context, AV_LOG_ERROR, "could not create formats list\n");
return AVERROR(ENOMEM);
}
return ff_set_common_formats(context, formats_list);
}
static int config_props(AVFilterLink* inlink)
{
AVFilterContext *context = inlink->dst;
SRCNNContext *srcnn_context = context->priv;
int min_dim;
/// Check if input data width or height is too low
min_dim = FFMIN(inlink->w, inlink->h);
if (min_dim <= srcnn_context->conv1.size >> 1 || min_dim <= srcnn_context->conv2.size >> 1 || min_dim <= srcnn_context->conv3.size >> 1){
av_log(context, AV_LOG_ERROR, "input width or height is too low\n");
return AVERROR(EIO);
}
/// Allocate network buffers
srcnn_context->input_output_buf = av_malloc(inlink->h * inlink->w * sizeof(double));
srcnn_context->conv1_buf = av_malloc(inlink->h * inlink->w * srcnn_context->conv1.output_channels * sizeof(double));
srcnn_context->conv2_buf = av_malloc(inlink->h * inlink->w * srcnn_context->conv2.output_channels * sizeof(double));
if (!srcnn_context->input_output_buf || !srcnn_context->conv1_buf || !srcnn_context->conv2_buf){
av_log(context, AV_LOG_ERROR, "could not allocate memory for srcnn buffers\n");
return AVERROR(ENOMEM);
}
return 0;
}
typedef struct ThreadData{
uint8_t* out;
int out_linesize, height, width;
} ThreadData;
typedef struct ConvThreadData
{
const Convolution* conv;
const double* input;
double* output;
int height, width;
} ConvThreadData;
/// Convert uint8 data to double and scale it to use in network
static int uint8_to_double(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
{
SRCNNContext* srcnn_context = context->priv;
const ThreadData* td = arg;
const int slice_start = (td->height * jobnr ) / nb_jobs;
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
const uint8_t* src = td->out + slice_start * td->out_linesize;
double* dst = srcnn_context->input_output_buf + slice_start * td->width;
int y, x;
for (y = slice_start; y < slice_end; ++y){
for (x = 0; x < td->width; ++x){
dst[x] = (double)src[x] / 255.0;
}
src += td->out_linesize;
dst += td->width;
}
return 0;
}
/// Convert double data from network to uint8 and scale it to output as filter result
static int double_to_uint8(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
{
SRCNNContext* srcnn_context = context->priv;
const ThreadData* td = arg;
const int slice_start = (td->height * jobnr ) / nb_jobs;
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
const double* src = srcnn_context->input_output_buf + slice_start * td->width;
uint8_t* dst = td->out + slice_start * td->out_linesize;
int y, x;
for (y = slice_start; y < slice_end; ++y){
for (x = 0; x < td->width; ++x){
dst[x] = (uint8_t)(255.0 * FFMIN(src[x], 1.0));
}
src += td->width;
dst += td->out_linesize;
}
return 0;
}
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
static int convolve(AVFilterContext* context, void* arg, int jobnr, int nb_jobs)
{
const ConvThreadData* td = arg;
const int slice_start = (td->height * jobnr ) / nb_jobs;
const int slice_end = (td->height * (jobnr + 1)) / nb_jobs;
const double* src = td->input;
double* dst = td->output + slice_start * td->width * td->conv->output_channels;
int y, x;
int32_t n_filter, ch, kernel_y, kernel_x;
int32_t radius = td->conv->size >> 1;
int src_linesize = td->width * td->conv->input_channels;
int filter_linesize = td->conv->size * td->conv->input_channels;
int filter_size = td->conv->size * filter_linesize;
for (y = slice_start; y < slice_end; ++y){
for (x = 0; x < td->width; ++x){
for (n_filter = 0; n_filter < td->conv->output_channels; ++n_filter){
dst[n_filter] = td->conv->biases[n_filter];
for (ch = 0; ch < td->conv->input_channels; ++ch){
for (kernel_y = 0; kernel_y < td->conv->size; ++kernel_y){
for (kernel_x = 0; kernel_x < td->conv->size; ++kernel_x){
dst[n_filter] += src[CLAMP_TO_EDGE(y + kernel_y - radius, td->height) * src_linesize +
CLAMP_TO_EDGE(x + kernel_x - radius, td->width) * td->conv->input_channels + ch] *
td->conv->kernel[n_filter * filter_size + kernel_y * filter_linesize +
kernel_x * td->conv->input_channels + ch];
}
}
}
dst[n_filter] = FFMAX(dst[n_filter], 0.0);
}
dst += td->conv->output_channels;
}
}
return 0;
}
static int filter_frame(AVFilterLink* inlink, AVFrame* in)
{
AVFilterContext* context = inlink->dst;
SRCNNContext* srcnn_context = context->priv;
AVFilterLink* outlink = context->outputs[0];
AVFrame* out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
ThreadData td;
ConvThreadData ctd;
if (!out){
av_log(context, AV_LOG_ERROR, "could not allocate memory for output frame\n");
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
av_frame_copy(out, in);
av_frame_free(&in);
td.out = out->data[0];
td.out_linesize = out->linesize[0];
td.height = ctd.height = out->height;
td.width = ctd.width = out->width;
context->internal->execute(context, uint8_to_double, &td, NULL, FFMIN(td.height, context->graph->nb_threads));
ctd.conv = &srcnn_context->conv1;
ctd.input = srcnn_context->input_output_buf;
ctd.output = srcnn_context->conv1_buf;
context->internal->execute(context, convolve, &ctd, NULL, FFMIN(ctd.height, context->graph->nb_threads));
ctd.conv = &srcnn_context->conv2;
ctd.input = srcnn_context->conv1_buf;
ctd.output = srcnn_context->conv2_buf;
context->internal->execute(context, convolve, &ctd, NULL, FFMIN(ctd.height, context->graph->nb_threads));
ctd.conv = &srcnn_context->conv3;
ctd.input = srcnn_context->conv2_buf;
ctd.output = srcnn_context->input_output_buf;
context->internal->execute(context, convolve, &ctd, NULL, FFMIN(ctd.height, context->graph->nb_threads));
context->internal->execute(context, double_to_uint8, &td, NULL, FFMIN(td.height, context->graph->nb_threads));
return ff_filter_frame(outlink, out);
}
static av_cold void uninit(AVFilterContext* context)
{
SRCNNContext* srcnn_context = context->priv;
/// Free convolution data
av_freep(&srcnn_context->conv1.kernel);
av_freep(&srcnn_context->conv1.biases);
av_freep(&srcnn_context->conv2.kernel);
av_freep(&srcnn_context->conv2.biases);
av_freep(&srcnn_context->conv3.kernel);
av_freep(&srcnn_context->conv3.kernel);
/// Free network buffers
av_freep(&srcnn_context->input_output_buf);
av_freep(&srcnn_context->conv1_buf);
av_freep(&srcnn_context->conv2_buf);
}
static const AVFilterPad srcnn_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = config_props,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad srcnn_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
},
{ NULL }
};
AVFilter ff_vf_srcnn = {
.name = "srcnn",
.description = NULL_IF_CONFIG_SMALL("Apply super resolution convolutional neural network to the input. Use bicubic upsamping with corresponding scaling factor before."),
.priv_size = sizeof(SRCNNContext),
.init = init,
.uninit = uninit,
.query_formats = query_formats,
.inputs = srcnn_inputs,
.outputs = srcnn_outputs,
.priv_class = &srcnn_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};