1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2024-12-28 20:53:54 +02:00
FFmpeg/libavcodec/cbs_vp9_syntax_template.c
Andreas Rheinhardt 14dd0a9057 avcodec/cbs: Avoid leaving the ... out in calls to variadic macros
According to C99, there has to be at least one argument for every ...
in a variadic function-like macro. In practice most (all?) compilers also
allow to leave it completely out, but it is nevertheless required: In a
variadic macro "there shall be more arguments in the invocation than there
are parameters in the macro definition (excluding the ...)." (C99,
6.10.3.4).

CBS (not the framework itself, but the macros used in the
cbs_*_syntax_template.c files) relies on the compiler allowing to leave
a variadic macro argument out. This leads to warnings when compiling in
-pedantic mode, e.g. "warning: must specify at least one argument for
'...' parameter of variadic macro [-Wgnu-zero-variadic-macro-arguments]"
from Clang.

Most of these warnings can be easily avoided: The syntax_templates
mostly contain helper macros that expand to more complex variadic macros
and these helper macros often omit an argument for the .... Modifying
them to always expand to complex macros with an empty argument for the
... at the end fixes most of these warnings: The number of warnings went
down from 400 to 0 for cbs_av1, from 1114 to 32 for cbs_h2645, from 38 to
0 for cbs_jpeg, from 166 to 0 for cbs_mpeg2 and from 110 to 8 for cbs_vp9.

These eight remaining warnings for cbs_vp9 have been fixed by switching
to another macro in cbs_vp9_syntax_template: The fixed values for the
sync bytes as well as the trailing bits for byte-alignment are now read
via the fixed() macro (this also adds a check to ensure that trailing
bits are indeed zero as they have to be).

Reviewed-by: Mark Thompson <sw@jkqxz.net>
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@gmail.com>
2020-04-12 23:23:49 +02:00

430 lines
13 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
static int FUNC(frame_sync_code)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
int err;
fixed(8, frame_sync_byte_0, VP9_FRAME_SYNC_0);
fixed(8, frame_sync_byte_1, VP9_FRAME_SYNC_1);
fixed(8, frame_sync_byte_2, VP9_FRAME_SYNC_2);
return 0;
}
static int FUNC(color_config)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current, int profile)
{
CodedBitstreamVP9Context *vp9 = ctx->priv_data;
int err;
if (profile >= 2) {
f(1, ten_or_twelve_bit);
vp9->bit_depth = current->ten_or_twelve_bit ? 12 : 10;
} else
vp9->bit_depth = 8;
f(3, color_space);
if (current->color_space != VP9_CS_RGB) {
f(1, color_range);
if (profile == 1 || profile == 3) {
f(1, subsampling_x);
f(1, subsampling_y);
fixed(1, reserved_zero, 0);
} else {
infer(subsampling_x, 1);
infer(subsampling_y, 1);
}
} else {
infer(color_range, 1);
if (profile == 1 || profile == 3) {
infer(subsampling_x, 0);
infer(subsampling_y, 0);
fixed(1, reserved_zero, 0);
}
}
vp9->subsampling_x = current->subsampling_x;
vp9->subsampling_y = current->subsampling_y;
return 0;
}
static int FUNC(frame_size)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
CodedBitstreamVP9Context *vp9 = ctx->priv_data;
int err;
f(16, frame_width_minus_1);
f(16, frame_height_minus_1);
vp9->frame_width = current->frame_width_minus_1 + 1;
vp9->frame_height = current->frame_height_minus_1 + 1;
vp9->mi_cols = (vp9->frame_width + 7) >> 3;
vp9->mi_rows = (vp9->frame_height + 7) >> 3;
vp9->sb64_cols = (vp9->mi_cols + 7) >> 3;
vp9->sb64_rows = (vp9->mi_rows + 7) >> 3;
return 0;
}
static int FUNC(render_size)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
int err;
f(1, render_and_frame_size_different);
if (current->render_and_frame_size_different) {
f(16, render_width_minus_1);
f(16, render_height_minus_1);
}
return 0;
}
static int FUNC(frame_size_with_refs)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
CodedBitstreamVP9Context *vp9 = ctx->priv_data;
int err, i;
for (i = 0; i < VP9_REFS_PER_FRAME; i++) {
fs(1, found_ref[i], 1, i);
if (current->found_ref[i]) {
VP9ReferenceFrameState *ref =
&vp9->ref[current->ref_frame_idx[i]];
vp9->frame_width = ref->frame_width;
vp9->frame_height = ref->frame_height;
vp9->subsampling_x = ref->subsampling_x;
vp9->subsampling_y = ref->subsampling_y;
vp9->bit_depth = ref->bit_depth;
break;
}
}
if (i >= VP9_REFS_PER_FRAME)
CHECK(FUNC(frame_size)(ctx, rw, current));
else {
vp9->mi_cols = (vp9->frame_width + 7) >> 3;
vp9->mi_rows = (vp9->frame_height + 7) >> 3;
vp9->sb64_cols = (vp9->mi_cols + 7) >> 3;
vp9->sb64_rows = (vp9->mi_rows + 7) >> 3;
}
CHECK(FUNC(render_size)(ctx, rw, current));
return 0;
}
static int FUNC(interpolation_filter)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
int err;
f(1, is_filter_switchable);
if (!current->is_filter_switchable)
f(2, raw_interpolation_filter_type);
return 0;
}
static int FUNC(loop_filter_params)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
int err, i;
f(6, loop_filter_level);
f(3, loop_filter_sharpness);
f(1, loop_filter_delta_enabled);
if (current->loop_filter_delta_enabled) {
f(1, loop_filter_delta_update);
if (current->loop_filter_delta_update) {
for (i = 0; i < VP9_MAX_REF_FRAMES; i++) {
fs(1, update_ref_delta[i], 1, i);
if (current->update_ref_delta[i])
ss(6, loop_filter_ref_deltas[i], 1, i);
}
for (i = 0; i < 2; i++) {
fs(1, update_mode_delta[i], 1, i);
if (current->update_mode_delta[i])
ss(6, loop_filter_mode_deltas[i], 1, i);
}
}
}
return 0;
}
static int FUNC(quantization_params)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
int err;
f(8, base_q_idx);
delta_q(delta_q_y_dc);
delta_q(delta_q_uv_dc);
delta_q(delta_q_uv_ac);
return 0;
}
static int FUNC(segmentation_params)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
static const uint8_t segmentation_feature_bits[VP9_SEG_LVL_MAX] = { 8, 6, 2, 0 };
static const uint8_t segmentation_feature_signed[VP9_SEG_LVL_MAX] = { 1, 1, 0, 0 };
int err, i, j;
f(1, segmentation_enabled);
if (current->segmentation_enabled) {
f(1, segmentation_update_map);
if (current->segmentation_update_map) {
for (i = 0; i < 7; i++)
prob(segmentation_tree_probs[i], 1, i);
f(1, segmentation_temporal_update);
for (i = 0; i < 3; i++) {
if (current->segmentation_temporal_update)
prob(segmentation_pred_prob[i], 1, i);
else
infer(segmentation_pred_prob[i], 255);
}
}
f(1, segmentation_update_data);
if (current->segmentation_update_data) {
f(1, segmentation_abs_or_delta_update);
for (i = 0; i < VP9_MAX_SEGMENTS; i++) {
for (j = 0; j < VP9_SEG_LVL_MAX; j++) {
fs(1, feature_enabled[i][j], 2, i, j);
if (current->feature_enabled[i][j] &&
segmentation_feature_bits[j]) {
fs(segmentation_feature_bits[j],
feature_value[i][j], 2, i, j);
if (segmentation_feature_signed[j])
fs(1, feature_sign[i][j], 2, i, j);
else
infer(feature_sign[i][j], 0);
} else {
infer(feature_value[i][j], 0);
infer(feature_sign[i][j], 0);
}
}
}
}
}
return 0;
}
static int FUNC(tile_info)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
CodedBitstreamVP9Context *vp9 = ctx->priv_data;
int min_log2_tile_cols, max_log2_tile_cols;
int err;
min_log2_tile_cols = 0;
while ((VP9_MAX_TILE_WIDTH_B64 << min_log2_tile_cols) < vp9->sb64_cols)
++min_log2_tile_cols;
max_log2_tile_cols = 0;
while ((vp9->sb64_cols >> (max_log2_tile_cols + 1)) >= VP9_MIN_TILE_WIDTH_B64)
++max_log2_tile_cols;
increment(tile_cols_log2, min_log2_tile_cols, max_log2_tile_cols);
increment(tile_rows_log2, 0, 2);
return 0;
}
static int FUNC(uncompressed_header)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrameHeader *current)
{
CodedBitstreamVP9Context *vp9 = ctx->priv_data;
int err, i;
f(2, frame_marker);
f(1, profile_low_bit);
f(1, profile_high_bit);
vp9->profile = (current->profile_high_bit << 1) + current->profile_low_bit;
if (vp9->profile == 3)
fixed(1, reserved_zero, 0);
f(1, show_existing_frame);
if (current->show_existing_frame) {
f(3, frame_to_show_map_idx);
infer(header_size_in_bytes, 0);
infer(refresh_frame_flags, 0x00);
infer(loop_filter_level, 0);
return 0;
}
f(1, frame_type);
f(1, show_frame);
f(1, error_resilient_mode);
if (current->frame_type == VP9_KEY_FRAME) {
CHECK(FUNC(frame_sync_code)(ctx, rw, current));
CHECK(FUNC(color_config)(ctx, rw, current, vp9->profile));
CHECK(FUNC(frame_size)(ctx, rw, current));
CHECK(FUNC(render_size)(ctx, rw, current));
infer(refresh_frame_flags, 0xff);
} else {
if (current->show_frame == 0)
f(1, intra_only);
else
infer(intra_only, 0);
if (current->error_resilient_mode == 0)
f(2, reset_frame_context);
else
infer(reset_frame_context, 0);
if (current->intra_only == 1) {
CHECK(FUNC(frame_sync_code)(ctx, rw, current));
if (vp9->profile > 0) {
CHECK(FUNC(color_config)(ctx, rw, current, vp9->profile));
} else {
infer(color_space, 1);
infer(subsampling_x, 1);
infer(subsampling_y, 1);
vp9->bit_depth = 8;
vp9->subsampling_x = current->subsampling_x;
vp9->subsampling_y = current->subsampling_y;
}
f(8, refresh_frame_flags);
CHECK(FUNC(frame_size)(ctx, rw, current));
CHECK(FUNC(render_size)(ctx, rw, current));
} else {
f(8, refresh_frame_flags);
for (i = 0; i < VP9_REFS_PER_FRAME; i++) {
fs(3, ref_frame_idx[i], 1, i);
fs(1, ref_frame_sign_bias[VP9_LAST_FRAME + i],
1, VP9_LAST_FRAME + i);
}
CHECK(FUNC(frame_size_with_refs)(ctx, rw, current));
f(1, allow_high_precision_mv);
CHECK(FUNC(interpolation_filter)(ctx, rw, current));
}
}
if (current->error_resilient_mode == 0) {
f(1, refresh_frame_context);
f(1, frame_parallel_decoding_mode);
} else {
infer(refresh_frame_context, 0);
infer(frame_parallel_decoding_mode, 1);
}
f(2, frame_context_idx);
CHECK(FUNC(loop_filter_params)(ctx, rw, current));
CHECK(FUNC(quantization_params)(ctx, rw, current));
CHECK(FUNC(segmentation_params)(ctx, rw, current));
CHECK(FUNC(tile_info)(ctx, rw, current));
f(16, header_size_in_bytes);
for (i = 0; i < VP9_NUM_REF_FRAMES; i++) {
if (current->refresh_frame_flags & (1 << i)) {
vp9->ref[i] = (VP9ReferenceFrameState) {
.frame_width = vp9->frame_width,
.frame_height = vp9->frame_height,
.subsampling_x = vp9->subsampling_x,
.subsampling_y = vp9->subsampling_y,
.bit_depth = vp9->bit_depth,
};
}
}
av_log(ctx->log_ctx, AV_LOG_DEBUG, "Frame: size %dx%d "
"subsample %dx%d bit_depth %d tiles %dx%d.\n",
vp9->frame_width, vp9->frame_height,
vp9->subsampling_x, vp9->subsampling_y,
vp9->bit_depth, 1 << current->tile_cols_log2,
1 << current->tile_rows_log2);
return 0;
}
static int FUNC(trailing_bits)(CodedBitstreamContext *ctx, RWContext *rw)
{
int err;
while (byte_alignment(rw) != 0)
fixed(1, zero_bit, 0);
return 0;
}
static int FUNC(frame)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawFrame *current)
{
int err;
HEADER("Frame");
CHECK(FUNC(uncompressed_header)(ctx, rw, &current->header));
CHECK(FUNC(trailing_bits)(ctx, rw));
return 0;
}
static int FUNC(superframe_index)(CodedBitstreamContext *ctx, RWContext *rw,
VP9RawSuperframeIndex *current)
{
int err, i;
HEADER("Superframe Index");
f(3, superframe_marker);
f(2, bytes_per_framesize_minus_1);
f(3, frames_in_superframe_minus_1);
for (i = 0; i <= current->frames_in_superframe_minus_1; i++) {
// Surprise little-endian!
fle(8 * (current->bytes_per_framesize_minus_1 + 1),
frame_sizes[i], 1, i);
}
f(3, superframe_marker);
f(2, bytes_per_framesize_minus_1);
f(3, frames_in_superframe_minus_1);
return 0;
}