mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-23 12:43:46 +02:00
db1a642cd2
The idea is to use ffmath.h for internal implementations of math functions. Currently, it is used for variants of libm functions, but is by no means limited to such things. Note that this is not exported; use lavu/mathematics for such purposes. Reviewed-by: Ronald S. Bultje <rsbultje@gmail.com> Signed-off-by: Ganesh Ajjanagadde <gajjanag@gmail.com>
1787 lines
68 KiB
C
1787 lines
68 KiB
C
/*
|
|
* Wmapro compatible decoder
|
|
* Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
|
|
* Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief wmapro decoder implementation
|
|
* Wmapro is an MDCT based codec comparable to wma standard or AAC.
|
|
* The decoding therefore consists of the following steps:
|
|
* - bitstream decoding
|
|
* - reconstruction of per-channel data
|
|
* - rescaling and inverse quantization
|
|
* - IMDCT
|
|
* - windowing and overlapp-add
|
|
*
|
|
* The compressed wmapro bitstream is split into individual packets.
|
|
* Every such packet contains one or more wma frames.
|
|
* The compressed frames may have a variable length and frames may
|
|
* cross packet boundaries.
|
|
* Common to all wmapro frames is the number of samples that are stored in
|
|
* a frame.
|
|
* The number of samples and a few other decode flags are stored
|
|
* as extradata that has to be passed to the decoder.
|
|
*
|
|
* The wmapro frames themselves are again split into a variable number of
|
|
* subframes. Every subframe contains the data for 2^N time domain samples
|
|
* where N varies between 7 and 12.
|
|
*
|
|
* Example wmapro bitstream (in samples):
|
|
*
|
|
* || packet 0 || packet 1 || packet 2 packets
|
|
* ---------------------------------------------------
|
|
* || frame 0 || frame 1 || frame 2 || frames
|
|
* ---------------------------------------------------
|
|
* || | | || | | | || || subframes of channel 0
|
|
* ---------------------------------------------------
|
|
* || | | || | | | || || subframes of channel 1
|
|
* ---------------------------------------------------
|
|
*
|
|
* The frame layouts for the individual channels of a wma frame does not need
|
|
* to be the same.
|
|
*
|
|
* However, if the offsets and lengths of several subframes of a frame are the
|
|
* same, the subframes of the channels can be grouped.
|
|
* Every group may then use special coding techniques like M/S stereo coding
|
|
* to improve the compression ratio. These channel transformations do not
|
|
* need to be applied to a whole subframe. Instead, they can also work on
|
|
* individual scale factor bands (see below).
|
|
* The coefficients that carry the audio signal in the frequency domain
|
|
* are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
|
|
* In addition to that, the encoder can switch to a runlevel coding scheme
|
|
* by transmitting subframe_length / 128 zero coefficients.
|
|
*
|
|
* Before the audio signal can be converted to the time domain, the
|
|
* coefficients have to be rescaled and inverse quantized.
|
|
* A subframe is therefore split into several scale factor bands that get
|
|
* scaled individually.
|
|
* Scale factors are submitted for every frame but they might be shared
|
|
* between the subframes of a channel. Scale factors are initially DPCM-coded.
|
|
* Once scale factors are shared, the differences are transmitted as runlevel
|
|
* codes.
|
|
* Every subframe length and offset combination in the frame layout shares a
|
|
* common quantization factor that can be adjusted for every channel by a
|
|
* modifier.
|
|
* After the inverse quantization, the coefficients get processed by an IMDCT.
|
|
* The resulting values are then windowed with a sine window and the first half
|
|
* of the values are added to the second half of the output from the previous
|
|
* subframe in order to reconstruct the output samples.
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
|
|
#include "libavutil/ffmath.h"
|
|
#include "libavutil/float_dsp.h"
|
|
#include "libavutil/intfloat.h"
|
|
#include "libavutil/intreadwrite.h"
|
|
#include "avcodec.h"
|
|
#include "internal.h"
|
|
#include "get_bits.h"
|
|
#include "put_bits.h"
|
|
#include "wmaprodata.h"
|
|
#include "sinewin.h"
|
|
#include "wma.h"
|
|
#include "wma_common.h"
|
|
|
|
/** current decoder limitations */
|
|
#define WMAPRO_MAX_CHANNELS 8 ///< max number of handled channels
|
|
#define MAX_SUBFRAMES 32 ///< max number of subframes per channel
|
|
#define MAX_BANDS 29 ///< max number of scale factor bands
|
|
#define MAX_FRAMESIZE 32768 ///< maximum compressed frame size
|
|
|
|
#define WMAPRO_BLOCK_MIN_BITS 6 ///< log2 of min block size
|
|
#define WMAPRO_BLOCK_MAX_BITS 13 ///< log2 of max block size
|
|
#define WMAPRO_BLOCK_MIN_SIZE (1 << WMAPRO_BLOCK_MIN_BITS) ///< minimum block size
|
|
#define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS) ///< maximum block size
|
|
#define WMAPRO_BLOCK_SIZES (WMAPRO_BLOCK_MAX_BITS - WMAPRO_BLOCK_MIN_BITS + 1) ///< possible block sizes
|
|
|
|
|
|
#define VLCBITS 9
|
|
#define SCALEVLCBITS 8
|
|
#define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS)
|
|
#define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS)
|
|
#define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS)
|
|
#define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS)
|
|
#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS)
|
|
|
|
static VLC sf_vlc; ///< scale factor DPCM vlc
|
|
static VLC sf_rl_vlc; ///< scale factor run length vlc
|
|
static VLC vec4_vlc; ///< 4 coefficients per symbol
|
|
static VLC vec2_vlc; ///< 2 coefficients per symbol
|
|
static VLC vec1_vlc; ///< 1 coefficient per symbol
|
|
static VLC coef_vlc[2]; ///< coefficient run length vlc codes
|
|
static float sin64[33]; ///< sine table for decorrelation
|
|
|
|
/**
|
|
* @brief frame specific decoder context for a single channel
|
|
*/
|
|
typedef struct WMAProChannelCtx {
|
|
int16_t prev_block_len; ///< length of the previous block
|
|
uint8_t transmit_coefs;
|
|
uint8_t num_subframes;
|
|
uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples
|
|
uint16_t subframe_offset[MAX_SUBFRAMES]; ///< subframe positions in the current frame
|
|
uint8_t cur_subframe; ///< current subframe number
|
|
uint16_t decoded_samples; ///< number of already processed samples
|
|
uint8_t grouped; ///< channel is part of a group
|
|
int quant_step; ///< quantization step for the current subframe
|
|
int8_t reuse_sf; ///< share scale factors between subframes
|
|
int8_t scale_factor_step; ///< scaling step for the current subframe
|
|
int max_scale_factor; ///< maximum scale factor for the current subframe
|
|
int saved_scale_factors[2][MAX_BANDS]; ///< resampled and (previously) transmitted scale factor values
|
|
int8_t scale_factor_idx; ///< index for the transmitted scale factor values (used for resampling)
|
|
int* scale_factors; ///< pointer to the scale factor values used for decoding
|
|
uint8_t table_idx; ///< index in sf_offsets for the scale factor reference block
|
|
float* coeffs; ///< pointer to the subframe decode buffer
|
|
uint16_t num_vec_coeffs; ///< number of vector coded coefficients
|
|
DECLARE_ALIGNED(32, float, out)[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]; ///< output buffer
|
|
} WMAProChannelCtx;
|
|
|
|
/**
|
|
* @brief channel group for channel transformations
|
|
*/
|
|
typedef struct WMAProChannelGrp {
|
|
uint8_t num_channels; ///< number of channels in the group
|
|
int8_t transform; ///< transform on / off
|
|
int8_t transform_band[MAX_BANDS]; ///< controls if the transform is enabled for a certain band
|
|
float decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS];
|
|
float* channel_data[WMAPRO_MAX_CHANNELS]; ///< transformation coefficients
|
|
} WMAProChannelGrp;
|
|
|
|
/**
|
|
* @brief main decoder context
|
|
*/
|
|
typedef struct WMAProDecodeCtx {
|
|
/* generic decoder variables */
|
|
AVCodecContext* avctx; ///< codec context for av_log
|
|
AVFloatDSPContext *fdsp;
|
|
uint8_t frame_data[MAX_FRAMESIZE +
|
|
AV_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data
|
|
PutBitContext pb; ///< context for filling the frame_data buffer
|
|
FFTContext mdct_ctx[WMAPRO_BLOCK_SIZES]; ///< MDCT context per block size
|
|
DECLARE_ALIGNED(32, float, tmp)[WMAPRO_BLOCK_MAX_SIZE]; ///< IMDCT output buffer
|
|
const float* windows[WMAPRO_BLOCK_SIZES]; ///< windows for the different block sizes
|
|
|
|
/* frame size dependent frame information (set during initialization) */
|
|
uint32_t decode_flags; ///< used compression features
|
|
uint8_t len_prefix; ///< frame is prefixed with its length
|
|
uint8_t dynamic_range_compression; ///< frame contains DRC data
|
|
uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
|
|
uint16_t samples_per_frame; ///< number of samples to output
|
|
uint16_t log2_frame_size;
|
|
int8_t lfe_channel; ///< lfe channel index
|
|
uint8_t max_num_subframes;
|
|
uint8_t subframe_len_bits; ///< number of bits used for the subframe length
|
|
uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
|
|
uint16_t min_samples_per_subframe;
|
|
int8_t num_sfb[WMAPRO_BLOCK_SIZES]; ///< scale factor bands per block size
|
|
int16_t sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor band offsets (multiples of 4)
|
|
int8_t sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix
|
|
int16_t subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values
|
|
|
|
/* packet decode state */
|
|
GetBitContext pgb; ///< bitstream reader context for the packet
|
|
int next_packet_start; ///< start offset of the next wma packet in the demuxer packet
|
|
uint8_t packet_offset; ///< frame offset in the packet
|
|
uint8_t packet_sequence_number; ///< current packet number
|
|
int num_saved_bits; ///< saved number of bits
|
|
int frame_offset; ///< frame offset in the bit reservoir
|
|
int subframe_offset; ///< subframe offset in the bit reservoir
|
|
uint8_t packet_loss; ///< set in case of bitstream error
|
|
uint8_t packet_done; ///< set when a packet is fully decoded
|
|
uint8_t skip_packets;
|
|
|
|
/* frame decode state */
|
|
uint32_t frame_num; ///< current frame number (not used for decoding)
|
|
int num_frames;
|
|
GetBitContext gb; ///< bitstream reader context
|
|
int buf_bit_size; ///< buffer size in bits
|
|
uint8_t drc_gain; ///< gain for the DRC tool
|
|
int8_t skip_frame; ///< skip output step
|
|
int8_t parsed_all_subframes; ///< all subframes decoded?
|
|
|
|
/* subframe/block decode state */
|
|
int16_t subframe_len; ///< current subframe length
|
|
int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe
|
|
int8_t channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS];
|
|
int8_t num_bands; ///< number of scale factor bands
|
|
int8_t transmit_num_vec_coeffs; ///< number of vector coded coefficients is part of the bitstream
|
|
int16_t* cur_sfb_offsets; ///< sfb offsets for the current block
|
|
uint8_t table_idx; ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
|
|
int8_t esc_len; ///< length of escaped coefficients
|
|
|
|
uint8_t num_chgroups; ///< number of channel groups
|
|
WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS]; ///< channel group information
|
|
|
|
WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS]; ///< per channel data
|
|
} WMAProDecodeCtx;
|
|
|
|
|
|
/**
|
|
*@brief helper function to print the most important members of the context
|
|
*@param s context
|
|
*/
|
|
static av_cold void dump_context(WMAProDecodeCtx *s)
|
|
{
|
|
#define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b);
|
|
#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %"PRIx32"\n", a, b);
|
|
|
|
PRINT("ed sample bit depth", s->bits_per_sample);
|
|
PRINT_HEX("ed decode flags", s->decode_flags);
|
|
PRINT("samples per frame", s->samples_per_frame);
|
|
PRINT("log2 frame size", s->log2_frame_size);
|
|
PRINT("max num subframes", s->max_num_subframes);
|
|
PRINT("len prefix", s->len_prefix);
|
|
PRINT("num channels", s->avctx->channels);
|
|
}
|
|
|
|
/**
|
|
*@brief Uninitialize the decoder and free all resources.
|
|
*@param avctx codec context
|
|
*@return 0 on success, < 0 otherwise
|
|
*/
|
|
static av_cold int decode_end(AVCodecContext *avctx)
|
|
{
|
|
WMAProDecodeCtx *s = avctx->priv_data;
|
|
int i;
|
|
|
|
av_freep(&s->fdsp);
|
|
|
|
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
|
|
ff_mdct_end(&s->mdct_ctx[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static av_cold int get_rate(AVCodecContext *avctx)
|
|
{
|
|
if (avctx->codec_id != AV_CODEC_ID_WMAPRO) { // XXX: is this really only for XMA?
|
|
if (avctx->sample_rate > 44100)
|
|
return 48000;
|
|
else if (avctx->sample_rate > 32000)
|
|
return 44100;
|
|
else if (avctx->sample_rate > 24000)
|
|
return 32000;
|
|
return 24000;
|
|
}
|
|
|
|
return avctx->sample_rate;
|
|
}
|
|
|
|
/**
|
|
*@brief Initialize the decoder.
|
|
*@param avctx codec context
|
|
*@return 0 on success, -1 otherwise
|
|
*/
|
|
static av_cold int decode_init(AVCodecContext *avctx)
|
|
{
|
|
WMAProDecodeCtx *s = avctx->priv_data;
|
|
uint8_t *edata_ptr = avctx->extradata;
|
|
unsigned int channel_mask;
|
|
int i, bits;
|
|
int log2_max_num_subframes;
|
|
int num_possible_block_sizes;
|
|
|
|
if (avctx->codec_id == AV_CODEC_ID_XMA1 || avctx->codec_id == AV_CODEC_ID_XMA2)
|
|
avctx->block_align = 2048;
|
|
|
|
if (!avctx->block_align) {
|
|
av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
|
|
s->avctx = avctx;
|
|
s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
|
|
if (!s->fdsp)
|
|
return AVERROR(ENOMEM);
|
|
|
|
init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
|
|
|
|
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
|
|
|
|
if (avctx->codec_id == AV_CODEC_ID_XMA2 && avctx->extradata_size >= 34) {
|
|
s->decode_flags = 0x10d6;
|
|
channel_mask = AV_RL32(edata_ptr+2);
|
|
s->bits_per_sample = 16;
|
|
/** dump the extradata */
|
|
for (i = 0; i < avctx->extradata_size; i++)
|
|
ff_dlog(avctx, "[%x] ", avctx->extradata[i]);
|
|
ff_dlog(avctx, "\n");
|
|
|
|
} else if (avctx->codec_id == AV_CODEC_ID_XMA1 && avctx->extradata_size >= 28) {
|
|
s->decode_flags = 0x10d6;
|
|
s->bits_per_sample = 16;
|
|
channel_mask = 0;
|
|
/** dump the extradata */
|
|
for (i = 0; i < avctx->extradata_size; i++)
|
|
ff_dlog(avctx, "[%x] ", avctx->extradata[i]);
|
|
ff_dlog(avctx, "\n");
|
|
|
|
} else if (avctx->extradata_size >= 18) {
|
|
s->decode_flags = AV_RL16(edata_ptr+14);
|
|
channel_mask = AV_RL32(edata_ptr+2);
|
|
s->bits_per_sample = AV_RL16(edata_ptr);
|
|
|
|
if (s->bits_per_sample > 32 || s->bits_per_sample < 1) {
|
|
avpriv_request_sample(avctx, "bits per sample is %d", s->bits_per_sample);
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
/** dump the extradata */
|
|
for (i = 0; i < avctx->extradata_size; i++)
|
|
ff_dlog(avctx, "[%x] ", avctx->extradata[i]);
|
|
ff_dlog(avctx, "\n");
|
|
|
|
} else {
|
|
avpriv_request_sample(avctx, "Unknown extradata size");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
if (avctx->codec_id != AV_CODEC_ID_WMAPRO && avctx->channels > 2) {
|
|
avpriv_report_missing_feature(avctx, ">2 channels support");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
/** generic init */
|
|
s->log2_frame_size = av_log2(avctx->block_align) + 4;
|
|
if (s->log2_frame_size > 25) {
|
|
avpriv_request_sample(avctx, "Large block align");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
/** frame info */
|
|
if (avctx->codec_id != AV_CODEC_ID_WMAPRO)
|
|
s->skip_frame = 0;
|
|
else
|
|
s->skip_frame = 1; /* skip first frame */
|
|
|
|
s->packet_loss = 1;
|
|
s->len_prefix = (s->decode_flags & 0x40);
|
|
|
|
/** get frame len */
|
|
if (avctx->codec_id == AV_CODEC_ID_WMAPRO) {
|
|
bits = ff_wma_get_frame_len_bits(avctx->sample_rate, 3, s->decode_flags);
|
|
if (bits > WMAPRO_BLOCK_MAX_BITS) {
|
|
avpriv_request_sample(avctx, "14-bit block sizes");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
s->samples_per_frame = 1 << bits;
|
|
} else {
|
|
s->samples_per_frame = 512;
|
|
}
|
|
|
|
/** subframe info */
|
|
log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3);
|
|
s->max_num_subframes = 1 << log2_max_num_subframes;
|
|
if (s->max_num_subframes == 16 || s->max_num_subframes == 4)
|
|
s->max_subframe_len_bit = 1;
|
|
s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
|
|
|
|
num_possible_block_sizes = log2_max_num_subframes + 1;
|
|
s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes;
|
|
s->dynamic_range_compression = (s->decode_flags & 0x80);
|
|
|
|
if (s->max_num_subframes > MAX_SUBFRAMES) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %"PRId8"\n",
|
|
s->max_num_subframes);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (s->min_samples_per_subframe < WMAPRO_BLOCK_MIN_SIZE) {
|
|
av_log(avctx, AV_LOG_ERROR, "min_samples_per_subframe of %d too small\n",
|
|
s->min_samples_per_subframe);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (s->avctx->sample_rate <= 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (avctx->channels < 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n",
|
|
avctx->channels);
|
|
return AVERROR_INVALIDDATA;
|
|
} else if (avctx->channels > WMAPRO_MAX_CHANNELS) {
|
|
avpriv_request_sample(avctx,
|
|
"More than %d channels", WMAPRO_MAX_CHANNELS);
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
/** init previous block len */
|
|
for (i = 0; i < avctx->channels; i++)
|
|
s->channel[i].prev_block_len = s->samples_per_frame;
|
|
|
|
/** extract lfe channel position */
|
|
s->lfe_channel = -1;
|
|
|
|
if (channel_mask & 8) {
|
|
unsigned int mask;
|
|
for (mask = 1; mask < 16; mask <<= 1) {
|
|
if (channel_mask & mask)
|
|
++s->lfe_channel;
|
|
}
|
|
}
|
|
|
|
INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE,
|
|
scale_huffbits, 1, 1,
|
|
scale_huffcodes, 2, 2, 616);
|
|
|
|
INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE,
|
|
scale_rl_huffbits, 1, 1,
|
|
scale_rl_huffcodes, 4, 4, 1406);
|
|
|
|
INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE,
|
|
coef0_huffbits, 1, 1,
|
|
coef0_huffcodes, 4, 4, 2108);
|
|
|
|
INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE,
|
|
coef1_huffbits, 1, 1,
|
|
coef1_huffcodes, 4, 4, 3912);
|
|
|
|
INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE,
|
|
vec4_huffbits, 1, 1,
|
|
vec4_huffcodes, 2, 2, 604);
|
|
|
|
INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE,
|
|
vec2_huffbits, 1, 1,
|
|
vec2_huffcodes, 2, 2, 562);
|
|
|
|
INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE,
|
|
vec1_huffbits, 1, 1,
|
|
vec1_huffcodes, 2, 2, 562);
|
|
|
|
/** calculate number of scale factor bands and their offsets
|
|
for every possible block size */
|
|
for (i = 0; i < num_possible_block_sizes; i++) {
|
|
int subframe_len = s->samples_per_frame >> i;
|
|
int x;
|
|
int band = 1;
|
|
int rate = get_rate(avctx);
|
|
|
|
s->sfb_offsets[i][0] = 0;
|
|
|
|
for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) {
|
|
int offset = (subframe_len * 2 * critical_freq[x]) / rate + 2;
|
|
offset &= ~3;
|
|
if (offset > s->sfb_offsets[i][band - 1])
|
|
s->sfb_offsets[i][band++] = offset;
|
|
|
|
if (offset >= subframe_len)
|
|
break;
|
|
}
|
|
s->sfb_offsets[i][band - 1] = subframe_len;
|
|
s->num_sfb[i] = band - 1;
|
|
if (s->num_sfb[i] <= 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "num_sfb invalid\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
}
|
|
|
|
|
|
/** Scale factors can be shared between blocks of different size
|
|
as every block has a different scale factor band layout.
|
|
The matrix sf_offsets is needed to find the correct scale factor.
|
|
*/
|
|
|
|
for (i = 0; i < num_possible_block_sizes; i++) {
|
|
int b;
|
|
for (b = 0; b < s->num_sfb[i]; b++) {
|
|
int x;
|
|
int offset = ((s->sfb_offsets[i][b]
|
|
+ s->sfb_offsets[i][b + 1] - 1) << i) >> 1;
|
|
for (x = 0; x < num_possible_block_sizes; x++) {
|
|
int v = 0;
|
|
while (s->sfb_offsets[x][v + 1] << x < offset) {
|
|
v++;
|
|
av_assert0(v < MAX_BANDS);
|
|
}
|
|
s->sf_offsets[i][x][b] = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** init MDCT, FIXME: only init needed sizes */
|
|
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
|
|
ff_mdct_init(&s->mdct_ctx[i], WMAPRO_BLOCK_MIN_BITS+1+i, 1,
|
|
1.0 / (1 << (WMAPRO_BLOCK_MIN_BITS + i - 1))
|
|
/ (1 << (s->bits_per_sample - 1)));
|
|
|
|
/** init MDCT windows: simple sine window */
|
|
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) {
|
|
const int win_idx = WMAPRO_BLOCK_MAX_BITS - i;
|
|
ff_init_ff_sine_windows(win_idx);
|
|
s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx];
|
|
}
|
|
|
|
/** calculate subwoofer cutoff values */
|
|
for (i = 0; i < num_possible_block_sizes; i++) {
|
|
int block_size = s->samples_per_frame >> i;
|
|
int cutoff = (440*block_size + 3LL * (s->avctx->sample_rate >> 1) - 1)
|
|
/ s->avctx->sample_rate;
|
|
s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size);
|
|
}
|
|
|
|
/** calculate sine values for the decorrelation matrix */
|
|
for (i = 0; i < 33; i++)
|
|
sin64[i] = sin(i*M_PI / 64.0);
|
|
|
|
if (avctx->debug & FF_DEBUG_BITSTREAM)
|
|
dump_context(s);
|
|
|
|
avctx->channel_layout = channel_mask;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
*@brief Decode the subframe length.
|
|
*@param s context
|
|
*@param offset sample offset in the frame
|
|
*@return decoded subframe length on success, < 0 in case of an error
|
|
*/
|
|
static int decode_subframe_length(WMAProDecodeCtx *s, int offset)
|
|
{
|
|
int frame_len_shift = 0;
|
|
int subframe_len;
|
|
|
|
/** no need to read from the bitstream when only one length is possible */
|
|
if (offset == s->samples_per_frame - s->min_samples_per_subframe)
|
|
return s->min_samples_per_subframe;
|
|
|
|
if (get_bits_left(&s->gb) < 1)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
/** 1 bit indicates if the subframe is of maximum length */
|
|
if (s->max_subframe_len_bit) {
|
|
if (get_bits1(&s->gb))
|
|
frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1);
|
|
} else
|
|
frame_len_shift = get_bits(&s->gb, s->subframe_len_bits);
|
|
|
|
subframe_len = s->samples_per_frame >> frame_len_shift;
|
|
|
|
/** sanity check the length */
|
|
if (subframe_len < s->min_samples_per_subframe ||
|
|
subframe_len > s->samples_per_frame) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
|
|
subframe_len);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
return subframe_len;
|
|
}
|
|
|
|
/**
|
|
*@brief Decode how the data in the frame is split into subframes.
|
|
* Every WMA frame contains the encoded data for a fixed number of
|
|
* samples per channel. The data for every channel might be split
|
|
* into several subframes. This function will reconstruct the list of
|
|
* subframes for every channel.
|
|
*
|
|
* If the subframes are not evenly split, the algorithm estimates the
|
|
* channels with the lowest number of total samples.
|
|
* Afterwards, for each of these channels a bit is read from the
|
|
* bitstream that indicates if the channel contains a subframe with the
|
|
* next subframe size that is going to be read from the bitstream or not.
|
|
* If a channel contains such a subframe, the subframe size gets added to
|
|
* the channel's subframe list.
|
|
* The algorithm repeats these steps until the frame is properly divided
|
|
* between the individual channels.
|
|
*
|
|
*@param s context
|
|
*@return 0 on success, < 0 in case of an error
|
|
*/
|
|
static int decode_tilehdr(WMAProDecodeCtx *s)
|
|
{
|
|
uint16_t num_samples[WMAPRO_MAX_CHANNELS] = { 0 };/**< sum of samples for all currently known subframes of a channel */
|
|
uint8_t contains_subframe[WMAPRO_MAX_CHANNELS]; /**< flag indicating if a channel contains the current subframe */
|
|
int channels_for_cur_subframe = s->avctx->channels; /**< number of channels that contain the current subframe */
|
|
int fixed_channel_layout = 0; /**< flag indicating that all channels use the same subframe offsets and sizes */
|
|
int min_channel_len = 0; /**< smallest sum of samples (channels with this length will be processed first) */
|
|
int c;
|
|
|
|
/* Should never consume more than 3073 bits (256 iterations for the
|
|
* while loop when always the minimum amount of 128 samples is subtracted
|
|
* from missing samples in the 8 channel case).
|
|
* 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4)
|
|
*/
|
|
|
|
/** reset tiling information */
|
|
for (c = 0; c < s->avctx->channels; c++)
|
|
s->channel[c].num_subframes = 0;
|
|
|
|
if (s->max_num_subframes == 1 || get_bits1(&s->gb))
|
|
fixed_channel_layout = 1;
|
|
|
|
/** loop until the frame data is split between the subframes */
|
|
do {
|
|
int subframe_len;
|
|
|
|
/** check which channels contain the subframe */
|
|
for (c = 0; c < s->avctx->channels; c++) {
|
|
if (num_samples[c] == min_channel_len) {
|
|
if (fixed_channel_layout || channels_for_cur_subframe == 1 ||
|
|
(min_channel_len == s->samples_per_frame - s->min_samples_per_subframe))
|
|
contains_subframe[c] = 1;
|
|
else
|
|
contains_subframe[c] = get_bits1(&s->gb);
|
|
} else
|
|
contains_subframe[c] = 0;
|
|
}
|
|
|
|
/** get subframe length, subframe_len == 0 is not allowed */
|
|
if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
/** add subframes to the individual channels and find new min_channel_len */
|
|
min_channel_len += subframe_len;
|
|
for (c = 0; c < s->avctx->channels; c++) {
|
|
WMAProChannelCtx* chan = &s->channel[c];
|
|
|
|
if (contains_subframe[c]) {
|
|
if (chan->num_subframes >= MAX_SUBFRAMES) {
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"broken frame: num subframes > 31\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
chan->subframe_len[chan->num_subframes] = subframe_len;
|
|
num_samples[c] += subframe_len;
|
|
++chan->num_subframes;
|
|
if (num_samples[c] > s->samples_per_frame) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
|
|
"channel len > samples_per_frame\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
} else if (num_samples[c] <= min_channel_len) {
|
|
if (num_samples[c] < min_channel_len) {
|
|
channels_for_cur_subframe = 0;
|
|
min_channel_len = num_samples[c];
|
|
}
|
|
++channels_for_cur_subframe;
|
|
}
|
|
}
|
|
} while (min_channel_len < s->samples_per_frame);
|
|
|
|
for (c = 0; c < s->avctx->channels; c++) {
|
|
int i;
|
|
int offset = 0;
|
|
for (i = 0; i < s->channel[c].num_subframes; i++) {
|
|
ff_dlog(s->avctx, "frame[%i] channel[%i] subframe[%i]"
|
|
" len %i\n", s->frame_num, c, i,
|
|
s->channel[c].subframe_len[i]);
|
|
s->channel[c].subframe_offset[i] = offset;
|
|
offset += s->channel[c].subframe_len[i];
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
*@brief Calculate a decorrelation matrix from the bitstream parameters.
|
|
*@param s codec context
|
|
*@param chgroup channel group for which the matrix needs to be calculated
|
|
*/
|
|
static void decode_decorrelation_matrix(WMAProDecodeCtx *s,
|
|
WMAProChannelGrp *chgroup)
|
|
{
|
|
int i;
|
|
int offset = 0;
|
|
int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS];
|
|
memset(chgroup->decorrelation_matrix, 0, s->avctx->channels *
|
|
s->avctx->channels * sizeof(*chgroup->decorrelation_matrix));
|
|
|
|
for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++)
|
|
rotation_offset[i] = get_bits(&s->gb, 6);
|
|
|
|
for (i = 0; i < chgroup->num_channels; i++)
|
|
chgroup->decorrelation_matrix[chgroup->num_channels * i + i] =
|
|
get_bits1(&s->gb) ? 1.0 : -1.0;
|
|
|
|
for (i = 1; i < chgroup->num_channels; i++) {
|
|
int x;
|
|
for (x = 0; x < i; x++) {
|
|
int y;
|
|
for (y = 0; y < i + 1; y++) {
|
|
float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
|
|
float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
|
|
int n = rotation_offset[offset + x];
|
|
float sinv;
|
|
float cosv;
|
|
|
|
if (n < 32) {
|
|
sinv = sin64[n];
|
|
cosv = sin64[32 - n];
|
|
} else {
|
|
sinv = sin64[64 - n];
|
|
cosv = -sin64[n - 32];
|
|
}
|
|
|
|
chgroup->decorrelation_matrix[y + x * chgroup->num_channels] =
|
|
(v1 * sinv) - (v2 * cosv);
|
|
chgroup->decorrelation_matrix[y + i * chgroup->num_channels] =
|
|
(v1 * cosv) + (v2 * sinv);
|
|
}
|
|
}
|
|
offset += i;
|
|
}
|
|
}
|
|
|
|
/**
|
|
*@brief Decode channel transformation parameters
|
|
*@param s codec context
|
|
*@return >= 0 in case of success, < 0 in case of bitstream errors
|
|
*/
|
|
static int decode_channel_transform(WMAProDecodeCtx* s)
|
|
{
|
|
int i;
|
|
/* should never consume more than 1921 bits for the 8 channel case
|
|
* 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS
|
|
* + MAX_CHANNELS + MAX_BANDS + 1)
|
|
*/
|
|
|
|
/** in the one channel case channel transforms are pointless */
|
|
s->num_chgroups = 0;
|
|
if (s->avctx->channels > 1) {
|
|
int remaining_channels = s->channels_for_cur_subframe;
|
|
|
|
if (get_bits1(&s->gb)) {
|
|
avpriv_request_sample(s->avctx,
|
|
"Channel transform bit");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
for (s->num_chgroups = 0; remaining_channels &&
|
|
s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) {
|
|
WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups];
|
|
float** channel_data = chgroup->channel_data;
|
|
chgroup->num_channels = 0;
|
|
chgroup->transform = 0;
|
|
|
|
/** decode channel mask */
|
|
if (remaining_channels > 2) {
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) {
|
|
int channel_idx = s->channel_indexes_for_cur_subframe[i];
|
|
if (!s->channel[channel_idx].grouped
|
|
&& get_bits1(&s->gb)) {
|
|
++chgroup->num_channels;
|
|
s->channel[channel_idx].grouped = 1;
|
|
*channel_data++ = s->channel[channel_idx].coeffs;
|
|
}
|
|
}
|
|
} else {
|
|
chgroup->num_channels = remaining_channels;
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) {
|
|
int channel_idx = s->channel_indexes_for_cur_subframe[i];
|
|
if (!s->channel[channel_idx].grouped)
|
|
*channel_data++ = s->channel[channel_idx].coeffs;
|
|
s->channel[channel_idx].grouped = 1;
|
|
}
|
|
}
|
|
|
|
/** decode transform type */
|
|
if (chgroup->num_channels == 2) {
|
|
if (get_bits1(&s->gb)) {
|
|
if (get_bits1(&s->gb)) {
|
|
avpriv_request_sample(s->avctx,
|
|
"Unknown channel transform type");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
} else {
|
|
chgroup->transform = 1;
|
|
if (s->avctx->channels == 2) {
|
|
chgroup->decorrelation_matrix[0] = 1.0;
|
|
chgroup->decorrelation_matrix[1] = -1.0;
|
|
chgroup->decorrelation_matrix[2] = 1.0;
|
|
chgroup->decorrelation_matrix[3] = 1.0;
|
|
} else {
|
|
/** cos(pi/4) */
|
|
chgroup->decorrelation_matrix[0] = 0.70703125;
|
|
chgroup->decorrelation_matrix[1] = -0.70703125;
|
|
chgroup->decorrelation_matrix[2] = 0.70703125;
|
|
chgroup->decorrelation_matrix[3] = 0.70703125;
|
|
}
|
|
}
|
|
} else if (chgroup->num_channels > 2) {
|
|
if (get_bits1(&s->gb)) {
|
|
chgroup->transform = 1;
|
|
if (get_bits1(&s->gb)) {
|
|
decode_decorrelation_matrix(s, chgroup);
|
|
} else {
|
|
/** FIXME: more than 6 coupled channels not supported */
|
|
if (chgroup->num_channels > 6) {
|
|
avpriv_request_sample(s->avctx,
|
|
"Coupled channels > 6");
|
|
} else {
|
|
memcpy(chgroup->decorrelation_matrix,
|
|
default_decorrelation[chgroup->num_channels],
|
|
chgroup->num_channels * chgroup->num_channels *
|
|
sizeof(*chgroup->decorrelation_matrix));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** decode transform on / off */
|
|
if (chgroup->transform) {
|
|
if (!get_bits1(&s->gb)) {
|
|
int i;
|
|
/** transform can be enabled for individual bands */
|
|
for (i = 0; i < s->num_bands; i++) {
|
|
chgroup->transform_band[i] = get_bits1(&s->gb);
|
|
}
|
|
} else {
|
|
memset(chgroup->transform_band, 1, s->num_bands);
|
|
}
|
|
}
|
|
remaining_channels -= chgroup->num_channels;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
*@brief Extract the coefficients from the bitstream.
|
|
*@param s codec context
|
|
*@param c current channel number
|
|
*@return 0 on success, < 0 in case of bitstream errors
|
|
*/
|
|
static int decode_coeffs(WMAProDecodeCtx *s, int c)
|
|
{
|
|
/* Integers 0..15 as single-precision floats. The table saves a
|
|
costly int to float conversion, and storing the values as
|
|
integers allows fast sign-flipping. */
|
|
static const uint32_t fval_tab[16] = {
|
|
0x00000000, 0x3f800000, 0x40000000, 0x40400000,
|
|
0x40800000, 0x40a00000, 0x40c00000, 0x40e00000,
|
|
0x41000000, 0x41100000, 0x41200000, 0x41300000,
|
|
0x41400000, 0x41500000, 0x41600000, 0x41700000,
|
|
};
|
|
int vlctable;
|
|
VLC* vlc;
|
|
WMAProChannelCtx* ci = &s->channel[c];
|
|
int rl_mode = 0;
|
|
int cur_coeff = 0;
|
|
int num_zeros = 0;
|
|
const uint16_t* run;
|
|
const float* level;
|
|
|
|
ff_dlog(s->avctx, "decode coefficients for channel %i\n", c);
|
|
|
|
vlctable = get_bits1(&s->gb);
|
|
vlc = &coef_vlc[vlctable];
|
|
|
|
if (vlctable) {
|
|
run = coef1_run;
|
|
level = coef1_level;
|
|
} else {
|
|
run = coef0_run;
|
|
level = coef0_level;
|
|
}
|
|
|
|
/** decode vector coefficients (consumes up to 167 bits per iteration for
|
|
4 vector coded large values) */
|
|
while ((s->transmit_num_vec_coeffs || !rl_mode) &&
|
|
(cur_coeff + 3 < ci->num_vec_coeffs)) {
|
|
uint32_t vals[4];
|
|
int i;
|
|
unsigned int idx;
|
|
|
|
idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH);
|
|
|
|
if (idx == HUFF_VEC4_SIZE - 1) {
|
|
for (i = 0; i < 4; i += 2) {
|
|
idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH);
|
|
if (idx == HUFF_VEC2_SIZE - 1) {
|
|
uint32_t v0, v1;
|
|
v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
|
|
if (v0 == HUFF_VEC1_SIZE - 1)
|
|
v0 += ff_wma_get_large_val(&s->gb);
|
|
v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
|
|
if (v1 == HUFF_VEC1_SIZE - 1)
|
|
v1 += ff_wma_get_large_val(&s->gb);
|
|
vals[i ] = av_float2int(v0);
|
|
vals[i+1] = av_float2int(v1);
|
|
} else {
|
|
vals[i] = fval_tab[symbol_to_vec2[idx] >> 4 ];
|
|
vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF];
|
|
}
|
|
}
|
|
} else {
|
|
vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12 ];
|
|
vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF];
|
|
vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF];
|
|
vals[3] = fval_tab[ symbol_to_vec4[idx] & 0xF];
|
|
}
|
|
|
|
/** decode sign */
|
|
for (i = 0; i < 4; i++) {
|
|
if (vals[i]) {
|
|
uint32_t sign = get_bits1(&s->gb) - 1;
|
|
AV_WN32A(&ci->coeffs[cur_coeff], vals[i] ^ sign << 31);
|
|
num_zeros = 0;
|
|
} else {
|
|
ci->coeffs[cur_coeff] = 0;
|
|
/** switch to run level mode when subframe_len / 128 zeros
|
|
were found in a row */
|
|
rl_mode |= (++num_zeros > s->subframe_len >> 8);
|
|
}
|
|
++cur_coeff;
|
|
}
|
|
}
|
|
|
|
/** decode run level coded coefficients */
|
|
if (cur_coeff < s->subframe_len) {
|
|
memset(&ci->coeffs[cur_coeff], 0,
|
|
sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff));
|
|
if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc,
|
|
level, run, 1, ci->coeffs,
|
|
cur_coeff, s->subframe_len,
|
|
s->subframe_len, s->esc_len, 0))
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
*@brief Extract scale factors from the bitstream.
|
|
*@param s codec context
|
|
*@return 0 on success, < 0 in case of bitstream errors
|
|
*/
|
|
static int decode_scale_factors(WMAProDecodeCtx* s)
|
|
{
|
|
int i;
|
|
|
|
/** should never consume more than 5344 bits
|
|
* MAX_CHANNELS * (1 + MAX_BANDS * 23)
|
|
*/
|
|
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) {
|
|
int c = s->channel_indexes_for_cur_subframe[i];
|
|
int* sf;
|
|
int* sf_end;
|
|
s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx];
|
|
sf_end = s->channel[c].scale_factors + s->num_bands;
|
|
|
|
/** resample scale factors for the new block size
|
|
* as the scale factors might need to be resampled several times
|
|
* before some new values are transmitted, a backup of the last
|
|
* transmitted scale factors is kept in saved_scale_factors
|
|
*/
|
|
if (s->channel[c].reuse_sf) {
|
|
const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx];
|
|
int b;
|
|
for (b = 0; b < s->num_bands; b++)
|
|
s->channel[c].scale_factors[b] =
|
|
s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++];
|
|
}
|
|
|
|
if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) {
|
|
|
|
if (!s->channel[c].reuse_sf) {
|
|
int val;
|
|
/** decode DPCM coded scale factors */
|
|
s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1;
|
|
val = 45 / s->channel[c].scale_factor_step;
|
|
for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) {
|
|
val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60;
|
|
*sf = val;
|
|
}
|
|
} else {
|
|
int i;
|
|
/** run level decode differences to the resampled factors */
|
|
for (i = 0; i < s->num_bands; i++) {
|
|
int idx;
|
|
int skip;
|
|
int val;
|
|
int sign;
|
|
|
|
idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH);
|
|
|
|
if (!idx) {
|
|
uint32_t code = get_bits(&s->gb, 14);
|
|
val = code >> 6;
|
|
sign = (code & 1) - 1;
|
|
skip = (code & 0x3f) >> 1;
|
|
} else if (idx == 1) {
|
|
break;
|
|
} else {
|
|
skip = scale_rl_run[idx];
|
|
val = scale_rl_level[idx];
|
|
sign = get_bits1(&s->gb)-1;
|
|
}
|
|
|
|
i += skip;
|
|
if (i >= s->num_bands) {
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"invalid scale factor coding\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
s->channel[c].scale_factors[i] += (val ^ sign) - sign;
|
|
}
|
|
}
|
|
/** swap buffers */
|
|
s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx;
|
|
s->channel[c].table_idx = s->table_idx;
|
|
s->channel[c].reuse_sf = 1;
|
|
}
|
|
|
|
/** calculate new scale factor maximum */
|
|
s->channel[c].max_scale_factor = s->channel[c].scale_factors[0];
|
|
for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) {
|
|
s->channel[c].max_scale_factor =
|
|
FFMAX(s->channel[c].max_scale_factor, *sf);
|
|
}
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
*@brief Reconstruct the individual channel data.
|
|
*@param s codec context
|
|
*/
|
|
static void inverse_channel_transform(WMAProDecodeCtx *s)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < s->num_chgroups; i++) {
|
|
if (s->chgroup[i].transform) {
|
|
float data[WMAPRO_MAX_CHANNELS];
|
|
const int num_channels = s->chgroup[i].num_channels;
|
|
float** ch_data = s->chgroup[i].channel_data;
|
|
float** ch_end = ch_data + num_channels;
|
|
const int8_t* tb = s->chgroup[i].transform_band;
|
|
int16_t* sfb;
|
|
|
|
/** multichannel decorrelation */
|
|
for (sfb = s->cur_sfb_offsets;
|
|
sfb < s->cur_sfb_offsets + s->num_bands; sfb++) {
|
|
int y;
|
|
if (*tb++ == 1) {
|
|
/** multiply values with the decorrelation_matrix */
|
|
for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) {
|
|
const float* mat = s->chgroup[i].decorrelation_matrix;
|
|
const float* data_end = data + num_channels;
|
|
float* data_ptr = data;
|
|
float** ch;
|
|
|
|
for (ch = ch_data; ch < ch_end; ch++)
|
|
*data_ptr++ = (*ch)[y];
|
|
|
|
for (ch = ch_data; ch < ch_end; ch++) {
|
|
float sum = 0;
|
|
data_ptr = data;
|
|
while (data_ptr < data_end)
|
|
sum += *data_ptr++ * *mat++;
|
|
|
|
(*ch)[y] = sum;
|
|
}
|
|
}
|
|
} else if (s->avctx->channels == 2) {
|
|
int len = FFMIN(sfb[1], s->subframe_len) - sfb[0];
|
|
s->fdsp->vector_fmul_scalar(ch_data[0] + sfb[0],
|
|
ch_data[0] + sfb[0],
|
|
181.0 / 128, len);
|
|
s->fdsp->vector_fmul_scalar(ch_data[1] + sfb[0],
|
|
ch_data[1] + sfb[0],
|
|
181.0 / 128, len);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
*@brief Apply sine window and reconstruct the output buffer.
|
|
*@param s codec context
|
|
*/
|
|
static void wmapro_window(WMAProDecodeCtx *s)
|
|
{
|
|
int i;
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) {
|
|
int c = s->channel_indexes_for_cur_subframe[i];
|
|
const float* window;
|
|
int winlen = s->channel[c].prev_block_len;
|
|
float* start = s->channel[c].coeffs - (winlen >> 1);
|
|
|
|
if (s->subframe_len < winlen) {
|
|
start += (winlen - s->subframe_len) >> 1;
|
|
winlen = s->subframe_len;
|
|
}
|
|
|
|
window = s->windows[av_log2(winlen) - WMAPRO_BLOCK_MIN_BITS];
|
|
|
|
winlen >>= 1;
|
|
|
|
s->fdsp->vector_fmul_window(start, start, start + winlen,
|
|
window, winlen);
|
|
|
|
s->channel[c].prev_block_len = s->subframe_len;
|
|
}
|
|
}
|
|
|
|
/**
|
|
*@brief Decode a single subframe (block).
|
|
*@param s codec context
|
|
*@return 0 on success, < 0 when decoding failed
|
|
*/
|
|
static int decode_subframe(WMAProDecodeCtx *s)
|
|
{
|
|
int offset = s->samples_per_frame;
|
|
int subframe_len = s->samples_per_frame;
|
|
int i;
|
|
int total_samples = s->samples_per_frame * s->avctx->channels;
|
|
int transmit_coeffs = 0;
|
|
int cur_subwoofer_cutoff;
|
|
|
|
s->subframe_offset = get_bits_count(&s->gb);
|
|
|
|
/** reset channel context and find the next block offset and size
|
|
== the next block of the channel with the smallest number of
|
|
decoded samples
|
|
*/
|
|
for (i = 0; i < s->avctx->channels; i++) {
|
|
s->channel[i].grouped = 0;
|
|
if (offset > s->channel[i].decoded_samples) {
|
|
offset = s->channel[i].decoded_samples;
|
|
subframe_len =
|
|
s->channel[i].subframe_len[s->channel[i].cur_subframe];
|
|
}
|
|
}
|
|
|
|
ff_dlog(s->avctx,
|
|
"processing subframe with offset %i len %i\n", offset, subframe_len);
|
|
|
|
/** get a list of all channels that contain the estimated block */
|
|
s->channels_for_cur_subframe = 0;
|
|
for (i = 0; i < s->avctx->channels; i++) {
|
|
const int cur_subframe = s->channel[i].cur_subframe;
|
|
/** subtract already processed samples */
|
|
total_samples -= s->channel[i].decoded_samples;
|
|
|
|
/** and count if there are multiple subframes that match our profile */
|
|
if (offset == s->channel[i].decoded_samples &&
|
|
subframe_len == s->channel[i].subframe_len[cur_subframe]) {
|
|
total_samples -= s->channel[i].subframe_len[cur_subframe];
|
|
s->channel[i].decoded_samples +=
|
|
s->channel[i].subframe_len[cur_subframe];
|
|
s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i;
|
|
++s->channels_for_cur_subframe;
|
|
}
|
|
}
|
|
|
|
/** check if the frame will be complete after processing the
|
|
estimated block */
|
|
if (!total_samples)
|
|
s->parsed_all_subframes = 1;
|
|
|
|
|
|
ff_dlog(s->avctx, "subframe is part of %i channels\n",
|
|
s->channels_for_cur_subframe);
|
|
|
|
/** calculate number of scale factor bands and their offsets */
|
|
s->table_idx = av_log2(s->samples_per_frame/subframe_len);
|
|
s->num_bands = s->num_sfb[s->table_idx];
|
|
s->cur_sfb_offsets = s->sfb_offsets[s->table_idx];
|
|
cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx];
|
|
|
|
/** configure the decoder for the current subframe */
|
|
offset += s->samples_per_frame >> 1;
|
|
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) {
|
|
int c = s->channel_indexes_for_cur_subframe[i];
|
|
|
|
s->channel[c].coeffs = &s->channel[c].out[offset];
|
|
}
|
|
|
|
s->subframe_len = subframe_len;
|
|
s->esc_len = av_log2(s->subframe_len - 1) + 1;
|
|
|
|
/** skip extended header if any */
|
|
if (get_bits1(&s->gb)) {
|
|
int num_fill_bits;
|
|
if (!(num_fill_bits = get_bits(&s->gb, 2))) {
|
|
int len = get_bits(&s->gb, 4);
|
|
num_fill_bits = get_bitsz(&s->gb, len) + 1;
|
|
}
|
|
|
|
if (num_fill_bits >= 0) {
|
|
if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
skip_bits_long(&s->gb, num_fill_bits);
|
|
}
|
|
}
|
|
|
|
/** no idea for what the following bit is used */
|
|
if (get_bits1(&s->gb)) {
|
|
avpriv_request_sample(s->avctx, "Reserved bit");
|
|
return AVERROR_PATCHWELCOME;
|
|
}
|
|
|
|
|
|
if (decode_channel_transform(s) < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) {
|
|
int c = s->channel_indexes_for_cur_subframe[i];
|
|
if ((s->channel[c].transmit_coefs = get_bits1(&s->gb)))
|
|
transmit_coeffs = 1;
|
|
}
|
|
|
|
av_assert0(s->subframe_len <= WMAPRO_BLOCK_MAX_SIZE);
|
|
if (transmit_coeffs) {
|
|
int step;
|
|
int quant_step = 90 * s->bits_per_sample >> 4;
|
|
|
|
/** decode number of vector coded coefficients */
|
|
if ((s->transmit_num_vec_coeffs = get_bits1(&s->gb))) {
|
|
int num_bits = av_log2((s->subframe_len + 3)/4) + 1;
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) {
|
|
int c = s->channel_indexes_for_cur_subframe[i];
|
|
int num_vec_coeffs = get_bits(&s->gb, num_bits) << 2;
|
|
if (num_vec_coeffs > s->subframe_len) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "num_vec_coeffs %d is too large\n", num_vec_coeffs);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
av_assert0(num_vec_coeffs + offset <= FF_ARRAY_ELEMS(s->channel[c].out));
|
|
s->channel[c].num_vec_coeffs = num_vec_coeffs;
|
|
}
|
|
} else {
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) {
|
|
int c = s->channel_indexes_for_cur_subframe[i];
|
|
s->channel[c].num_vec_coeffs = s->subframe_len;
|
|
}
|
|
}
|
|
/** decode quantization step */
|
|
step = get_sbits(&s->gb, 6);
|
|
quant_step += step;
|
|
if (step == -32 || step == 31) {
|
|
const int sign = (step == 31) - 1;
|
|
int quant = 0;
|
|
while (get_bits_count(&s->gb) + 5 < s->num_saved_bits &&
|
|
(step = get_bits(&s->gb, 5)) == 31) {
|
|
quant += 31;
|
|
}
|
|
quant_step += ((quant + step) ^ sign) - sign;
|
|
}
|
|
if (quant_step < 0) {
|
|
av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n");
|
|
}
|
|
|
|
/** decode quantization step modifiers for every channel */
|
|
|
|
if (s->channels_for_cur_subframe == 1) {
|
|
s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step;
|
|
} else {
|
|
int modifier_len = get_bits(&s->gb, 3);
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) {
|
|
int c = s->channel_indexes_for_cur_subframe[i];
|
|
s->channel[c].quant_step = quant_step;
|
|
if (get_bits1(&s->gb)) {
|
|
if (modifier_len) {
|
|
s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1;
|
|
} else
|
|
++s->channel[c].quant_step;
|
|
}
|
|
}
|
|
}
|
|
|
|
/** decode scale factors */
|
|
if (decode_scale_factors(s) < 0)
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
ff_dlog(s->avctx, "BITSTREAM: subframe header length was %i\n",
|
|
get_bits_count(&s->gb) - s->subframe_offset);
|
|
|
|
/** parse coefficients */
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) {
|
|
int c = s->channel_indexes_for_cur_subframe[i];
|
|
if (s->channel[c].transmit_coefs &&
|
|
get_bits_count(&s->gb) < s->num_saved_bits) {
|
|
decode_coeffs(s, c);
|
|
} else
|
|
memset(s->channel[c].coeffs, 0,
|
|
sizeof(*s->channel[c].coeffs) * subframe_len);
|
|
}
|
|
|
|
ff_dlog(s->avctx, "BITSTREAM: subframe length was %i\n",
|
|
get_bits_count(&s->gb) - s->subframe_offset);
|
|
|
|
if (transmit_coeffs) {
|
|
FFTContext *mdct = &s->mdct_ctx[av_log2(subframe_len) - WMAPRO_BLOCK_MIN_BITS];
|
|
/** reconstruct the per channel data */
|
|
inverse_channel_transform(s);
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) {
|
|
int c = s->channel_indexes_for_cur_subframe[i];
|
|
const int* sf = s->channel[c].scale_factors;
|
|
int b;
|
|
|
|
if (c == s->lfe_channel)
|
|
memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) *
|
|
(subframe_len - cur_subwoofer_cutoff));
|
|
|
|
/** inverse quantization and rescaling */
|
|
for (b = 0; b < s->num_bands; b++) {
|
|
const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len);
|
|
const int exp = s->channel[c].quant_step -
|
|
(s->channel[c].max_scale_factor - *sf++) *
|
|
s->channel[c].scale_factor_step;
|
|
const float quant = ff_exp10(exp / 20.0);
|
|
int start = s->cur_sfb_offsets[b];
|
|
s->fdsp->vector_fmul_scalar(s->tmp + start,
|
|
s->channel[c].coeffs + start,
|
|
quant, end - start);
|
|
}
|
|
|
|
/** apply imdct (imdct_half == DCTIV with reverse) */
|
|
mdct->imdct_half(mdct, s->channel[c].coeffs, s->tmp);
|
|
}
|
|
}
|
|
|
|
/** window and overlapp-add */
|
|
wmapro_window(s);
|
|
|
|
/** handled one subframe */
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) {
|
|
int c = s->channel_indexes_for_cur_subframe[i];
|
|
if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
++s->channel[c].cur_subframe;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
*@brief Decode one WMA frame.
|
|
*@param s codec context
|
|
*@return 0 if the trailer bit indicates that this is the last frame,
|
|
* 1 if there are additional frames
|
|
*/
|
|
static int decode_frame(WMAProDecodeCtx *s, AVFrame *frame, int *got_frame_ptr)
|
|
{
|
|
AVCodecContext *avctx = s->avctx;
|
|
GetBitContext* gb = &s->gb;
|
|
int more_frames = 0;
|
|
int len = 0;
|
|
int i, ret;
|
|
|
|
/** get frame length */
|
|
if (s->len_prefix)
|
|
len = get_bits(gb, s->log2_frame_size);
|
|
|
|
ff_dlog(s->avctx, "decoding frame with length %x\n", len);
|
|
|
|
/** decode tile information */
|
|
if (decode_tilehdr(s)) {
|
|
s->packet_loss = 1;
|
|
return 0;
|
|
}
|
|
|
|
/** read postproc transform */
|
|
if (s->avctx->channels > 1 && get_bits1(gb)) {
|
|
if (get_bits1(gb)) {
|
|
for (i = 0; i < avctx->channels * avctx->channels; i++)
|
|
skip_bits(gb, 4);
|
|
}
|
|
}
|
|
|
|
/** read drc info */
|
|
if (s->dynamic_range_compression) {
|
|
s->drc_gain = get_bits(gb, 8);
|
|
ff_dlog(s->avctx, "drc_gain %i\n", s->drc_gain);
|
|
}
|
|
|
|
/** no idea what these are for, might be the number of samples
|
|
that need to be skipped at the beginning or end of a stream */
|
|
if (get_bits1(gb)) {
|
|
int av_unused skip;
|
|
|
|
/** usually true for the first frame */
|
|
if (get_bits1(gb)) {
|
|
skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
|
|
ff_dlog(s->avctx, "start skip: %i\n", skip);
|
|
}
|
|
|
|
/** sometimes true for the last frame */
|
|
if (get_bits1(gb)) {
|
|
skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
|
|
ff_dlog(s->avctx, "end skip: %i\n", skip);
|
|
}
|
|
|
|
}
|
|
|
|
ff_dlog(s->avctx, "BITSTREAM: frame header length was %i\n",
|
|
get_bits_count(gb) - s->frame_offset);
|
|
|
|
/** reset subframe states */
|
|
s->parsed_all_subframes = 0;
|
|
for (i = 0; i < avctx->channels; i++) {
|
|
s->channel[i].decoded_samples = 0;
|
|
s->channel[i].cur_subframe = 0;
|
|
s->channel[i].reuse_sf = 0;
|
|
}
|
|
|
|
/** decode all subframes */
|
|
while (!s->parsed_all_subframes) {
|
|
if (decode_subframe(s) < 0) {
|
|
s->packet_loss = 1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* get output buffer */
|
|
frame->nb_samples = s->samples_per_frame;
|
|
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
|
|
s->packet_loss = 1;
|
|
return 0;
|
|
}
|
|
|
|
/** copy samples to the output buffer */
|
|
for (i = 0; i < avctx->channels; i++)
|
|
memcpy(frame->extended_data[i], s->channel[i].out,
|
|
s->samples_per_frame * sizeof(*s->channel[i].out));
|
|
|
|
for (i = 0; i < avctx->channels; i++) {
|
|
/** reuse second half of the IMDCT output for the next frame */
|
|
memcpy(&s->channel[i].out[0],
|
|
&s->channel[i].out[s->samples_per_frame],
|
|
s->samples_per_frame * sizeof(*s->channel[i].out) >> 1);
|
|
}
|
|
|
|
if (s->skip_frame) {
|
|
s->skip_frame = 0;
|
|
*got_frame_ptr = 0;
|
|
av_frame_unref(frame);
|
|
} else {
|
|
*got_frame_ptr = 1;
|
|
}
|
|
|
|
if (s->len_prefix) {
|
|
if (len != (get_bits_count(gb) - s->frame_offset) + 2) {
|
|
/** FIXME: not sure if this is always an error */
|
|
av_log(s->avctx, AV_LOG_ERROR,
|
|
"frame[%"PRIu32"] would have to skip %i bits\n",
|
|
s->frame_num,
|
|
len - (get_bits_count(gb) - s->frame_offset) - 1);
|
|
s->packet_loss = 1;
|
|
return 0;
|
|
}
|
|
|
|
/** skip the rest of the frame data */
|
|
skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);
|
|
} else {
|
|
while (get_bits_count(gb) < s->num_saved_bits && get_bits1(gb) == 0) {
|
|
}
|
|
}
|
|
|
|
/** decode trailer bit */
|
|
more_frames = get_bits1(gb);
|
|
|
|
++s->frame_num;
|
|
return more_frames;
|
|
}
|
|
|
|
/**
|
|
*@brief Calculate remaining input buffer length.
|
|
*@param s codec context
|
|
*@param gb bitstream reader context
|
|
*@return remaining size in bits
|
|
*/
|
|
static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb)
|
|
{
|
|
return s->buf_bit_size - get_bits_count(gb);
|
|
}
|
|
|
|
/**
|
|
*@brief Fill the bit reservoir with a (partial) frame.
|
|
*@param s codec context
|
|
*@param gb bitstream reader context
|
|
*@param len length of the partial frame
|
|
*@param append decides whether to reset the buffer or not
|
|
*/
|
|
static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len,
|
|
int append)
|
|
{
|
|
int buflen;
|
|
|
|
/** when the frame data does not need to be concatenated, the input buffer
|
|
is reset and additional bits from the previous frame are copied
|
|
and skipped later so that a fast byte copy is possible */
|
|
|
|
if (!append) {
|
|
s->frame_offset = get_bits_count(gb) & 7;
|
|
s->num_saved_bits = s->frame_offset;
|
|
init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
|
|
}
|
|
|
|
buflen = (put_bits_count(&s->pb) + len + 8) >> 3;
|
|
|
|
if (len <= 0 || buflen > MAX_FRAMESIZE) {
|
|
avpriv_request_sample(s->avctx, "Too small input buffer");
|
|
s->packet_loss = 1;
|
|
return;
|
|
}
|
|
|
|
av_assert0(len <= put_bits_left(&s->pb));
|
|
|
|
s->num_saved_bits += len;
|
|
if (!append) {
|
|
avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
|
|
s->num_saved_bits);
|
|
} else {
|
|
int align = 8 - (get_bits_count(gb) & 7);
|
|
align = FFMIN(align, len);
|
|
put_bits(&s->pb, align, get_bits(gb, align));
|
|
len -= align;
|
|
avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
|
|
}
|
|
skip_bits_long(gb, len);
|
|
|
|
{
|
|
PutBitContext tmp = s->pb;
|
|
flush_put_bits(&tmp);
|
|
}
|
|
|
|
init_get_bits(&s->gb, s->frame_data, s->num_saved_bits);
|
|
skip_bits(&s->gb, s->frame_offset);
|
|
}
|
|
|
|
/**
|
|
*@brief Decode a single WMA packet.
|
|
*@param avctx codec context
|
|
*@param data the output buffer
|
|
*@param avpkt input packet
|
|
*@return number of bytes that were read from the input buffer
|
|
*/
|
|
static int decode_packet(AVCodecContext *avctx, void *data,
|
|
int *got_frame_ptr, AVPacket* avpkt)
|
|
{
|
|
WMAProDecodeCtx *s = avctx->priv_data;
|
|
GetBitContext* gb = &s->pgb;
|
|
const uint8_t* buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
int num_bits_prev_frame;
|
|
int packet_sequence_number;
|
|
|
|
*got_frame_ptr = 0;
|
|
|
|
if (s->skip_packets > 0) {
|
|
s->skip_packets--;
|
|
return FFMIN(avpkt->size, avctx->block_align);
|
|
}
|
|
|
|
if (s->packet_done || s->packet_loss) {
|
|
s->packet_done = 0;
|
|
|
|
/** sanity check for the buffer length */
|
|
if (avctx->codec_id == AV_CODEC_ID_WMAPRO && buf_size < avctx->block_align) {
|
|
av_log(avctx, AV_LOG_ERROR, "Input packet too small (%d < %d)\n",
|
|
buf_size, avctx->block_align);
|
|
return AVERROR_INVALIDDATA;
|
|
}
|
|
|
|
if (avctx->codec_id == AV_CODEC_ID_WMAPRO) {
|
|
s->next_packet_start = buf_size - avctx->block_align;
|
|
buf_size = avctx->block_align;
|
|
} else {
|
|
s->next_packet_start = buf_size - FFMIN(buf_size, avctx->block_align);
|
|
buf_size = FFMIN(buf_size, avctx->block_align);
|
|
}
|
|
s->buf_bit_size = buf_size << 3;
|
|
|
|
/** parse packet header */
|
|
init_get_bits(gb, buf, s->buf_bit_size);
|
|
if (avctx->codec_id != AV_CODEC_ID_XMA2) {
|
|
packet_sequence_number = get_bits(gb, 4);
|
|
skip_bits(gb, 2);
|
|
} else {
|
|
s->num_frames = get_bits(gb, 6);
|
|
packet_sequence_number = 0;
|
|
}
|
|
|
|
/** get number of bits that need to be added to the previous frame */
|
|
num_bits_prev_frame = get_bits(gb, s->log2_frame_size);
|
|
if (avctx->codec_id != AV_CODEC_ID_WMAPRO) {
|
|
skip_bits(gb, 3);
|
|
s->skip_packets = get_bits(gb, 8);
|
|
}
|
|
|
|
ff_dlog(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number,
|
|
num_bits_prev_frame);
|
|
|
|
/** check for packet loss */
|
|
if (avctx->codec_id != AV_CODEC_ID_XMA2 && !s->packet_loss &&
|
|
((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) {
|
|
s->packet_loss = 1;
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
"Packet loss detected! seq %"PRIx8" vs %x\n",
|
|
s->packet_sequence_number, packet_sequence_number);
|
|
}
|
|
s->packet_sequence_number = packet_sequence_number;
|
|
|
|
if (num_bits_prev_frame > 0) {
|
|
int remaining_packet_bits = s->buf_bit_size - get_bits_count(gb);
|
|
if (num_bits_prev_frame >= remaining_packet_bits) {
|
|
num_bits_prev_frame = remaining_packet_bits;
|
|
s->packet_done = 1;
|
|
}
|
|
|
|
/** append the previous frame data to the remaining data from the
|
|
previous packet to create a full frame */
|
|
save_bits(s, gb, num_bits_prev_frame, 1);
|
|
ff_dlog(avctx, "accumulated %x bits of frame data\n",
|
|
s->num_saved_bits - s->frame_offset);
|
|
|
|
/** decode the cross packet frame if it is valid */
|
|
if (!s->packet_loss)
|
|
decode_frame(s, data, got_frame_ptr);
|
|
} else if (s->num_saved_bits - s->frame_offset) {
|
|
ff_dlog(avctx, "ignoring %x previously saved bits\n",
|
|
s->num_saved_bits - s->frame_offset);
|
|
}
|
|
|
|
if (s->packet_loss) {
|
|
/** reset number of saved bits so that the decoder
|
|
does not start to decode incomplete frames in the
|
|
s->len_prefix == 0 case */
|
|
s->num_saved_bits = 0;
|
|
s->packet_loss = 0;
|
|
}
|
|
|
|
} else {
|
|
int frame_size;
|
|
s->buf_bit_size = (avpkt->size - s->next_packet_start) << 3;
|
|
init_get_bits(gb, avpkt->data, s->buf_bit_size);
|
|
skip_bits(gb, s->packet_offset);
|
|
if (s->len_prefix && remaining_bits(s, gb) > s->log2_frame_size &&
|
|
(frame_size = show_bits(gb, s->log2_frame_size)) &&
|
|
frame_size <= remaining_bits(s, gb)) {
|
|
save_bits(s, gb, frame_size, 0);
|
|
if (!s->packet_loss)
|
|
s->packet_done = !decode_frame(s, data, got_frame_ptr);
|
|
} else if (!s->len_prefix
|
|
&& s->num_saved_bits > get_bits_count(&s->gb)) {
|
|
/** when the frames do not have a length prefix, we don't know
|
|
the compressed length of the individual frames
|
|
however, we know what part of a new packet belongs to the
|
|
previous frame
|
|
therefore we save the incoming packet first, then we append
|
|
the "previous frame" data from the next packet so that
|
|
we get a buffer that only contains full frames */
|
|
s->packet_done = !decode_frame(s, data, got_frame_ptr);
|
|
} else
|
|
s->packet_done = 1;
|
|
}
|
|
|
|
if (remaining_bits(s, gb) < 0) {
|
|
av_log(avctx, AV_LOG_ERROR, "Overread %d\n", -remaining_bits(s, gb));
|
|
s->packet_loss = 1;
|
|
}
|
|
|
|
if (s->packet_done && !s->packet_loss &&
|
|
remaining_bits(s, gb) > 0) {
|
|
/** save the rest of the data so that it can be decoded
|
|
with the next packet */
|
|
save_bits(s, gb, remaining_bits(s, gb), 0);
|
|
}
|
|
|
|
s->packet_offset = get_bits_count(gb) & 7;
|
|
if (s->packet_loss)
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
return get_bits_count(gb) >> 3;
|
|
}
|
|
|
|
/**
|
|
*@brief Clear decoder buffers (for seeking).
|
|
*@param avctx codec context
|
|
*/
|
|
static void flush(AVCodecContext *avctx)
|
|
{
|
|
WMAProDecodeCtx *s = avctx->priv_data;
|
|
int i;
|
|
/** reset output buffer as a part of it is used during the windowing of a
|
|
new frame */
|
|
for (i = 0; i < avctx->channels; i++)
|
|
memset(s->channel[i].out, 0, s->samples_per_frame *
|
|
sizeof(*s->channel[i].out));
|
|
s->packet_loss = 1;
|
|
}
|
|
|
|
|
|
/**
|
|
*@brief wmapro decoder
|
|
*/
|
|
AVCodec ff_wmapro_decoder = {
|
|
.name = "wmapro",
|
|
.long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"),
|
|
.type = AVMEDIA_TYPE_AUDIO,
|
|
.id = AV_CODEC_ID_WMAPRO,
|
|
.priv_data_size = sizeof(WMAProDecodeCtx),
|
|
.init = decode_init,
|
|
.close = decode_end,
|
|
.decode = decode_packet,
|
|
.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
|
|
.flush = flush,
|
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
|
|
AV_SAMPLE_FMT_NONE },
|
|
};
|
|
|
|
AVCodec ff_xma1_decoder = {
|
|
.name = "xma1",
|
|
.long_name = NULL_IF_CONFIG_SMALL("Xbox Media Audio 1"),
|
|
.type = AVMEDIA_TYPE_AUDIO,
|
|
.id = AV_CODEC_ID_XMA1,
|
|
.priv_data_size = sizeof(WMAProDecodeCtx),
|
|
.init = decode_init,
|
|
.close = decode_end,
|
|
.decode = decode_packet,
|
|
.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
|
|
.flush = flush,
|
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
|
|
AV_SAMPLE_FMT_NONE },
|
|
};
|
|
|
|
AVCodec ff_xma2_decoder = {
|
|
.name = "xma2",
|
|
.long_name = NULL_IF_CONFIG_SMALL("Xbox Media Audio 2"),
|
|
.type = AVMEDIA_TYPE_AUDIO,
|
|
.id = AV_CODEC_ID_XMA2,
|
|
.priv_data_size = sizeof(WMAProDecodeCtx),
|
|
.init = decode_init,
|
|
.close = decode_end,
|
|
.decode = decode_packet,
|
|
.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
|
|
.flush = flush,
|
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
|
|
AV_SAMPLE_FMT_NONE },
|
|
};
|