1
0
mirror of https://github.com/FFmpeg/FFmpeg.git synced 2025-01-03 05:10:03 +02:00
FFmpeg/libavcodec/acelp_pitch_delay.c
Ganesh Ajjanagadde db1a642cd2 all: move ff_exp10, ff_exp10f, ff_fast_powf to lavu/ffmath.h
The idea is to use ffmath.h for internal implementations of math functions.
Currently, it is used for variants of libm functions, but is by no means
limited to such things.

Note that this is not exported; use lavu/mathematics for such purposes.

Reviewed-by: Ronald S. Bultje <rsbultje@gmail.com>
Signed-off-by: Ganesh Ajjanagadde <gajjanag@gmail.com>
2016-03-22 10:15:31 -07:00

191 lines
6.1 KiB
C

/*
* gain code, gain pitch and pitch delay decoding
*
* Copyright (c) 2008 Vladimir Voroshilov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/common.h"
#include "libavutil/ffmath.h"
#include "libavutil/float_dsp.h"
#include "libavutil/mathematics.h"
#include "avcodec.h"
#include "acelp_pitch_delay.h"
#include "celp_math.h"
#include "audiodsp.h"
int ff_acelp_decode_8bit_to_1st_delay3(int ac_index)
{
ac_index += 58;
if(ac_index > 254)
ac_index = 3 * ac_index - 510;
return ac_index;
}
int ff_acelp_decode_4bit_to_2nd_delay3(
int ac_index,
int pitch_delay_min)
{
if(ac_index < 4)
return 3 * (ac_index + pitch_delay_min);
else if(ac_index < 12)
return 3 * pitch_delay_min + ac_index + 6;
else
return 3 * (ac_index + pitch_delay_min) - 18;
}
int ff_acelp_decode_5_6_bit_to_2nd_delay3(
int ac_index,
int pitch_delay_min)
{
return 3 * pitch_delay_min + ac_index - 2;
}
int ff_acelp_decode_9bit_to_1st_delay6(int ac_index)
{
if(ac_index < 463)
return ac_index + 105;
else
return 6 * (ac_index - 368);
}
int ff_acelp_decode_6bit_to_2nd_delay6(
int ac_index,
int pitch_delay_min)
{
return 6 * pitch_delay_min + ac_index - 3;
}
void ff_acelp_update_past_gain(
int16_t* quant_energy,
int gain_corr_factor,
int log2_ma_pred_order,
int erasure)
{
int i;
int avg_gain=quant_energy[(1 << log2_ma_pred_order) - 1]; // (5.10)
for(i=(1 << log2_ma_pred_order) - 1; i>0; i--)
{
avg_gain += quant_energy[i-1];
quant_energy[i] = quant_energy[i-1];
}
if(erasure)
quant_energy[0] = FFMAX(avg_gain >> log2_ma_pred_order, -10240) - 4096; // -10 and -4 in (5.10)
else
quant_energy[0] = (6165 * ((ff_log2_q15(gain_corr_factor) >> 2) - (13 << 13))) >> 13;
}
int16_t ff_acelp_decode_gain_code(
AudioDSPContext *adsp,
int gain_corr_factor,
const int16_t* fc_v,
int mr_energy,
const int16_t* quant_energy,
const int16_t* ma_prediction_coeff,
int subframe_size,
int ma_pred_order)
{
int i;
mr_energy <<= 10;
for(i=0; i<ma_pred_order; i++)
mr_energy += quant_energy[i] * ma_prediction_coeff[i];
#ifdef G729_BITEXACT
mr_energy += (((-6165LL * ff_log2(dsp->scalarproduct_int16(fc_v, fc_v, subframe_size, 0))) >> 3) & ~0x3ff);
mr_energy = (5439 * (mr_energy >> 15)) >> 8; // (0.15) = (0.15) * (7.23)
return bidir_sal(
((ff_exp2(mr_energy & 0x7fff) + 16) >> 5) * (gain_corr_factor >> 1),
(mr_energy >> 15) - 25
);
#else
mr_energy = gain_corr_factor * exp(M_LN10 / (20 << 23) * mr_energy) /
sqrt(adsp->scalarproduct_int16(fc_v, fc_v, subframe_size));
return mr_energy >> 12;
#endif
}
float ff_amr_set_fixed_gain(float fixed_gain_factor, float fixed_mean_energy,
float *prediction_error, float energy_mean,
const float *pred_table)
{
// Equations 66-69:
// ^g_c = ^gamma_gc * 100.05 (predicted dB + mean dB - dB of fixed vector)
// Note 10^(0.05 * -10log(average x2)) = 1/sqrt((average x2)).
float val = fixed_gain_factor *
ff_exp10(0.05 *
(avpriv_scalarproduct_float_c(pred_table, prediction_error, 4) +
energy_mean)) /
sqrtf(fixed_mean_energy);
// update quantified prediction error energy history
memmove(&prediction_error[0], &prediction_error[1],
3 * sizeof(prediction_error[0]));
prediction_error[3] = 20.0 * log10f(fixed_gain_factor);
return val;
}
void ff_decode_pitch_lag(int *lag_int, int *lag_frac, int pitch_index,
const int prev_lag_int, const int subframe,
int third_as_first, int resolution)
{
/* Note n * 10923 >> 15 is floor(x/3) for 0 <= n <= 32767 */
if (subframe == 0 || (subframe == 2 && third_as_first)) {
if (pitch_index < 197)
pitch_index += 59;
else
pitch_index = 3 * pitch_index - 335;
} else {
if (resolution == 4) {
int search_range_min = av_clip(prev_lag_int - 5, PITCH_DELAY_MIN,
PITCH_DELAY_MAX - 9);
// decoding with 4-bit resolution
if (pitch_index < 4) {
// integer only precision for [search_range_min, search_range_min+3]
pitch_index = 3 * (pitch_index + search_range_min) + 1;
} else if (pitch_index < 12) {
// 1/3 fractional precision for [search_range_min+3 1/3, search_range_min+5 2/3]
pitch_index += 3 * search_range_min + 7;
} else {
// integer only precision for [search_range_min+6, search_range_min+9]
pitch_index = 3 * (pitch_index + search_range_min - 6) + 1;
}
} else {
// decoding with 5 or 6 bit resolution, 1/3 fractional precision
pitch_index--;
if (resolution == 5) {
pitch_index += 3 * av_clip(prev_lag_int - 10, PITCH_DELAY_MIN,
PITCH_DELAY_MAX - 19);
} else
pitch_index += 3 * av_clip(prev_lag_int - 5, PITCH_DELAY_MIN,
PITCH_DELAY_MAX - 9);
}
}
*lag_int = pitch_index * 10923 >> 15;
*lag_frac = pitch_index - 3 * *lag_int - 1;
}