mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2024-12-07 11:13:41 +02:00
21f9468402
Libav, for some reason, merged this as a public API function. This will aid in future merges. A define is left for backwards compat, just in case some person used it, since it is in a public header. Signed-off-by: Derek Buitenhuis <derek.buitenhuis@gmail.com>
423 lines
19 KiB
C
423 lines
19 KiB
C
/*
|
|
* Copyright (C) 2013 Wei Gao <weigao@multicorewareinc.com>
|
|
* Copyright (C) 2013 Lenny Wang
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* unsharp input video
|
|
*/
|
|
|
|
#include "unsharp_opencl.h"
|
|
#include "libavutil/common.h"
|
|
#include "libavutil/opencl_internal.h"
|
|
|
|
#define PLANE_NUM 3
|
|
#define ROUND_TO_16(a) (((((a) - 1)/16)+1)*16)
|
|
|
|
static inline void add_mask_counter(uint32_t *dst, uint32_t *counter1, uint32_t *counter2, int len)
|
|
{
|
|
int i;
|
|
for (i = 0; i < len; i++) {
|
|
dst[i] = counter1[i] + counter2[i];
|
|
}
|
|
}
|
|
|
|
static int compute_mask(int step, uint32_t *mask)
|
|
{
|
|
int i, z, ret = 0;
|
|
int counter_size = sizeof(uint32_t) * (2 * step + 1);
|
|
uint32_t *temp1_counter, *temp2_counter, **counter;
|
|
temp1_counter = av_mallocz(counter_size);
|
|
if (!temp1_counter) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto end;
|
|
}
|
|
temp2_counter = av_mallocz(counter_size);
|
|
if (!temp2_counter) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto end;
|
|
}
|
|
counter = av_mallocz_array(2 * step + 1, sizeof(uint32_t *));
|
|
if (!counter) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto end;
|
|
}
|
|
for (i = 0; i < 2 * step + 1; i++) {
|
|
counter[i] = av_mallocz(counter_size);
|
|
if (!counter[i]) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto end;
|
|
}
|
|
}
|
|
for (i = 0; i < 2 * step + 1; i++) {
|
|
memset(temp1_counter, 0, counter_size);
|
|
temp1_counter[i] = 1;
|
|
for (z = 0; z < step * 2; z += 2) {
|
|
add_mask_counter(temp2_counter, counter[z], temp1_counter, step * 2);
|
|
memcpy(counter[z], temp1_counter, counter_size);
|
|
add_mask_counter(temp1_counter, counter[z + 1], temp2_counter, step * 2);
|
|
memcpy(counter[z + 1], temp2_counter, counter_size);
|
|
}
|
|
}
|
|
memcpy(mask, temp1_counter, counter_size);
|
|
end:
|
|
av_freep(&temp1_counter);
|
|
av_freep(&temp2_counter);
|
|
for (i = 0; i < 2 * step + 1; i++) {
|
|
av_freep(&counter[i]);
|
|
}
|
|
av_freep(&counter);
|
|
return ret;
|
|
}
|
|
|
|
static int copy_separable_masks(cl_mem cl_mask_x, cl_mem cl_mask_y, int step_x, int step_y)
|
|
{
|
|
int ret = 0;
|
|
uint32_t *mask_x, *mask_y;
|
|
size_t size_mask_x = sizeof(uint32_t) * (2 * step_x + 1);
|
|
size_t size_mask_y = sizeof(uint32_t) * (2 * step_y + 1);
|
|
mask_x = av_mallocz_array(2 * step_x + 1, sizeof(uint32_t));
|
|
if (!mask_x) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto end;
|
|
}
|
|
mask_y = av_mallocz_array(2 * step_y + 1, sizeof(uint32_t));
|
|
if (!mask_y) {
|
|
ret = AVERROR(ENOMEM);
|
|
goto end;
|
|
}
|
|
|
|
ret = compute_mask(step_x, mask_x);
|
|
if (ret < 0)
|
|
goto end;
|
|
ret = compute_mask(step_y, mask_y);
|
|
if (ret < 0)
|
|
goto end;
|
|
|
|
ret = av_opencl_buffer_write(cl_mask_x, (uint8_t *)mask_x, size_mask_x);
|
|
ret = av_opencl_buffer_write(cl_mask_y, (uint8_t *)mask_y, size_mask_y);
|
|
end:
|
|
av_freep(&mask_x);
|
|
av_freep(&mask_y);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int generate_mask(AVFilterContext *ctx)
|
|
{
|
|
cl_mem masks[4];
|
|
cl_mem mask_matrix[2];
|
|
int i, ret = 0, step_x[2], step_y[2];
|
|
|
|
UnsharpContext *unsharp = ctx->priv;
|
|
mask_matrix[0] = unsharp->opencl_ctx.cl_luma_mask;
|
|
mask_matrix[1] = unsharp->opencl_ctx.cl_chroma_mask;
|
|
masks[0] = unsharp->opencl_ctx.cl_luma_mask_x;
|
|
masks[1] = unsharp->opencl_ctx.cl_luma_mask_y;
|
|
masks[2] = unsharp->opencl_ctx.cl_chroma_mask_x;
|
|
masks[3] = unsharp->opencl_ctx.cl_chroma_mask_y;
|
|
step_x[0] = unsharp->luma.steps_x;
|
|
step_x[1] = unsharp->chroma.steps_x;
|
|
step_y[0] = unsharp->luma.steps_y;
|
|
step_y[1] = unsharp->chroma.steps_y;
|
|
|
|
/* use default kernel if any matrix dim larger than 8 due to limited local mem size */
|
|
if (step_x[0]>8 || step_x[1]>8 || step_y[0]>8 || step_y[1]>8)
|
|
unsharp->opencl_ctx.use_fast_kernels = 0;
|
|
else
|
|
unsharp->opencl_ctx.use_fast_kernels = 1;
|
|
|
|
if (!masks[0] || !masks[1] || !masks[2] || !masks[3]) {
|
|
av_log(ctx, AV_LOG_ERROR, "Luma mask and chroma mask should not be NULL\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
if (!mask_matrix[0] || !mask_matrix[1]) {
|
|
av_log(ctx, AV_LOG_ERROR, "Luma mask and chroma mask should not be NULL\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
for (i = 0; i < 2; i++) {
|
|
ret = copy_separable_masks(masks[2*i], masks[2*i+1], step_x[i], step_y[i]);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int ff_opencl_apply_unsharp(AVFilterContext *ctx, AVFrame *in, AVFrame *out)
|
|
{
|
|
int ret;
|
|
AVFilterLink *link = ctx->inputs[0];
|
|
UnsharpContext *unsharp = ctx->priv;
|
|
cl_int status;
|
|
FFOpenclParam kernel1 = {0};
|
|
FFOpenclParam kernel2 = {0};
|
|
int width = link->w;
|
|
int height = link->h;
|
|
int cw = AV_CEIL_RSHIFT(link->w, unsharp->hsub);
|
|
int ch = AV_CEIL_RSHIFT(link->h, unsharp->vsub);
|
|
size_t globalWorkSize1d = width * height + 2 * ch * cw;
|
|
size_t globalWorkSize2dLuma[2];
|
|
size_t globalWorkSize2dChroma[2];
|
|
size_t localWorkSize2d[2] = {16, 16};
|
|
|
|
if (unsharp->opencl_ctx.use_fast_kernels) {
|
|
globalWorkSize2dLuma[0] = (size_t)ROUND_TO_16(width);
|
|
globalWorkSize2dLuma[1] = (size_t)ROUND_TO_16(height);
|
|
globalWorkSize2dChroma[0] = (size_t)ROUND_TO_16(cw);
|
|
globalWorkSize2dChroma[1] = (size_t)(2*ROUND_TO_16(ch));
|
|
|
|
kernel1.ctx = ctx;
|
|
kernel1.kernel = unsharp->opencl_ctx.kernel_luma;
|
|
ret = avpriv_opencl_set_parameter(&kernel1,
|
|
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_inbuf),
|
|
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_outbuf),
|
|
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_luma_mask_x),
|
|
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_luma_mask_y),
|
|
FF_OPENCL_PARAM_INFO(unsharp->luma.amount),
|
|
FF_OPENCL_PARAM_INFO(unsharp->luma.scalebits),
|
|
FF_OPENCL_PARAM_INFO(unsharp->luma.halfscale),
|
|
FF_OPENCL_PARAM_INFO(in->linesize[0]),
|
|
FF_OPENCL_PARAM_INFO(out->linesize[0]),
|
|
FF_OPENCL_PARAM_INFO(width),
|
|
FF_OPENCL_PARAM_INFO(height),
|
|
NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
kernel2.ctx = ctx;
|
|
kernel2.kernel = unsharp->opencl_ctx.kernel_chroma;
|
|
ret = avpriv_opencl_set_parameter(&kernel2,
|
|
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_inbuf),
|
|
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_outbuf),
|
|
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_chroma_mask_x),
|
|
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_chroma_mask_y),
|
|
FF_OPENCL_PARAM_INFO(unsharp->chroma.amount),
|
|
FF_OPENCL_PARAM_INFO(unsharp->chroma.scalebits),
|
|
FF_OPENCL_PARAM_INFO(unsharp->chroma.halfscale),
|
|
FF_OPENCL_PARAM_INFO(in->linesize[0]),
|
|
FF_OPENCL_PARAM_INFO(in->linesize[1]),
|
|
FF_OPENCL_PARAM_INFO(out->linesize[0]),
|
|
FF_OPENCL_PARAM_INFO(out->linesize[1]),
|
|
FF_OPENCL_PARAM_INFO(link->w),
|
|
FF_OPENCL_PARAM_INFO(link->h),
|
|
FF_OPENCL_PARAM_INFO(cw),
|
|
FF_OPENCL_PARAM_INFO(ch),
|
|
NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
status = clEnqueueNDRangeKernel(unsharp->opencl_ctx.command_queue,
|
|
unsharp->opencl_ctx.kernel_luma, 2, NULL,
|
|
globalWorkSize2dLuma, localWorkSize2d, 0, NULL, NULL);
|
|
status |=clEnqueueNDRangeKernel(unsharp->opencl_ctx.command_queue,
|
|
unsharp->opencl_ctx.kernel_chroma, 2, NULL,
|
|
globalWorkSize2dChroma, localWorkSize2d, 0, NULL, NULL);
|
|
if (status != CL_SUCCESS) {
|
|
av_log(ctx, AV_LOG_ERROR, "OpenCL run kernel error occurred: %s\n", av_opencl_errstr(status));
|
|
return AVERROR_EXTERNAL;
|
|
}
|
|
} else { /* use default kernel */
|
|
kernel1.ctx = ctx;
|
|
kernel1.kernel = unsharp->opencl_ctx.kernel_default;
|
|
|
|
ret = avpriv_opencl_set_parameter(&kernel1,
|
|
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_inbuf),
|
|
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_outbuf),
|
|
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_luma_mask),
|
|
FF_OPENCL_PARAM_INFO(unsharp->opencl_ctx.cl_chroma_mask),
|
|
FF_OPENCL_PARAM_INFO(unsharp->luma.amount),
|
|
FF_OPENCL_PARAM_INFO(unsharp->chroma.amount),
|
|
FF_OPENCL_PARAM_INFO(unsharp->luma.steps_x),
|
|
FF_OPENCL_PARAM_INFO(unsharp->luma.steps_y),
|
|
FF_OPENCL_PARAM_INFO(unsharp->chroma.steps_x),
|
|
FF_OPENCL_PARAM_INFO(unsharp->chroma.steps_y),
|
|
FF_OPENCL_PARAM_INFO(unsharp->luma.scalebits),
|
|
FF_OPENCL_PARAM_INFO(unsharp->chroma.scalebits),
|
|
FF_OPENCL_PARAM_INFO(unsharp->luma.halfscale),
|
|
FF_OPENCL_PARAM_INFO(unsharp->chroma.halfscale),
|
|
FF_OPENCL_PARAM_INFO(in->linesize[0]),
|
|
FF_OPENCL_PARAM_INFO(in->linesize[1]),
|
|
FF_OPENCL_PARAM_INFO(out->linesize[0]),
|
|
FF_OPENCL_PARAM_INFO(out->linesize[1]),
|
|
FF_OPENCL_PARAM_INFO(link->h),
|
|
FF_OPENCL_PARAM_INFO(link->w),
|
|
FF_OPENCL_PARAM_INFO(ch),
|
|
FF_OPENCL_PARAM_INFO(cw),
|
|
NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
status = clEnqueueNDRangeKernel(unsharp->opencl_ctx.command_queue,
|
|
unsharp->opencl_ctx.kernel_default, 1, NULL,
|
|
&globalWorkSize1d, NULL, 0, NULL, NULL);
|
|
if (status != CL_SUCCESS) {
|
|
av_log(ctx, AV_LOG_ERROR, "OpenCL run kernel error occurred: %s\n", av_opencl_errstr(status));
|
|
return AVERROR_EXTERNAL;
|
|
}
|
|
}
|
|
//blocking map is suffficient, no need for clFinish
|
|
//clFinish(unsharp->opencl_ctx.command_queue);
|
|
|
|
return av_opencl_buffer_read_image(out->data, unsharp->opencl_ctx.out_plane_size,
|
|
unsharp->opencl_ctx.plane_num, unsharp->opencl_ctx.cl_outbuf,
|
|
unsharp->opencl_ctx.cl_outbuf_size);
|
|
}
|
|
|
|
int ff_opencl_unsharp_init(AVFilterContext *ctx)
|
|
{
|
|
int ret = 0;
|
|
char build_opts[96];
|
|
UnsharpContext *unsharp = ctx->priv;
|
|
ret = av_opencl_init(NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_luma_mask,
|
|
sizeof(uint32_t) * (2 * unsharp->luma.steps_x + 1) * (2 * unsharp->luma.steps_y + 1),
|
|
CL_MEM_READ_ONLY, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_chroma_mask,
|
|
sizeof(uint32_t) * (2 * unsharp->chroma.steps_x + 1) * (2 * unsharp->chroma.steps_y + 1),
|
|
CL_MEM_READ_ONLY, NULL);
|
|
// separable filters
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_luma_mask_x,
|
|
sizeof(uint32_t) * (2 * unsharp->luma.steps_x + 1),
|
|
CL_MEM_READ_ONLY, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_luma_mask_y,
|
|
sizeof(uint32_t) * (2 * unsharp->luma.steps_y + 1),
|
|
CL_MEM_READ_ONLY, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_chroma_mask_x,
|
|
sizeof(uint32_t) * (2 * unsharp->chroma.steps_x + 1),
|
|
CL_MEM_READ_ONLY, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_chroma_mask_y,
|
|
sizeof(uint32_t) * (2 * unsharp->chroma.steps_y + 1),
|
|
CL_MEM_READ_ONLY, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = generate_mask(ctx);
|
|
if (ret < 0)
|
|
return ret;
|
|
unsharp->opencl_ctx.plane_num = PLANE_NUM;
|
|
unsharp->opencl_ctx.command_queue = av_opencl_get_command_queue();
|
|
if (!unsharp->opencl_ctx.command_queue) {
|
|
av_log(ctx, AV_LOG_ERROR, "Unable to get OpenCL command queue in filter 'unsharp'\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
snprintf(build_opts, 96, "-D LU_RADIUS_X=%d -D LU_RADIUS_Y=%d -D CH_RADIUS_X=%d -D CH_RADIUS_Y=%d",
|
|
2*unsharp->luma.steps_x+1, 2*unsharp->luma.steps_y+1, 2*unsharp->chroma.steps_x+1, 2*unsharp->chroma.steps_y+1);
|
|
unsharp->opencl_ctx.program = av_opencl_compile("unsharp", build_opts);
|
|
if (!unsharp->opencl_ctx.program) {
|
|
av_log(ctx, AV_LOG_ERROR, "OpenCL failed to compile program 'unsharp'\n");
|
|
return AVERROR(EINVAL);
|
|
}
|
|
if (unsharp->opencl_ctx.use_fast_kernels) {
|
|
if (!unsharp->opencl_ctx.kernel_luma) {
|
|
unsharp->opencl_ctx.kernel_luma = clCreateKernel(unsharp->opencl_ctx.program, "unsharp_luma", &ret);
|
|
if (ret != CL_SUCCESS) {
|
|
av_log(ctx, AV_LOG_ERROR, "OpenCL failed to create kernel 'unsharp_luma'\n");
|
|
return ret;
|
|
}
|
|
}
|
|
if (!unsharp->opencl_ctx.kernel_chroma) {
|
|
unsharp->opencl_ctx.kernel_chroma = clCreateKernel(unsharp->opencl_ctx.program, "unsharp_chroma", &ret);
|
|
if (ret < 0) {
|
|
av_log(ctx, AV_LOG_ERROR, "OpenCL failed to create kernel 'unsharp_chroma'\n");
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (!unsharp->opencl_ctx.kernel_default) {
|
|
unsharp->opencl_ctx.kernel_default = clCreateKernel(unsharp->opencl_ctx.program, "unsharp_default", &ret);
|
|
if (ret < 0) {
|
|
av_log(ctx, AV_LOG_ERROR, "OpenCL failed to create kernel 'unsharp_default'\n");
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void ff_opencl_unsharp_uninit(AVFilterContext *ctx)
|
|
{
|
|
UnsharpContext *unsharp = ctx->priv;
|
|
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_inbuf);
|
|
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_outbuf);
|
|
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_luma_mask);
|
|
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_chroma_mask);
|
|
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_luma_mask_x);
|
|
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_chroma_mask_x);
|
|
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_luma_mask_y);
|
|
av_opencl_buffer_release(&unsharp->opencl_ctx.cl_chroma_mask_y);
|
|
clReleaseKernel(unsharp->opencl_ctx.kernel_default);
|
|
clReleaseKernel(unsharp->opencl_ctx.kernel_luma);
|
|
clReleaseKernel(unsharp->opencl_ctx.kernel_chroma);
|
|
clReleaseProgram(unsharp->opencl_ctx.program);
|
|
unsharp->opencl_ctx.command_queue = NULL;
|
|
av_opencl_uninit();
|
|
}
|
|
|
|
int ff_opencl_unsharp_process_inout_buf(AVFilterContext *ctx, AVFrame *in, AVFrame *out)
|
|
{
|
|
int ret = 0;
|
|
AVFilterLink *link = ctx->inputs[0];
|
|
UnsharpContext *unsharp = ctx->priv;
|
|
int ch = AV_CEIL_RSHIFT(link->h, unsharp->vsub);
|
|
|
|
if ((!unsharp->opencl_ctx.cl_inbuf) || (!unsharp->opencl_ctx.cl_outbuf)) {
|
|
unsharp->opencl_ctx.in_plane_size[0] = (in->linesize[0] * in->height);
|
|
unsharp->opencl_ctx.in_plane_size[1] = (in->linesize[1] * ch);
|
|
unsharp->opencl_ctx.in_plane_size[2] = (in->linesize[2] * ch);
|
|
unsharp->opencl_ctx.out_plane_size[0] = (out->linesize[0] * out->height);
|
|
unsharp->opencl_ctx.out_plane_size[1] = (out->linesize[1] * ch);
|
|
unsharp->opencl_ctx.out_plane_size[2] = (out->linesize[2] * ch);
|
|
unsharp->opencl_ctx.cl_inbuf_size = unsharp->opencl_ctx.in_plane_size[0] +
|
|
unsharp->opencl_ctx.in_plane_size[1] +
|
|
unsharp->opencl_ctx.in_plane_size[2];
|
|
unsharp->opencl_ctx.cl_outbuf_size = unsharp->opencl_ctx.out_plane_size[0] +
|
|
unsharp->opencl_ctx.out_plane_size[1] +
|
|
unsharp->opencl_ctx.out_plane_size[2];
|
|
if (!unsharp->opencl_ctx.cl_inbuf) {
|
|
ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_inbuf,
|
|
unsharp->opencl_ctx.cl_inbuf_size,
|
|
CL_MEM_READ_ONLY, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
if (!unsharp->opencl_ctx.cl_outbuf) {
|
|
ret = av_opencl_buffer_create(&unsharp->opencl_ctx.cl_outbuf,
|
|
unsharp->opencl_ctx.cl_outbuf_size,
|
|
CL_MEM_READ_WRITE, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
return av_opencl_buffer_write_image(unsharp->opencl_ctx.cl_inbuf,
|
|
unsharp->opencl_ctx.cl_inbuf_size,
|
|
0, in->data, unsharp->opencl_ctx.in_plane_size,
|
|
unsharp->opencl_ctx.plane_num);
|
|
}
|