1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-11-21 10:55:51 +02:00
FFmpeg/libavcodec/aacps.c
Andreas Rheinhardt 80eca6ec99 avcodec/aacps: Inline ff_ps_ctx_init()
Reviewed-by: Lynne <dev@lynne.ee>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-02-27 00:11:21 +01:00

743 lines
28 KiB
C

/*
* MPEG-4 Parametric Stereo decoding functions
* Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Note: Rounding-to-nearest used unless otherwise stated
*
*/
#include <stdint.h>
#include "libavutil/common.h"
#include "libavutil/mathematics.h"
#include "libavutil/mem_internal.h"
#include "aacps.h"
#if USE_FIXED
#include "aacps_fixed_tablegen.h"
#else
#include "libavutil/internal.h"
#include "aacps_tablegen.h"
#endif /* USE_FIXED */
static const INTFLOAT g1_Q2[] = {
Q31(0.0f), Q31(0.01899487526049f), Q31(0.0f), Q31(-0.07293139167538f),
Q31(0.0f), Q31(0.30596630545168f), Q31(0.5f)
};
static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist)
{
int i;
for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
opd_hist[i] = 0;
ipd_hist[i] = 0;
}
}
/** Split one subband into 2 subsubbands with a symmetric real filter.
* The filter must have its non-center even coefficients equal to zero. */
static void hybrid2_re(INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
const INTFLOAT filter[7], int len, int reverse)
{
int i, j;
for (i = 0; i < len; i++, in++) {
INT64FLOAT re_in = AAC_MUL31(filter[6], in[6][0]); //real inphase
INT64FLOAT re_op = 0.0f; //real out of phase
INT64FLOAT im_in = AAC_MUL31(filter[6], in[6][1]); //imag inphase
INT64FLOAT im_op = 0.0f; //imag out of phase
for (j = 0; j < 6; j += 2) {
re_op += (INT64FLOAT)filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
im_op += (INT64FLOAT)filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
}
#if USE_FIXED
re_op = (re_op + 0x40000000) >> 31;
im_op = (im_op + 0x40000000) >> 31;
#endif /* USE_FIXED */
out[ reverse][i][0] = (INTFLOAT)(re_in + re_op);
out[ reverse][i][1] = (INTFLOAT)(im_in + im_op);
out[!reverse][i][0] = (INTFLOAT)(re_in - re_op);
out[!reverse][i][1] = (INTFLOAT)(im_in - im_op);
}
}
/** Split one subband into 6 subsubbands with a complex filter */
static void hybrid6_cx(PSDSPContext *dsp, INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
TABLE_CONST INTFLOAT (*filter)[8][2], int len)
{
int i;
int N = 8;
LOCAL_ALIGNED_16(INTFLOAT, temp, [8], [2]);
for (i = 0; i < len; i++, in++) {
dsp->hybrid_analysis(temp, in, (const INTFLOAT (*)[8][2]) filter, 1, N);
out[0][i][0] = temp[6][0];
out[0][i][1] = temp[6][1];
out[1][i][0] = temp[7][0];
out[1][i][1] = temp[7][1];
out[2][i][0] = temp[0][0];
out[2][i][1] = temp[0][1];
out[3][i][0] = temp[1][0];
out[3][i][1] = temp[1][1];
out[4][i][0] = temp[2][0] + temp[5][0];
out[4][i][1] = temp[2][1] + temp[5][1];
out[5][i][0] = temp[3][0] + temp[4][0];
out[5][i][1] = temp[3][1] + temp[4][1];
}
}
static void hybrid4_8_12_cx(PSDSPContext *dsp,
INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
TABLE_CONST INTFLOAT (*filter)[8][2], int N, int len)
{
int i;
for (i = 0; i < len; i++, in++) {
dsp->hybrid_analysis(out[0] + i, in, (const INTFLOAT (*)[8][2]) filter, 32, N);
}
}
static void hybrid_analysis(PSDSPContext *dsp, INTFLOAT out[91][32][2],
INTFLOAT in[5][44][2], INTFLOAT L[2][38][64],
int is34, int len)
{
int i, j;
for (i = 0; i < 5; i++) {
for (j = 0; j < 38; j++) {
in[i][j+6][0] = L[0][j][i];
in[i][j+6][1] = L[1][j][i];
}
}
if (is34) {
hybrid4_8_12_cx(dsp, in[0], out, f34_0_12, 12, len);
hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8, 8, len);
hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4, 4, len);
hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4, 4, len);
hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4, 4, len);
dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
} else {
hybrid6_cx(dsp, in[0], out, f20_0_8, len);
hybrid2_re(in[1], out+6, g1_Q2, len, 1);
hybrid2_re(in[2], out+8, g1_Q2, len, 0);
dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
}
//update in_buf
for (i = 0; i < 5; i++) {
memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
}
}
static void hybrid_synthesis(PSDSPContext *dsp, INTFLOAT out[2][38][64],
INTFLOAT in[91][32][2], int is34, int len)
{
int i, n;
if (is34) {
for (n = 0; n < len; n++) {
memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
for (i = 0; i < 12; i++) {
out[0][n][0] += (UINTFLOAT)in[ i][n][0];
out[1][n][0] += (UINTFLOAT)in[ i][n][1];
}
for (i = 0; i < 8; i++) {
out[0][n][1] += (UINTFLOAT)in[12+i][n][0];
out[1][n][1] += (UINTFLOAT)in[12+i][n][1];
}
for (i = 0; i < 4; i++) {
out[0][n][2] += (UINTFLOAT)in[20+i][n][0];
out[1][n][2] += (UINTFLOAT)in[20+i][n][1];
out[0][n][3] += (UINTFLOAT)in[24+i][n][0];
out[1][n][3] += (UINTFLOAT)in[24+i][n][1];
out[0][n][4] += (UINTFLOAT)in[28+i][n][0];
out[1][n][4] += (UINTFLOAT)in[28+i][n][1];
}
}
dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
} else {
for (n = 0; n < len; n++) {
out[0][n][0] = (UINTFLOAT)in[0][n][0] + in[1][n][0] + in[2][n][0] +
(UINTFLOAT)in[3][n][0] + in[4][n][0] + in[5][n][0];
out[1][n][0] = (UINTFLOAT)in[0][n][1] + in[1][n][1] + in[2][n][1] +
(UINTFLOAT)in[3][n][1] + in[4][n][1] + in[5][n][1];
out[0][n][1] = (UINTFLOAT)in[6][n][0] + in[7][n][0];
out[1][n][1] = (UINTFLOAT)in[6][n][1] + in[7][n][1];
out[0][n][2] = (UINTFLOAT)in[8][n][0] + in[9][n][0];
out[1][n][2] = (UINTFLOAT)in[8][n][1] + in[9][n][1];
}
dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
}
}
/// All-pass filter decay slope
#define DECAY_SLOPE Q30(0.05f)
/// Number of frequency bands that can be addressed by the parameter index, b(k)
static const int NR_PAR_BANDS[] = { 20, 34 };
static const int NR_IPDOPD_BANDS[] = { 11, 17 };
/// Number of frequency bands that can be addressed by the sub subband index, k
static const int NR_BANDS[] = { 71, 91 };
/// Start frequency band for the all-pass filter decay slope
static const int DECAY_CUTOFF[] = { 10, 32 };
/// Number of all-pass filer bands
static const int NR_ALLPASS_BANDS[] = { 30, 50 };
/// First stereo band using the short one sample delay
static const int SHORT_DELAY_BAND[] = { 42, 62 };
/** Table 8.46 */
static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
{
int b;
if (full)
b = 9;
else {
b = 4;
par_mapped[10] = 0;
}
for (; b >= 0; b--) {
par_mapped[2*b+1] = par_mapped[2*b] = par[b];
}
}
static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
{
par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
par_mapped[ 6] = par[10];
par_mapped[ 7] = par[11];
par_mapped[ 8] = ( par[12] + par[13]) / 2;
par_mapped[ 9] = ( par[14] + par[15]) / 2;
par_mapped[10] = par[16];
if (full) {
par_mapped[11] = par[17];
par_mapped[12] = par[18];
par_mapped[13] = par[19];
par_mapped[14] = ( par[20] + par[21]) / 2;
par_mapped[15] = ( par[22] + par[23]) / 2;
par_mapped[16] = ( par[24] + par[25]) / 2;
par_mapped[17] = ( par[26] + par[27]) / 2;
par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
par_mapped[19] = ( par[32] + par[33]) / 2;
}
}
static void map_val_34_to_20(INTFLOAT par[PS_MAX_NR_IIDICC])
{
#if USE_FIXED
par[ 0] = (int)(((int64_t)(par[ 0] + (unsigned)(par[ 1]>>1)) * 1431655765 + \
0x40000000) >> 31);
par[ 1] = (int)(((int64_t)((par[ 1]>>1) + (unsigned)par[ 2]) * 1431655765 + \
0x40000000) >> 31);
par[ 2] = (int)(((int64_t)(par[ 3] + (unsigned)(par[ 4]>>1)) * 1431655765 + \
0x40000000) >> 31);
par[ 3] = (int)(((int64_t)((par[ 4]>>1) + (unsigned)par[ 5]) * 1431655765 + \
0x40000000) >> 31);
#else
par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
#endif /* USE_FIXED */
par[ 4] = AAC_HALF_SUM(par[ 6], par[ 7]);
par[ 5] = AAC_HALF_SUM(par[ 8], par[ 9]);
par[ 6] = par[10];
par[ 7] = par[11];
par[ 8] = AAC_HALF_SUM(par[12], par[13]);
par[ 9] = AAC_HALF_SUM(par[14], par[15]);
par[10] = par[16];
par[11] = par[17];
par[12] = par[18];
par[13] = par[19];
par[14] = AAC_HALF_SUM(par[20], par[21]);
par[15] = AAC_HALF_SUM(par[22], par[23]);
par[16] = AAC_HALF_SUM(par[24], par[25]);
par[17] = AAC_HALF_SUM(par[26], par[27]);
#if USE_FIXED
par[18] = (((par[28]+2)>>2) + ((par[29]+2)>>2) + ((par[30]+2)>>2) + ((par[31]+2)>>2));
#else
par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
#endif /* USE_FIXED */
par[19] = AAC_HALF_SUM(par[32], par[33]);
}
static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
{
if (full) {
par_mapped[33] = par[9];
par_mapped[32] = par[9];
par_mapped[31] = par[9];
par_mapped[30] = par[9];
par_mapped[29] = par[9];
par_mapped[28] = par[9];
par_mapped[27] = par[8];
par_mapped[26] = par[8];
par_mapped[25] = par[8];
par_mapped[24] = par[8];
par_mapped[23] = par[7];
par_mapped[22] = par[7];
par_mapped[21] = par[7];
par_mapped[20] = par[7];
par_mapped[19] = par[6];
par_mapped[18] = par[6];
par_mapped[17] = par[5];
par_mapped[16] = par[5];
} else {
par_mapped[16] = 0;
}
par_mapped[15] = par[4];
par_mapped[14] = par[4];
par_mapped[13] = par[4];
par_mapped[12] = par[4];
par_mapped[11] = par[3];
par_mapped[10] = par[3];
par_mapped[ 9] = par[2];
par_mapped[ 8] = par[2];
par_mapped[ 7] = par[2];
par_mapped[ 6] = par[2];
par_mapped[ 5] = par[1];
par_mapped[ 4] = par[1];
par_mapped[ 3] = par[1];
par_mapped[ 2] = par[0];
par_mapped[ 1] = par[0];
par_mapped[ 0] = par[0];
}
static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
{
if (full) {
par_mapped[33] = par[19];
par_mapped[32] = par[19];
par_mapped[31] = par[18];
par_mapped[30] = par[18];
par_mapped[29] = par[18];
par_mapped[28] = par[18];
par_mapped[27] = par[17];
par_mapped[26] = par[17];
par_mapped[25] = par[16];
par_mapped[24] = par[16];
par_mapped[23] = par[15];
par_mapped[22] = par[15];
par_mapped[21] = par[14];
par_mapped[20] = par[14];
par_mapped[19] = par[13];
par_mapped[18] = par[12];
par_mapped[17] = par[11];
}
par_mapped[16] = par[10];
par_mapped[15] = par[ 9];
par_mapped[14] = par[ 9];
par_mapped[13] = par[ 8];
par_mapped[12] = par[ 8];
par_mapped[11] = par[ 7];
par_mapped[10] = par[ 6];
par_mapped[ 9] = par[ 5];
par_mapped[ 8] = par[ 5];
par_mapped[ 7] = par[ 4];
par_mapped[ 6] = par[ 4];
par_mapped[ 5] = par[ 3];
par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
par_mapped[ 3] = par[ 2];
par_mapped[ 2] = par[ 1];
par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
par_mapped[ 0] = par[ 0];
}
static void map_val_20_to_34(INTFLOAT par[PS_MAX_NR_IIDICC])
{
par[33] = par[19];
par[32] = par[19];
par[31] = par[18];
par[30] = par[18];
par[29] = par[18];
par[28] = par[18];
par[27] = par[17];
par[26] = par[17];
par[25] = par[16];
par[24] = par[16];
par[23] = par[15];
par[22] = par[15];
par[21] = par[14];
par[20] = par[14];
par[19] = par[13];
par[18] = par[12];
par[17] = par[11];
par[16] = par[10];
par[15] = par[ 9];
par[14] = par[ 9];
par[13] = par[ 8];
par[12] = par[ 8];
par[11] = par[ 7];
par[10] = par[ 6];
par[ 9] = par[ 5];
par[ 8] = par[ 5];
par[ 7] = par[ 4];
par[ 6] = par[ 4];
par[ 5] = par[ 3];
par[ 4] = AAC_HALF_SUM(par[ 2], par[ 3]);
par[ 3] = par[ 2];
par[ 2] = par[ 1];
par[ 1] = AAC_HALF_SUM(par[ 0], par[ 1]);
}
static void decorrelation(PSContext *ps, INTFLOAT (*out)[32][2], const INTFLOAT (*s)[32][2], int is34)
{
LOCAL_ALIGNED_16(INTFLOAT, power, [34], [PS_QMF_TIME_SLOTS]);
LOCAL_ALIGNED_16(INTFLOAT, transient_gain, [34], [PS_QMF_TIME_SLOTS]);
INTFLOAT *peak_decay_nrg = ps->peak_decay_nrg;
INTFLOAT *power_smooth = ps->power_smooth;
INTFLOAT *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
INTFLOAT (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
INTFLOAT (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
#if !USE_FIXED
const float transient_impact = 1.5f;
const float a_smooth = 0.25f; ///< Smoothing coefficient
#endif /* USE_FIXED */
const int8_t *const k_to_i = is34 ? ff_k_to_i_34 : ff_k_to_i_20;
int i, k, m, n;
int n0 = 0, nL = 32;
const INTFLOAT peak_decay_factor = Q31(0.76592833836465f);
memset(power, 0, 34 * sizeof(*power));
if (is34 != ps->common.is34bands_old) {
memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
memset(ps->delay, 0, sizeof(ps->delay));
memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
}
for (k = 0; k < NR_BANDS[is34]; k++) {
int i = k_to_i[k];
ps->dsp.add_squares(power[i], s[k], nL - n0);
}
//Transient detection
#if USE_FIXED
for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
for (n = n0; n < nL; n++) {
int decayed_peak;
decayed_peak = (int)(((int64_t)peak_decay_factor * \
peak_decay_nrg[i] + 0x40000000) >> 31);
peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
power_smooth[i] += (power[i][n] + 2LL - power_smooth[i]) >> 2;
peak_decay_diff_smooth[i] += (peak_decay_nrg[i] + 2LL - power[i][n] - \
peak_decay_diff_smooth[i]) >> 2;
if (peak_decay_diff_smooth[i]) {
transient_gain[i][n] = FFMIN(power_smooth[i]*43691LL / peak_decay_diff_smooth[i], 1<<16);
} else
transient_gain[i][n] = 1 << 16;
}
}
#else
for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
for (n = n0; n < nL; n++) {
float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
float denom;
peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
denom = transient_impact * peak_decay_diff_smooth[i];
transient_gain[i][n] = (denom > power_smooth[i]) ?
power_smooth[i] / denom : 1.0f;
}
}
#endif /* USE_FIXED */
//Decorrelation and transient reduction
// PS_AP_LINKS - 1
// -----
// | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
//H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
// | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
// m = 0
//d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
int b = k_to_i[k];
#if USE_FIXED
int g_decay_slope;
if (k - DECAY_CUTOFF[is34] <= 0) {
g_decay_slope = 1 << 30;
}
else if (k - DECAY_CUTOFF[is34] >= 20) {
g_decay_slope = 0;
}
else {
g_decay_slope = (1 << 30) - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
}
#else
float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
#endif /* USE_FIXED */
memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
for (m = 0; m < PS_AP_LINKS; m++) {
memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
}
ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
phi_fract[is34][k],
(const INTFLOAT (*)[2]) Q_fract_allpass[is34][k],
transient_gain[b], g_decay_slope, nL - n0);
}
for (; k < SHORT_DELAY_BAND[is34]; k++) {
int i = k_to_i[k];
memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
//H = delay 14
ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
transient_gain[i], nL - n0);
}
for (; k < NR_BANDS[is34]; k++) {
int i = k_to_i[k];
memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
//H = delay 1
ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
transient_gain[i], nL - n0);
}
}
static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
int8_t (*par)[PS_MAX_NR_IIDICC],
int num_par, int num_env, int full)
{
int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
int e;
if (num_par == 20 || num_par == 11) {
for (e = 0; e < num_env; e++) {
map_idx_20_to_34(par_mapped[e], par[e], full);
}
} else if (num_par == 10 || num_par == 5) {
for (e = 0; e < num_env; e++) {
map_idx_10_to_34(par_mapped[e], par[e], full);
}
} else {
*p_par_mapped = par;
}
}
static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
int8_t (*par)[PS_MAX_NR_IIDICC],
int num_par, int num_env, int full)
{
int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
int e;
if (num_par == 34 || num_par == 17) {
for (e = 0; e < num_env; e++) {
map_idx_34_to_20(par_mapped[e], par[e], full);
}
} else if (num_par == 10 || num_par == 5) {
for (e = 0; e < num_env; e++) {
map_idx_10_to_20(par_mapped[e], par[e], full);
}
} else {
*p_par_mapped = par;
}
}
static void stereo_processing(PSContext *ps, INTFLOAT (*l)[32][2], INTFLOAT (*r)[32][2], int is34)
{
int e, b, k;
PSCommonContext *const ps2 = &ps->common;
INTFLOAT (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
INTFLOAT (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
INTFLOAT (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
INTFLOAT (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
int8_t *opd_hist = ps->opd_hist;
int8_t *ipd_hist = ps->ipd_hist;
int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
const int8_t *const k_to_i = is34 ? ff_k_to_i_34 : ff_k_to_i_20;
TABLE_CONST INTFLOAT (*H_LUT)[8][4] = (PS_BASELINE || ps2->icc_mode < 3) ? HA : HB;
//Remapping
if (ps2->num_env_old) {
memcpy(H11[0][0], H11[0][ps2->num_env_old], sizeof(H11[0][0]));
memcpy(H11[1][0], H11[1][ps2->num_env_old], sizeof(H11[1][0]));
memcpy(H12[0][0], H12[0][ps2->num_env_old], sizeof(H12[0][0]));
memcpy(H12[1][0], H12[1][ps2->num_env_old], sizeof(H12[1][0]));
memcpy(H21[0][0], H21[0][ps2->num_env_old], sizeof(H21[0][0]));
memcpy(H21[1][0], H21[1][ps2->num_env_old], sizeof(H21[1][0]));
memcpy(H22[0][0], H22[0][ps2->num_env_old], sizeof(H22[0][0]));
memcpy(H22[1][0], H22[1][ps2->num_env_old], sizeof(H22[1][0]));
}
if (is34) {
remap34(&iid_mapped, ps2->iid_par, ps2->nr_iid_par, ps2->num_env, 1);
remap34(&icc_mapped, ps2->icc_par, ps2->nr_icc_par, ps2->num_env, 1);
if (ps2->enable_ipdopd) {
remap34(&ipd_mapped, ps2->ipd_par, ps2->nr_ipdopd_par, ps2->num_env, 0);
remap34(&opd_mapped, ps2->opd_par, ps2->nr_ipdopd_par, ps2->num_env, 0);
}
if (!ps2->is34bands_old) {
map_val_20_to_34(H11[0][0]);
map_val_20_to_34(H11[1][0]);
map_val_20_to_34(H12[0][0]);
map_val_20_to_34(H12[1][0]);
map_val_20_to_34(H21[0][0]);
map_val_20_to_34(H21[1][0]);
map_val_20_to_34(H22[0][0]);
map_val_20_to_34(H22[1][0]);
ipdopd_reset(ipd_hist, opd_hist);
}
} else {
remap20(&iid_mapped, ps2->iid_par, ps2->nr_iid_par, ps2->num_env, 1);
remap20(&icc_mapped, ps2->icc_par, ps2->nr_icc_par, ps2->num_env, 1);
if (ps2->enable_ipdopd) {
remap20(&ipd_mapped, ps2->ipd_par, ps2->nr_ipdopd_par, ps2->num_env, 0);
remap20(&opd_mapped, ps2->opd_par, ps2->nr_ipdopd_par, ps2->num_env, 0);
}
if (ps2->is34bands_old) {
map_val_34_to_20(H11[0][0]);
map_val_34_to_20(H11[1][0]);
map_val_34_to_20(H12[0][0]);
map_val_34_to_20(H12[1][0]);
map_val_34_to_20(H21[0][0]);
map_val_34_to_20(H21[1][0]);
map_val_34_to_20(H22[0][0]);
map_val_34_to_20(H22[1][0]);
ipdopd_reset(ipd_hist, opd_hist);
}
}
//Mixing
for (e = 0; e < ps2->num_env; e++) {
for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
INTFLOAT h11, h12, h21, h22;
h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][0];
h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][1];
h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][2];
h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps2->iid_quant][icc_mapped[e][b]][3];
if (!PS_BASELINE && ps2->enable_ipdopd && b < NR_IPDOPD_BANDS[is34]) {
//The spec say says to only run this smoother when enable_ipdopd
//is set but the reference decoder appears to run it constantly
INTFLOAT h11i, h12i, h21i, h22i;
INTFLOAT ipd_adj_re, ipd_adj_im;
int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
INTFLOAT opd_re = pd_re_smooth[opd_idx];
INTFLOAT opd_im = pd_im_smooth[opd_idx];
INTFLOAT ipd_re = pd_re_smooth[ipd_idx];
INTFLOAT ipd_im = pd_im_smooth[ipd_idx];
opd_hist[b] = opd_idx & 0x3F;
ipd_hist[b] = ipd_idx & 0x3F;
ipd_adj_re = AAC_MADD30(opd_re, ipd_re, opd_im, ipd_im);
ipd_adj_im = AAC_MSUB30(opd_im, ipd_re, opd_re, ipd_im);
h11i = AAC_MUL30(h11, opd_im);
h11 = AAC_MUL30(h11, opd_re);
h12i = AAC_MUL30(h12, ipd_adj_im);
h12 = AAC_MUL30(h12, ipd_adj_re);
h21i = AAC_MUL30(h21, opd_im);
h21 = AAC_MUL30(h21, opd_re);
h22i = AAC_MUL30(h22, ipd_adj_im);
h22 = AAC_MUL30(h22, ipd_adj_re);
H11[1][e+1][b] = h11i;
H12[1][e+1][b] = h12i;
H21[1][e+1][b] = h21i;
H22[1][e+1][b] = h22i;
}
H11[0][e+1][b] = h11;
H12[0][e+1][b] = h12;
H21[0][e+1][b] = h21;
H22[0][e+1][b] = h22;
}
for (k = 0; k < NR_BANDS[is34]; k++) {
LOCAL_ALIGNED_16(INTFLOAT, h, [2], [4]);
LOCAL_ALIGNED_16(INTFLOAT, h_step, [2], [4]);
int start = ps2->border_position[e];
int stop = ps2->border_position[e+1];
INTFLOAT width = Q30(1.f) / ((stop - start) ? (stop - start) : 1);
#if USE_FIXED
width = FFMIN(2U*width, INT_MAX);
#endif
b = k_to_i[k];
h[0][0] = H11[0][e][b];
h[0][1] = H12[0][e][b];
h[0][2] = H21[0][e][b];
h[0][3] = H22[0][e][b];
if (!PS_BASELINE && ps2->enable_ipdopd) {
//Is this necessary? ps_04_new seems unchanged
if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
h[1][0] = -H11[1][e][b];
h[1][1] = -H12[1][e][b];
h[1][2] = -H21[1][e][b];
h[1][3] = -H22[1][e][b];
} else {
h[1][0] = H11[1][e][b];
h[1][1] = H12[1][e][b];
h[1][2] = H21[1][e][b];
h[1][3] = H22[1][e][b];
}
}
//Interpolation
h_step[0][0] = AAC_MSUB31_V3(H11[0][e+1][b], h[0][0], width);
h_step[0][1] = AAC_MSUB31_V3(H12[0][e+1][b], h[0][1], width);
h_step[0][2] = AAC_MSUB31_V3(H21[0][e+1][b], h[0][2], width);
h_step[0][3] = AAC_MSUB31_V3(H22[0][e+1][b], h[0][3], width);
if (!PS_BASELINE && ps2->enable_ipdopd) {
h_step[1][0] = AAC_MSUB31_V3(H11[1][e+1][b], h[1][0], width);
h_step[1][1] = AAC_MSUB31_V3(H12[1][e+1][b], h[1][1], width);
h_step[1][2] = AAC_MSUB31_V3(H21[1][e+1][b], h[1][2], width);
h_step[1][3] = AAC_MSUB31_V3(H22[1][e+1][b], h[1][3], width);
}
if (stop - start)
ps->dsp.stereo_interpolate[!PS_BASELINE && ps2->enable_ipdopd](
l[k] + 1 + start, r[k] + 1 + start,
h, h_step, stop - start);
}
}
}
int AAC_RENAME(ff_ps_apply)(PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
{
INTFLOAT (*Lbuf)[32][2] = ps->Lbuf;
INTFLOAT (*Rbuf)[32][2] = ps->Rbuf;
const int len = 32;
int is34 = ps->common.is34bands;
top += NR_BANDS[is34] - 64;
memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
if (top < NR_ALLPASS_BANDS[is34])
memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
decorrelation(ps, Rbuf, (const INTFLOAT (*)[32][2]) Lbuf, is34);
stereo_processing(ps, Lbuf, Rbuf, is34);
hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);
return 0;
}
av_cold void AAC_RENAME(ff_ps_init)(void) {
ps_tableinit();
}