1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-07 11:13:41 +02:00
FFmpeg/libavfilter/vf_fftdnoiz.c
2022-05-07 13:23:33 +02:00

755 lines
25 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <float.h>
#include "libavutil/common.h"
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/tx.h"
#include "internal.h"
#include "window_func.h"
#define MAX_BLOCK 256
#define MAX_THREADS 32
enum BufferTypes {
CURRENT,
PREV,
NEXT,
BSIZE
};
typedef struct PlaneContext {
int planewidth, planeheight;
int nox, noy;
int b;
int o;
float n;
float *buffer[MAX_THREADS][BSIZE];
AVComplexFloat *hdata[MAX_THREADS], *vdata[MAX_THREADS];
AVComplexFloat *hdata_out[MAX_THREADS], *vdata_out[MAX_THREADS];
int data_linesize;
int buffer_linesize;
} PlaneContext;
typedef struct FFTdnoizContext {
const AVClass *class;
float sigma;
float amount;
int block_size;
float overlap;
int method;
int window;
int nb_prev;
int nb_next;
int planesf;
AVFrame *prev, *cur, *next;
int depth;
int nb_planes;
int nb_threads;
PlaneContext planes[4];
float win[MAX_BLOCK][MAX_BLOCK];
AVTXContext *fft[MAX_THREADS], *ifft[MAX_THREADS];
AVTXContext *fft_r[MAX_THREADS], *ifft_r[MAX_THREADS];
av_tx_fn tx_fn, itx_fn;
av_tx_fn tx_r_fn, itx_r_fn;
void (*import_row)(AVComplexFloat *dst, uint8_t *src, int rw, float scale, float *win, int off);
void (*export_row)(AVComplexFloat *src, uint8_t *dst, int rw, int depth, float *win);
} FFTdnoizContext;
#define OFFSET(x) offsetof(FFTdnoizContext, x)
#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
#define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption fftdnoiz_options[] = {
{ "sigma", "set denoise strength",
OFFSET(sigma), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 100, .flags = TFLAGS },
{ "amount", "set amount of denoising",
OFFSET(amount), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0.01, 1, .flags = TFLAGS },
{ "block", "set block size",
OFFSET(block_size), AV_OPT_TYPE_INT, {.i64=32}, 8, MAX_BLOCK, .flags = FLAGS },
{ "overlap", "set block overlap",
OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl=0.5}, 0.2, 0.8, .flags = FLAGS },
{ "method", "set method of denoising",
OFFSET(method), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = TFLAGS, "method" },
{ "wiener", "wiener method",
0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, .flags = TFLAGS, "method" },
{ "hard", "hard thresholding",
0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, .flags = TFLAGS, "method" },
{ "prev", "set number of previous frames for temporal denoising",
OFFSET(nb_prev), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = FLAGS },
{ "next", "set number of next frames for temporal denoising",
OFFSET(nb_next), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, .flags = FLAGS },
{ "planes", "set planes to filter",
OFFSET(planesf), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, .flags = TFLAGS },
WIN_FUNC_OPTION("window", OFFSET(window), FLAGS, WFUNC_HANNING),
{ NULL }
};
AVFILTER_DEFINE_CLASS(fftdnoiz);
static const enum AVPixelFormat pix_fmts[] = {
AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P,
AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P,
AV_PIX_FMT_YUVJ411P,
AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9,
AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_YUV440P12,
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA444P16,
AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12, AV_PIX_FMT_YUVA422P16,
AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_NONE
};
typedef struct ThreadData {
float *src, *dst;
} ThreadData;
static void import_row8(AVComplexFloat *dst, uint8_t *src, int rw,
float scale, float *win, int off)
{
for (int j = 0; j < rw; j++) {
const int i = abs(j + off);
dst[j].re = src[i] * scale * win[j];
dst[j].im = 0.f;
}
}
static void export_row8(AVComplexFloat *src, uint8_t *dst, int rw, int depth, float *win)
{
for (int j = 0; j < rw; j++)
dst[j] = av_clip_uint8(lrintf(src[j].re / win[j]));
}
static void import_row16(AVComplexFloat *dst, uint8_t *srcp, int rw,
float scale, float *win, int off)
{
uint16_t *src = (uint16_t *)srcp;
for (int j = 0; j < rw; j++) {
const int i = abs(j + off);
dst[j].re = src[i] * scale * win[j];
dst[j].im = 0;
}
}
static void export_row16(AVComplexFloat *src, uint8_t *dstp, int rw, int depth, float *win)
{
uint16_t *dst = (uint16_t *)dstp;
for (int j = 0; j < rw; j++)
dst[j] = av_clip_uintp2_c(lrintf(src[j].re / win[j]), depth);
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
const AVPixFmtDescriptor *desc;
FFTdnoizContext *s = ctx->priv;
float lut[MAX_BLOCK + 1];
float overlap;
int i;
desc = av_pix_fmt_desc_get(inlink->format);
s->depth = desc->comp[0].depth;
if (s->depth <= 8) {
s->import_row = import_row8;
s->export_row = export_row8;
} else {
s->import_row = import_row16;
s->export_row = export_row16;
}
s->planes[1].planewidth = s->planes[2].planewidth = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
s->planes[0].planewidth = s->planes[3].planewidth = inlink->w;
s->planes[1].planeheight = s->planes[2].planeheight = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
s->planes[0].planeheight = s->planes[3].planeheight = inlink->h;
s->nb_planes = av_pix_fmt_count_planes(inlink->format);
s->nb_threads = FFMIN(ff_filter_get_nb_threads(ctx), MAX_THREADS);
for (int i = 0; i < s->nb_threads; i++) {
float scale = 1.f, iscale = 1.f;
av_tx_init(&s->fft[i], &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->block_size, &scale, 0);
av_tx_init(&s->ifft[i], &s->itx_fn, AV_TX_FLOAT_FFT, 1, s->block_size, &iscale, 0);
av_tx_init(&s->fft_r[i], &s->tx_r_fn, AV_TX_FLOAT_FFT, 0, 1 + s->nb_prev + s->nb_next, &scale, 0);
av_tx_init(&s->ifft_r[i], &s->itx_r_fn, AV_TX_FLOAT_FFT, 1, 1 + s->nb_prev + s->nb_next, &iscale, 0);
if (!s->fft[i] || !s->ifft[i] || !s->fft_r[i] || !s->ifft_r[i])
return AVERROR(ENOMEM);
}
for (i = 0; i < s->nb_planes; i++) {
PlaneContext *p = &s->planes[i];
int size;
p->b = s->block_size;
p->n = 1.f / (p->b * p->b);
p->o = lrintf(p->b * s->overlap);
size = p->b - p->o;
p->nox = (p->planewidth + (size - 1)) / size;
p->noy = (p->planeheight + (size - 1)) / size;
av_log(ctx, AV_LOG_DEBUG, "nox:%d noy:%d size:%d\n", p->nox, p->noy, size);
p->buffer_linesize = p->b * sizeof(AVComplexFloat);
p->data_linesize = 2 * p->b * sizeof(float);
for (int j = 0; j < s->nb_threads; j++) {
p->hdata[j] = av_calloc(p->b, p->data_linesize);
p->hdata_out[j] = av_calloc(p->b, p->data_linesize);
p->vdata[j] = av_calloc(p->b, p->data_linesize);
p->vdata_out[j] = av_calloc(p->b, p->data_linesize);
p->buffer[j][CURRENT] = av_calloc(p->b, p->buffer_linesize);
if (!p->buffer[j][CURRENT])
return AVERROR(ENOMEM);
if (s->nb_prev > 0) {
p->buffer[j][PREV] = av_calloc(p->b, p->buffer_linesize);
if (!p->buffer[j][PREV])
return AVERROR(ENOMEM);
}
if (s->nb_next > 0) {
p->buffer[j][NEXT] = av_calloc(p->b, p->buffer_linesize);
if (!p->buffer[j][NEXT])
return AVERROR(ENOMEM);
}
if (!p->hdata[j] || !p->vdata[j] ||
!p->hdata_out[j] || !p->vdata_out[j])
return AVERROR(ENOMEM);
}
}
generate_window_func(lut, s->block_size + 1, s->window, &overlap);
for (int y = 0; y < s->block_size; y++) {
for (int x = 0; x < s->block_size; x++)
s->win[y][x] = lut[y] * lut[x];
}
return 0;
}
static void import_block(FFTdnoizContext *s,
uint8_t *srcp, int src_linesize,
float *buffer, int buffer_linesize, int plane,
int jobnr, int y, int x)
{
PlaneContext *p = &s->planes[plane];
const int width = p->planewidth;
const int height = p->planeheight;
const int block = p->b;
const int overlap = p->o;
const int hoverlap = overlap / 2;
const int size = block - overlap;
const int bpp = (s->depth + 7) / 8;
const int data_linesize = p->data_linesize / sizeof(AVComplexFloat);
const float scale = 1.f / ((1.f + s->nb_prev + s->nb_next) * s->block_size * s->block_size);
AVComplexFloat *hdata = p->hdata[jobnr];
AVComplexFloat *hdata_out = p->hdata_out[jobnr];
AVComplexFloat *vdata_out = p->vdata_out[jobnr];
const int woff = -hoverlap;
const int hoff = -hoverlap;
const int rh = FFMIN(block, height - y * size + hoverlap);
const int rw = FFMIN(block, width - x * size + hoverlap);
AVComplexFloat *ssrc, *ddst, *dst = hdata, *dst_out = hdata_out;
float *bdst = buffer;
buffer_linesize /= sizeof(float);
for (int i = 0; i < rh; i++) {
uint8_t *src = srcp + src_linesize * abs(y * size + i + hoff) + x * size * bpp;
s->import_row(dst, src, rw, scale, s->win[i], woff);
for (int j = rw; j < block; j++) {
dst[j].re = dst[rw - 1].re;
dst[j].im = 0.f;
}
s->tx_fn(s->fft[jobnr], dst_out, dst, sizeof(float));
ddst = dst_out;
dst += data_linesize;
dst_out += data_linesize;
}
for (int i = rh; i < block; i++) {
for (int j = 0; j < block; j++) {
dst[j].re = ddst[j].re;
dst[j].im = ddst[j].im;
}
dst += data_linesize;
}
ssrc = hdata_out;
dst = vdata_out;
for (int i = 0; i < block; i++) {
for (int j = 0; j < block; j++)
dst[j] = ssrc[j * data_linesize + i];
s->tx_fn(s->fft[jobnr], bdst, dst, sizeof(float));
dst += data_linesize;
bdst += buffer_linesize;
}
}
static void export_block(FFTdnoizContext *s,
uint8_t *dstp, int dst_linesize,
float *buffer, int buffer_linesize, int plane,
int jobnr, int y, int x)
{
PlaneContext *p = &s->planes[plane];
const int depth = s->depth;
const int bpp = (depth + 7) / 8;
const int width = p->planewidth;
const int height = p->planeheight;
const int block = p->b;
const int overlap = p->o;
const int hoverlap = overlap / 2;
const int size = block - overlap;
const int data_linesize = p->data_linesize / sizeof(AVComplexFloat);
AVComplexFloat *hdata = p->hdata[jobnr];
AVComplexFloat *hdata_out = p->hdata_out[jobnr];
AVComplexFloat *vdata_out = p->vdata_out[jobnr];
const int rw = FFMIN(size, width - x * size + hoverlap);
const int rh = FFMIN(size, height - y * size + hoverlap);
AVComplexFloat *hdst, *vdst = vdata_out, *hdst_out = hdata_out;
float *bsrc = buffer;
hdst = hdata;
buffer_linesize /= sizeof(float);
for (int i = 0; i < block; i++) {
s->itx_fn(s->ifft[jobnr], vdst, bsrc, sizeof(float));
for (int j = 0; j < block; j++)
hdst[j * data_linesize + i] = vdst[j];
vdst += data_linesize;
bsrc += buffer_linesize;
}
hdst = hdata + hoverlap * data_linesize;
for (int i = 0; i < rh && (y * size + i) < height; i++) {
uint8_t *dst = dstp + dst_linesize * (y * size + i) + x * size * bpp;
s->itx_fn(s->ifft[jobnr], hdst_out, hdst, sizeof(float));
s->export_row(hdst_out + hoverlap, dst, rw, depth, s->win[i + hoverlap] + hoverlap);
hdst += data_linesize;
hdst_out += data_linesize;
}
}
static void filter_block3d2(FFTdnoizContext *s, int plane, float *pbuffer, float *nbuffer,
int jobnr)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int buffer_linesize = p->buffer_linesize / sizeof(float);
const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
const float sigma = s->sigma * depthx / (3.f * s->block_size * s->block_size);
const float limit = 1.f - s->amount;
float *cbuffer = p->buffer[jobnr][CURRENT];
const int method = s->method;
float *cbuff = cbuffer;
float *pbuff = pbuffer;
float *nbuff = nbuffer;
for (int i = 0; i < block; i++) {
for (int j = 0; j < block; j++) {
AVComplexFloat buffer[BSIZE];
AVComplexFloat outbuffer[BSIZE];
buffer[0].re = pbuff[2 * j ];
buffer[0].im = pbuff[2 * j + 1];
buffer[1].re = cbuff[2 * j ];
buffer[1].im = cbuff[2 * j + 1];
buffer[2].re = nbuff[2 * j ];
buffer[2].im = nbuff[2 * j + 1];
s->tx_r_fn(s->fft_r[jobnr], outbuffer, buffer, sizeof(float));
for (int z = 0; z < 3; z++) {
const float re = outbuffer[z].re;
const float im = outbuffer[z].im;
const float power = re * re + im * im;
float factor;
switch (method) {
case 0:
factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
break;
case 1:
factor = power < sigma ? limit : 1.f;
break;
}
outbuffer[z].re *= factor;
outbuffer[z].im *= factor;
}
s->itx_r_fn(s->ifft_r[jobnr], buffer, outbuffer, sizeof(float));
cbuff[2 * j + 0] = buffer[1].re;
cbuff[2 * j + 1] = buffer[1].im;
}
cbuff += buffer_linesize;
pbuff += buffer_linesize;
nbuff += buffer_linesize;
}
}
static void filter_block3d1(FFTdnoizContext *s, int plane, float *pbuffer,
int jobnr)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int buffer_linesize = p->buffer_linesize / sizeof(float);
const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
const float sigma = s->sigma * depthx / (2.f * s->block_size * s->block_size);
const float limit = 1.f - s->amount;
float *cbuffer = p->buffer[jobnr][CURRENT];
const int method = s->method;
float *cbuff = cbuffer;
float *pbuff = pbuffer;
for (int i = 0; i < block; i++) {
for (int j = 0; j < block; j++) {
AVComplexFloat buffer[BSIZE];
AVComplexFloat outbuffer[BSIZE];
buffer[0].re = pbuff[2 * j ];
buffer[0].im = pbuff[2 * j + 1];
buffer[1].re = cbuff[2 * j ];
buffer[1].im = cbuff[2 * j + 1];
s->tx_r_fn(s->fft_r[jobnr], outbuffer, buffer, sizeof(float));
for (int z = 0; z < 2; z++) {
const float re = outbuffer[z].re;
const float im = outbuffer[z].im;
const float power = re * re + im * im;
float factor;
switch (method) {
case 0:
factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
break;
case 1:
factor = power < sigma ? limit : 1.f;
break;
}
outbuffer[z].re *= factor;
outbuffer[z].im *= factor;
}
s->itx_r_fn(s->ifft_r[jobnr], buffer, outbuffer, sizeof(float));
cbuff[2 * j + 0] = buffer[1].re;
cbuff[2 * j + 1] = buffer[1].im;
}
cbuff += buffer_linesize;
pbuff += buffer_linesize;
}
}
static void filter_block2d(FFTdnoizContext *s, int plane,
int jobnr)
{
PlaneContext *p = &s->planes[plane];
const int block = p->b;
const int method = s->method;
const int buffer_linesize = p->buffer_linesize / sizeof(float);
const float depthx = (1 << (s->depth - 8)) * (1 << (s->depth - 8));
const float sigma = s->sigma * depthx / (s->block_size * s->block_size);
const float limit = 1.f - s->amount;
float *buff = p->buffer[jobnr][CURRENT];
for (int i = 0; i < block; i++) {
for (int j = 0; j < block; j++) {
float factor, power, re, im;
re = buff[j * 2 ];
im = buff[j * 2 + 1];
power = re * re + im * im;
switch (method) {
case 0:
factor = fmaxf(limit, (power - sigma) / (power + 1e-15f));
break;
case 1:
factor = power < sigma ? limit : 1.f;
break;
}
buff[j * 2 ] *= factor;
buff[j * 2 + 1] *= factor;
}
buff += buffer_linesize;
}
}
static int denoise(AVFilterContext *ctx, void *arg,
int jobnr, int nb_jobs)
{
FFTdnoizContext *s = ctx->priv;
AVFrame *out = arg;
for (int plane = 0; plane < s->nb_planes; plane++) {
PlaneContext *p = &s->planes[plane];
const int nox = p->nox;
const int noy = p->noy;
const int slice_start = (noy * jobnr) / nb_jobs;
const int slice_end = (noy * (jobnr+1)) / nb_jobs;
if (!((1 << plane) & s->planesf) || ctx->is_disabled)
continue;
for (int y = slice_start; y < slice_end; y++) {
for (int x = 0; x < nox; x++) {
if (s->next) {
import_block(s, s->next->data[plane], s->next->linesize[plane],
p->buffer[jobnr][NEXT], p->buffer_linesize, plane,
jobnr, y, x);
}
if (s->prev) {
import_block(s, s->prev->data[plane], s->prev->linesize[plane],
p->buffer[jobnr][PREV], p->buffer_linesize, plane,
jobnr, y, x);
}
import_block(s, s->cur->data[plane], s->cur->linesize[plane],
p->buffer[jobnr][CURRENT], p->buffer_linesize, plane,
jobnr, y, x);
if (s->next && s->prev) {
filter_block3d2(s, plane, p->buffer[jobnr][PREV], p->buffer[jobnr][NEXT], jobnr);
} else if (s->next) {
filter_block3d1(s, plane, p->buffer[jobnr][NEXT], jobnr);
} else if (s->prev) {
filter_block3d1(s, plane, p->buffer[jobnr][PREV], jobnr);
} else {
filter_block2d(s, plane, jobnr);
}
export_block(s, out->data[plane], out->linesize[plane],
p->buffer[jobnr][CURRENT], p->buffer_linesize, plane,
jobnr, y, x);
}
}
}
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
FFTdnoizContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
int direct, plane;
AVFrame *out;
if (s->nb_next > 0 && s->nb_prev > 0) {
av_frame_free(&s->prev);
s->prev = s->cur;
s->cur = s->next;
s->next = in;
if (!s->prev && s->cur) {
s->prev = av_frame_clone(s->cur);
if (!s->prev)
return AVERROR(ENOMEM);
}
if (!s->cur)
return 0;
} else if (s->nb_next > 0) {
av_frame_free(&s->cur);
s->cur = s->next;
s->next = in;
if (!s->cur)
return 0;
} else if (s->nb_prev > 0) {
av_frame_free(&s->prev);
s->prev = s->cur;
s->cur = in;
if (!s->prev)
s->prev = av_frame_clone(s->cur);
if (!s->prev)
return AVERROR(ENOMEM);
} else {
s->cur = in;
}
if (av_frame_is_writable(in) && s->nb_next == 0 && s->nb_prev == 0) {
direct = 1;
out = in;
} else {
direct = 0;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out)
return AVERROR(ENOMEM);
av_frame_copy_props(out, s->cur);
}
ff_filter_execute(ctx, denoise, out, NULL,
FFMIN(s->planes[0].noy, s->nb_threads));
for (plane = 0; plane < s->nb_planes; plane++) {
PlaneContext *p = &s->planes[plane];
if (!((1 << plane) & s->planesf) || ctx->is_disabled) {
if (!direct)
av_image_copy_plane(out->data[plane], out->linesize[plane],
s->cur->data[plane], s->cur->linesize[plane],
p->planewidth * (1 + (s->depth > 8)), p->planeheight);
continue;
}
}
if (s->nb_next == 0 && s->nb_prev == 0) {
if (direct) {
s->cur = NULL;
} else {
av_frame_free(&s->cur);
}
}
return ff_filter_frame(outlink, out);
}
static int request_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
FFTdnoizContext *s = ctx->priv;
int ret = 0;
ret = ff_request_frame(ctx->inputs[0]);
if (ret == AVERROR_EOF && (s->nb_next > 0)) {
AVFrame *buf;
if (s->next && s->nb_next > 0)
buf = av_frame_clone(s->next);
else if (s->cur)
buf = av_frame_clone(s->cur);
else
buf = av_frame_clone(s->prev);
if (!buf)
return AVERROR(ENOMEM);
ret = filter_frame(ctx->inputs[0], buf);
if (ret < 0)
return ret;
ret = AVERROR_EOF;
}
return ret;
}
static av_cold void uninit(AVFilterContext *ctx)
{
FFTdnoizContext *s = ctx->priv;
int i;
for (i = 0; i < 4; i++) {
PlaneContext *p = &s->planes[i];
for (int j = 0; j < s->nb_threads; j++) {
av_freep(&p->hdata[j]);
av_freep(&p->vdata[j]);
av_freep(&p->hdata_out[j]);
av_freep(&p->vdata_out[j]);
av_freep(&p->buffer[j][PREV]);
av_freep(&p->buffer[j][CURRENT]);
av_freep(&p->buffer[j][NEXT]);
}
}
for (i = 0; i < s->nb_threads; i++) {
av_tx_uninit(&s->fft[i]);
av_tx_uninit(&s->ifft[i]);
av_tx_uninit(&s->fft_r[i]);
av_tx_uninit(&s->ifft_r[i]);
}
av_frame_free(&s->prev);
av_frame_free(&s->cur);
av_frame_free(&s->next);
}
static const AVFilterPad fftdnoiz_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
static const AVFilterPad fftdnoiz_outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.request_frame = request_frame,
},
};
const AVFilter ff_vf_fftdnoiz = {
.name = "fftdnoiz",
.description = NULL_IF_CONFIG_SMALL("Denoise frames using 3D FFT."),
.priv_size = sizeof(FFTdnoizContext),
.uninit = uninit,
FILTER_INPUTS(fftdnoiz_inputs),
FILTER_OUTPUTS(fftdnoiz_outputs),
FILTER_PIXFMTS_ARRAY(pix_fmts),
.priv_class = &fftdnoiz_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
AVFILTER_FLAG_SLICE_THREADS,
.process_command = ff_filter_process_command,
};